Homework Set 17: Fun with Lagrange

Due Wednesday, November 20, 2013

PROBLEM FROM BARGER \& OLSSON

1) 3-2 Two equal masses are constrained by the spring-and-pulley system shown. Assume a massless pulley and a frictionless surface. Let x be the extension of the spring from its relaxed length. Derive the equations of motion by Lagrangian methods. Solve for x as a function of time with the boundary conditions $x(t=0)=\dot{x}(t=0)=0$. Answer : $x(t)=\frac{m g}{k}\left(1-\cos \left(\sqrt{\frac{k}{2 m}} t\right)\right)$

You should give you a differential equation, $\ddot{x}+\frac{k}{2 m} X=\frac{9}{2}$ for which you should guess a solution $x=A+B \cos \left(\omega_{N} \dagger\right)$.

Problems From TM5

2) 7-2 Work out Example 7.6 showing all the steps, in particular those leading to Equations 7.36 and 7.41. Explain why the sign of the acceleration a cannot affect the frequency ω. Give an argument why the signs of a^{2} and g^{2} in the solution of ω^{2} in Equation 7.42 are the same.
Write down every step in taking the derivatives of the Lagrangian ... no short-cuts or you'll miss something! Be carful about the difference between partial and full derivatives!
3) 7-3 A sphere of radius ρ is constrained to roll without slipping on the lower half of the inner surface of a hollow cylinder of inside radius R. Here, θ is the angle between the vertical and the position of the center of mass of the small sphere and ϕ is the angle through which the small sphere has rolled. Determine the Lagrangian function, the equation of constraint and show that Lagrange's equations of motion, for the coordinates shown, are

$$
\begin{aligned}
& -(\mathrm{R}-\rho) m g \sin \theta-m(\mathrm{R}-\rho)^{2} \ddot{\theta}+\lambda(\mathrm{R}-\rho)=0 \\
& \quad-\frac{2}{5} m \rho^{2} \ddot{\phi}-\lambda \rho=0,
\end{aligned}
$$

where

$$
\lambda=-\frac{2}{5} m(R-\rho) \ddot{\theta}=-\frac{2}{5} m \rho \ddot{\phi}
$$

Also show that the frequency of small oscillations is

$$
\omega=\sqrt{\frac{5 g}{7(R-\rho)}} .
$$

[^0]

The energies are due to the height of the CM of the sphere and its translational ($\frac{1}{2} m v^{2}$) and rotational ($\frac{1}{2} I \omega^{2}=\frac{1}{2} I \dot{\phi}^{2}$) motions. The rolling constraint is that the distance moved by the center of mass is equal to the arc length along the sphere: $s_{c m}=r_{\text {sphere }} \phi_{\text {sphere }}$. Describe $s_{c m}$ in terms of θ and $R-\rho$ and use Lagrange's equation with undetermined multipliers (TM5 Equation 7.65).

[^0]: "But this is just a simplistic way of looking at the problem."

