Homework Set 15: The Plane Pendulum

Due: Wednesday,
 October 25, 2023

Problem From AOD

1) Write out in explicit detail the mathematical steps between TM5's equations 4.28 and 4.29. In particular
a) Expand expression 4.28 c to show the three elliptical integrals and show the steps in determing their solutions using TM5's Appendix E.3, pp. 615 \& 616 (the Γ functions).

b) To go from expression

 4.28 e to 4.29 , expand $k=$ $\sin (\theta / 2)$ as a series using TM5's Appendix D. 3 on p. 610. Keep terms with powers up to θ^{4} in k, k^{2} and k^{4}. Substitute into 4.28 c and show the arithmetic needed to derive 4.29.
158

4 / NONLINEAR OSCILLATIONS AND CHAOS
from which

$$
\begin{equation*}
\tau=4 \sqrt{\frac{l}{g}} \int_{0}^{1}\left[\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)\right]^{-1 / 2} d z \tag{4.28}
\end{equation*}
$$

Numerical values for integrals of this type can be found in various tables.
For oscillatory motion to result, $\left|\theta_{0}\right|<\pi$, or, equivalently, $\sin \left(\theta_{0} / 2\right)=k$, where $-1<k<+1$. For this case, we can evaluate the integral in Equation 4.28 by expanding $\left(1-k^{2} z^{2}\right)^{-1 / 2}$ in a power series:

$$
\begin{equation*}
\left(1-k^{2} z^{2}\right)^{-1 / 2}=1+\frac{k^{2} z^{2}}{2}+\frac{3 k^{4} z^{4}}{8}+\cdots \tag{4.28b}
\end{equation*}
$$

Then, the expression for the period becomes

$$
\begin{align*}
\tau & =4 \sqrt{\frac{l}{g}} \int_{0}^{1} \frac{d z}{\left(1-z^{2}\right)^{1 / 2}}\left[1+\frac{k^{2} z^{2}}{2}+\frac{3 k^{4} z^{4}}{8}+\cdots\right] \tag{4.28c}\\
& =4 \sqrt{\frac{l}{g}}\left[\frac{\pi}{2}+\frac{k^{2}}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}+\frac{3 k^{4}}{8} \cdot \frac{3}{8} \cdot \frac{\pi}{2}+\cdots\right] \tag{4.28d}\\
& =2 \pi \sqrt{\frac{l}{g}}\left[1+\frac{k^{2}}{4}+\frac{9 k^{4}}{64}+\cdots\right] \tag{4.28e}
\end{align*}
$$

If $|k|$ is large (i.e., near 1), then we need many terms to produce a reasonably accurate result. But for small k, the expansion converges rapidly. And because $k=\sin \left(\theta_{0} / 2\right)$, then $k \cong\left(\theta_{0} / 2\right)-\left(\theta_{0}^{3} / 48\right)$; the result, correct to the fourth order, is

$$
\begin{equation*}
\tau \cong 2 \pi \sqrt{\frac{l}{g}}\left[1+\frac{1}{16} \theta_{0}^{2}+\frac{11}{3072} \theta_{0}^{4}\right] \tag{4.29}
\end{equation*}
$$

Integrals and Gamma Functions (after TM5 ${ }^{1}$ Appendix E.3, pp. 615-616)

Derivation of the period of oscillation for a plane pendulum requires the solution of some standard integrals given in the form:

$$
\begin{gather*}
\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{n}\right)}}=\frac{\sqrt{\pi}}{n} \frac{\Gamma\left(\frac{1}{n}\right)}{\Gamma\left(\frac{1}{n}+\frac{1}{2}\right)} \tag{E.26}\\
\int_{0}^{1} x^{m}\left(1-x^{2}\right)^{n} d x=\frac{\Gamma(n+1) \Gamma\left(\frac{m+1}{2}\right)}{2 \Gamma\left(n+\frac{m+3}{2}\right)} \tag{E.27a}
\end{gather*}
$$

where n and m can take on various integer values and the Gamma Functions must be determined.
The Gamma Function is an extension of the factorial and defined for complex numbers as a convergent, improper integral:

$$
\begin{equation*}
\Gamma(n)=\int_{0}^{\infty} x^{n-1} e^{-x} d x \tag{E.19a}
\end{equation*}
$$

Some particular values of the Gamma Function are

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \tag{E.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma(1)=1 \tag{E.22}
\end{equation*}
$$

Using the recurrence relation allows us to find other values of other Gamma Functions from these two:

$$
\begin{equation*}
n \Gamma(n)=\Gamma(n+1) \tag{E.20}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Thornton, S.T. \& Marion, J.B. (2004), Classical Dynamics of Particles and System (5 ${ }^{\text {th }}$ Ed.), Belmont, CA: Brooks/Cole - Thomson Learning

