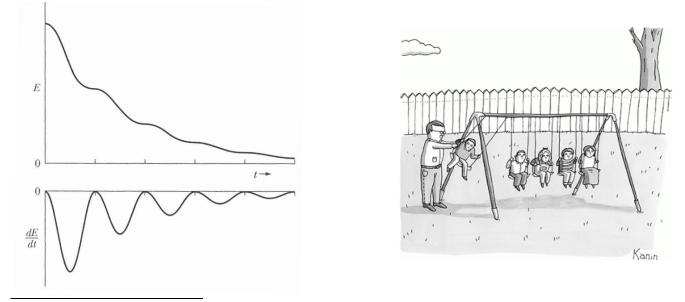
HOMEWORK SET 12: DAMPED AND DRIVEN HARMONIC MOTION Due Wednesday, October 18, 2023

PROBLEMS FROM TM5.

1) 3-2 Altered: Allow the motion of a 100 g mass attached to a spring with a force constant of $k = 10^4$ dyne/cm initially displaced 3 cm from the equilibrium point and released from rest, to take place in a resisting medium. After oscillating for 10 T_s (10 system periods), the maximum amplitude decreases to half the initial value. Calculate

a) the damping parameter β , and

b) the frequency v_s (compare with the undamped frequency v_N (these are f_s and f_N). 1 dyne = 1 g-cm/s² = 10⁻⁵ N but don't convert! Stay in cgs!


2) 3-11 Derive the expressions (by hand ... show the math) for the energy and energy-loss curves shown in Figure 3-8 for the damped oscillator and reproduce them using your favorite plotting program. [Make them look like those in the text! MATCH the algebraic expressions from TM5:

$$E(t) = \frac{mA^{2}}{2}e^{-2\beta t}\left\{\omega_{N}^{2} + \beta^{2}\cos 2\left(\omega_{S}t - \delta\right) + \beta\sqrt{\omega_{N}^{2} - \beta^{2}}\sin 2\left(\omega_{S}t - \delta\right)\right\}$$
$$\frac{dE(t)}{dt} = mA^{2}e^{-2\beta t}\left\{\beta\left(\omega_{S}^{2} - \beta^{2}\right)\cos\left[2\left(\omega_{S}t - \delta\right)\right] - 2\beta^{2}\omega_{S}\sin\left[2\left(\omega_{S}t - \delta\right)\right] - \beta\omega_{N}^{2}\right\}$$

DON'T USE NUMBERED SUBSCRIPTS IN MATHEMATICA! Use ω_N for ω_0 (for the natural frequency) and ω_S for ω_1 (for the system frequency ... ω_D will be for the driving frequency). The values I used for light damping were $\omega_N = 1$, $\beta = 0.1$, m = 2, A = 1, and $\delta = 0.1$

3) 3-16 Discuss the motion of a particle described by equation 3.34 in the event that b < 0 (i.e., the damping is negative).

TM5¹ Figure 3-8 Energy and Energy Loss by the Damped Harmonic Oscillator

¹ Thornton, T.T. and Marion, J. B., (2004). Classical Dynamics of Particles and Systems. 5th Ed. Belmont, CA: Brooks-Cole.