Homework Set 19: Rocket Science

Due Monday, November 27, 2023

Problems From TM5

1) 9-54 A rocket starts from rest in free space by emitting mass. At what fraction of the initial mass is the momentum a maximum?
Start with the expression for the velocity of a rocket, find the momentum and maximize it.
2) 9-58 Consider a single stage rocket taking off from the Earth. Show that the height of the rocket at burnout is given by

$$
y_{b}=u t_{b}-\frac{1}{2} g t_{b}^{2}-\frac{m u}{\alpha} \ln \left(\frac{m_{0}}{m}\right)
$$

How much farther in height will the rocket go after burnout?
Keep in mind the facts that $\ln \left(\frac{m_{0}}{m}\right)=-\ln \left(\frac{m}{m_{0}}\right)$ and $\int \ln (a x) d x=x \ln (a x)-x$ (\#299 in the blue book) and that it's a projectile after burnout.
3) 9-62 To perform a rescue, a lunar landing craft needs to hover just above the surface of the moon, which has a gravitational acceleration of $\mathrm{g} / 6$. The exhaust velocity is $2,000 \mathrm{~m} / \mathrm{s}$, but fuel amounting to only 20% of the total mass may be used. How long can the landing craft hover? Apply NSL to obtain a differential equation in m and t. The force a rocket produces is thrust that is given by the speed of the exhaust and the rate of change of the mass.

$$
\mathrm{T}=-\mathrm{u} \frac{\mathrm{dm}}{\mathrm{dt}}
$$

"For cryin' out loud! I PROMISE!
I won't eat the chili anymore!"

