Sphere Rolling in a Circular Bowl (TM5 Pr. 7-3)

Why does the constraint $S_{C M}=S_{\text {Roll }}$ mean that $(R-\rho) \theta=\rho \phi$?
Say the sphere rolls through one revolution in moving the $C M$ from point A to point B.

The $C M$ moves along the arc, $S_{C M}=(R-\rho) \theta$ and point C moves around the circumference of the sphere,$S_{C}=2 \pi \rho$. This is a shorter distance than the arc length between the points of contact, $S_{\text {Bowl }}=R \theta$. This is because the contact point with the bowl changes even though the sphere has had a full rotation.

If it were rolling on a flat surface, a full rotation would put point C as the contact point and it would have to roll a distance $S_{D}=\rho \theta$ to make D the contact point. The total distance rolled would then be, $S_{B o w l}=S_{C+0} D=2 \pi \rho .+\rho \theta$ since one full rotation roll would put C back as the contact point so to make D the final contact point, it has to roll a little bit farther

