HOMEWORK SET 13: DRIVEN HARMONIC MOTION Due Friday, October 20, 2023

PROBLEMS FROM TM5.

1) 3-24 Altered For $\beta = 0.2 \text{ s}^{-1}$, Mathematic plots like those shown in Figure 3-15 for a sinusoidal driven, damped oscillator where $x_p(t)$, $x_c(t)$, and the sum x (t) are displayed on the back of this sheet. To produce them, I let $k = 1 \text{ kg/s}^2$, m = 1 kg, A = -1 m, the phase angle $\delta = 0$, and plotted values of ω_D/ω_S of 1/9, 1/3, 1.1, 3 and 6. For the $x_p(t)$ solution (Eqn. 3.60), I let $F_0/m = 1 \text{ m/s}^2$, but calculate δ . For the last plot, in the $x_p(t)$ solution (Eqn. 3.60), I let $F_0/m = 20 \text{ m/s}^2$.

What do you observe about the relative amplitudes of the two solutions as ω_D increases? Why does this occur? For $\omega_D/\omega_S = 6$, let $F_0 = 20 \text{ m/s}^2$ for $x_p(t)$ and produce the plot again.

TM5¹ CHAPTER 3

FIGURE 3-15 Examples of sinusoidal driven oscillatory motion with damping. The steady-state solution x_p , transient solution x_c , and sum x are shown in (a) for driving frequency ω greater than the damping frequency $\omega_1(\omega > \omega_1)$ and in (b) for $\omega < \omega_1$.

¹ Thornton, T.T. and Marion, J. B., (2004). Classical Dynamics of Particles and Systems. 5th Ed. Belmont, CA: Brooks-Cole.

The plots show driven, under dampled harmonic oscillations for

$$\mathbf{x}(\mathbf{t}) = \mathbf{A}\mathbf{e}^{-\beta \mathbf{t}} \cos\left(\omega_{s} \mathbf{t}\right) + \frac{\mathbf{F}_{0}/\mathbf{m}}{\sqrt{\left(\omega_{N}^{2} - \omega_{D}^{2}\right)^{2} + 4\beta^{2}\omega_{D}^{2}}} \cos\left(\omega_{D} \mathbf{t} - \delta\right), \text{ where } \delta = \tan^{-1}\left(\frac{2\beta\omega_{D}}{\omega_{N}^{2} - \omega_{D}^{2}}\right)^{2} + \frac{1}{2}\left(\frac{2\beta\omega_{D}}{\omega_{N}^{2} - \omega_{D}^{2}}\right)^{2} + \frac{1}{2}\left(\frac{2\beta\omega_{D}}{\omega_{D}^{2} - \omega_{D}^{2}}\right)^{2} + \frac{$$

with $F_0/m = k = 1$, $\delta_{\text{transient}} = 0$, A = -1, and $\beta = 0.2 \text{ s}^{-1}$ (giving $\omega_N = 1 \text{ s}^{-1}$ and $\omega_S = 0.9798 \text{ s}^{-1}$) and ω_D as multiples of ω_N as given on each plot.

