Homework Set 13: Driven Harmonic Motion

Due Friday, October 20, 2023

Problems From TM5.

1) 3-24 Altered For $\beta=0.2 s^{-1}$, Mathematic plots like those shown in Figure 3-15 for a sinusoidal driven, damped oscillator where $x_{p}(t), x_{c}(t)$, and the sum $x(t)$ are displayed on the back of this sheet. To produce them, I let $k=1 \mathrm{~kg} / \mathrm{s}^{2}, m=1 \mathrm{~kg}, A=-1 \mathrm{~m}$, the phase angle $\delta=0$, and plotted values of $\omega_{0} / \omega \mathrm{s}$ of $1 / 9$, $1 / 3,1.1,3$ and 6 . For the $x_{p}(t)$ solution (Eqn. 3.60). I let $F_{0} / \mathrm{m}=1 \mathrm{~m} / \mathrm{s}^{2}$, but calculatde δ. For the last plot, in the $x_{p}(t)$ solution (Eqn. 3.60), I let $F_{0} / \mathrm{m}=20 \mathrm{~m} / \mathrm{s}^{2}$.

What do you observe about the relative amplitudes of the two solutions as ω_{0} increases? Why does this occur? For $\omega_{D} / \omega_{s}=6$, let $F_{0}=20 \mathrm{~m} / \mathrm{s}^{2}$ for $x_{p}(\dagger)$ and produce the plot again.

TM5 ${ }^{1}$ CHAPTER 3

(a)

(b)

FIGURE 3-15 Examples of sinusoidal driven oscillatory motion with damping. The steady-state solution x_{p}, transient solution x_{c}, and sum x are shown in
(a) for driving frequency ω greater than the damping frequency $\omega_{1}\left(\omega>\omega_{1}\right)$ and in (b) for $\omega<\omega_{1}$.

[^0]The plots show driven, under dampled harmonic oscillations for

$$
x(t)=A e^{-\beta t} \cos \left(\omega_{S} t\right)+\frac{F_{0} / m}{\sqrt{\left(\omega_{N}^{2}-\omega_{D}^{2}\right)^{2}+4 \beta^{2} \omega_{D}^{2}}} \cos \left(\omega_{D} t-\delta\right), \text { where } \delta=\tan ^{-1}\left(\frac{2 \beta \omega_{D}}{\omega_{N}^{2}-\omega_{D}^{2}}\right)
$$

with $F_{0} / m=k=1, \delta_{\text {transient }}=0, A=-1$, and $\beta=0.2 \mathrm{~s}^{-1}$ (giving $\omega_{N}=1 \mathrm{~s}^{-1}$ and $\omega_{s}=0.9798 \mathrm{~s}^{-1}$) and ω_{D} as multiples of ω_{N} as given on each plot.

$\omega_{D}=1.1 \omega_{S}$

[^0]: ${ }^{1}$ Thornton, T.T. and Marion, J. B., (2004). Classical Dynamics of Particles and Systems. $5^{\text {th }}$ Ed. Belmont, CA: BrooksCole.

