Functional Specification and Simulation

of Instruction Set Architectures

Ed Harcourt Jon Mauney
Dept of Computer Science
North Carolina State University
Raleigh, NC 27695

Abstract

We use a functional Language to formally specify the
semantics of an instruction set architecture. The re-
sulting specification is more readable, modular, and
concise than other semantic specification methods.
The description is made clear and concise by creat-
ing semantic actions that represent basic architectural
operations and by expressing each processor instruc-
tion and addressing mode in terms of these actions.
The semantic description is directly coded in the
functional language ML consequently providing an
“executable specification” or simulator for the archi-
tecture. The semantic description is formal and can
be used in other domains where a formal semantics of
an architecture is needed, such as compiler/hardware
verification and processor simulation.

1 Introduction

An Instruction Set Architecture, or ISA| represents a
view of a processor as seen by the assembly language
programmer. An architectural specification includes
all information needed to write correct programs and
is an abstract view of the architecture that hides
implementation detail (i.e., the organization of the
processor). Abstract, implementation independent,
views of computer systems (hardware or software) are
necessary for good design, development, and imple-
mentation.

DEC’s new Alpha architecture is a good example
of an architecture specified independent of a particu-
lar implementation. A goal now is to make architec-
ture specifications formal. Formal specifications have
many desirable properties and are used for:

Todd Cook
Dept of Electrical and Computer Engineering
Rutgers University
Piscataway, N.J 08855

e Precise documentation
e Hardware and Compiler verification

e Automatic generation of software (e.g., simula-
tors, assemblers, and compilers).

e Rapid prototyping

We present a methodology for formally specifying
a denotational semantics of an instruction set archi-
tecture. Moreover, since there are basic architectural
operations common to all architectures (e.g., reading
and writing registers and memory) we create an ab-
stract data type of primitive architectural operations
suitable for representing a wide variety of architec-
tures.

1.1 Denotational Semantics

A denotational semantics of a programming language
represents each syntactic construct of the language in
terms of mathematical objects (e.g., sets, functions,
relations). An architecture is essentially a low-level
programming language (but a high-level view of a
processor). An instruction is a syntactic object that
represents an operation on the state of the proces-
sor. That is, an instruction is a state transformation
function

7T : State — State

and State is the type of a function from locations
(register numbers or memory addresses) to values (bit
strings).

State = Locations — Values
Locations = RegNums + Addresses
Values = nteger

If p is the state function then p(z) is the value
stored at location . A new state can be built from
an old state p with the state update function p[z — d|
which means “the new state with x updated to d”.
The update function is straightforward and we omit
its definition. Given this definition of state we can
begin to describe the semantics of individual instruc-
tions. For example, the MIPS Add instruction is de-
fined by

Z[Add R;, Rj, Ri]p = p[Ri = p(R;) + p(Rs)]

The notation Z [-] represents the valuation function.
The metabrackets “[-]” surround the syntax of an
instruction and separate the language being defined
from the defining language. The state function p is an
argument to the valuation function and an updated
valuation function is returned. This coincides with
our definition of instructions being functions from
state to state.

The advantage of a denotational semantics is that
it provides an ability to reason about specifications
and to mathematically prove properties about the
specification. For example, consider the definition
of an instruction that increments by one the value
stored in the register

I[Inc Ri]p = p[Ri = p(Ri) + 1]
Given the definitions of Add and Inc it is now an
easy matter to prove that
Inc R; = Add3 R;, R;, 1
by checking that
Z[Inc R;] = Z[Add3 R;, R;, 1]

By substituting each side of the “=” with its defini-
tion we see that

pRi = p(Ri) + 1] = p[R; = p(Ri) + 1]

This property of being able to substitute equals for
equals 1s known as referential transparency and is a
property of functional specifications not shared by
traditional imperative programming languages and
some hardware specification languages such as VHDL

or Verilog [BS89].

1.2 Semantic Algebras

We make our denotational specifications more read-
able and easier to work with by creating a library of
architectural primitives. This library is essentially an

abstract data type and is sometimes called a seman-
tic algebra [Sch86]. The operations defined by the
semantic algebra are called semantic actions. Rather
than specify the architecture directly as a denota-
tional semantics we first translate it into semantic
actions defined by the semantic algebra. The seman-
tic algebra is a register transfer language, or RTL,
which is then specified denotationally.

1.3 Organization of the Paper

Section 2 describes how we specify an [SA semantics
where semantic actions are used to represent basic
architectural operations. Section 3 outlines the se-
mantics of the actions using denotational semantics.
Using our specification technique:

e Specifying the semantic actions occurs once.
When this i1s done, many architectures can be
specified using the predefined actions.

e The semantics of the actions need not be speci-
fied denotationally, but could be specified using
any formal semantic method (e.g. operational
or algebraic semantics). This gives our seman-
tic specification an abstractness and modularity
that is absent from other semantic specification
methods. This style of semantics is called a sep-
arated semantics [Lee89].

Section 4 concludes.

2 The Semantics of ISA’s

The denotational semantics of an ISA will comprise
of the normal three parts: a syntactic domain, a se-
mantic domain, and a valuation function.

e Syntactic domain — The syntactic domain is
the instruction formats of the architecture being
specified.

¢ Semantic domain — The semantic domain is a
set of semantic actions. In this paper we use ac-
tions that implement a register transfer language

(RTL).

e Valuation function — A valuation function
specifies how an item in the syntactic domain
maps to an item in the semantic domain. In this
case, the valuation function formally describes
an instruction in terms of the semantic actions.

To illustrate the process we use the PDP-11 as an
example ISA.

2.1 Notation

It is common to use a modern functional language
to specify a denotational semantics [Lee89], and in
our case we will use Standard ML. While SML is not
completely referentially transparent, due to its im-
perative features, its semantics is formally specified.
Also, if we restrict ourselves to the purely functional
subset we keep referential transparency.

Traditionally, the syntactic domain is specified
with a context free grammar. Since the syntax of in-
structions is simple, SML’s algebraic data type con-
structor (datatype) is used to specify the abstract
syntax.

The semantic domain 1s a set of semantic actions
that represent basic architectural operations and, as
was mentioned before, is RTL. The semantic actions
constitute a language with a syntax and a semantics
and, to be complete, both must be specified.

The valuation function in a traditional denota-
tional description will be described using SML func-
tions. Since our semantics is directly coded into SML,
a simulator for the architecture is immediately avail-

able.

2.2 The Syntactic Domain

The syntactic domain consists of the ISA’s instruc-
tion formats. Figure 1 shows the SML definition of
the syntax of the PDP-11 instruction formats. For
example, the PDP-11 instruction Add RO, (R1)+ is
represented by the SML construct,

TwoOp1(ADD, RegDirect(0), AutoInc(1))

and the instruction Add 10(R2), #10 is represented
by,

TwoOp1(ADD, Indexed(10,2), Immediate(10))

Here, TwoOp1, RegDirect, AutoInc, Indexed, and
Immediate are type constructors (or tags).

2.3 The Semantic Actions

This section describes the syntax of the language of
semantic actions (RTL). We defer their implementa-
tion until section 3. The choice of the semantic ac-
tions is important: they must be capable of specify-
ing the low-level semantics of a machine instruction
and also be suitable as an intermediate representa-
tion for the front end of a compiler. Register transfer

language (RTL) satisfies both criteria[Dav84]. Fig-
ure 2 shows the SML representation of the RTL syn-
tax. The RTL semantic actions constitute an abstract
data type that separates the RTL syntax from its se-
mantics. Now, the syntax can be used effectively for
pattern matching. This keeps the low-level imple-
mentation details of the RTL operators hidden.

The RTL actions are of two kinds — wvalues and im-
peratives. Value actions produce values (e.g., mem-
ory fetching, register access, addition, etc.) and im-
perative actions alter the state (e.g., assignment and
statement sequencing). A valid RTL program is a se-
quence of imperatives. The Parallel operator spec-
ifies that an instruction has multiple effects on the
state that occur simultaneously. For example, an in-
struction ADD Dest, Source performs the operation
Dest = Dest + Source and, in parallel, assigns condi-
tion codes based on Dest + Source.

2.4 The Valuation Function

The valuation function maps syntactic objects (in-
structions) to semantic actions (RTL). We specify
the valuation function in two parts, addressing modes
and instructions. The valuation functions build prefiz
operator terms (or abstract syntaz trees) that repre-
sent the effect of the operations. It is these terms
that can either be given a semantics (as we will
do in the next section), matched for code selection
[AGTR89, Dav84], or analyzed for code optimizer gen-
eration [FW88].

In the following discussion, for the sake of clarity,
and adhering to common notational conventions, we
have strayed a bit from using strict SML syntax.

Addressing Modes— A valuation function for an
addressing mode returns a Value (figure 2) that de-
scribes how an operand is accessed. Some addressing
modes (e.g., auto-increment /decrement modes) cause
side effects on the processor state. Consequently, an
addressing mode also returns an Imperative that
specifies this side-effect. Where no side-effects take
place, the imperative Nop is returned. The signature
for the addressing mode valuation function Op is:

Op: Operand — Mode — (ValuexImperative)

Where the type Operand (figure 1) represents an
operand including its addressing mode and Mode (fig-
ure 2) is the size of the data being accessed. Function
Op 1s higher-order: Op takes Operand and returns a
function from Mode to a tuple.

(* Instruction formats *)
datatype Instruction =

TwoOpl of (TwoOpInstrl *

TwoOp2 of (TwoOpInstr2 * int * Operand)
OneOp of (OneOpInstr #* Operand)
Branch of (BranchInstr * int)

(* Instructions allowed for each format *)
and TwoOpInstrl = ADD | MOV

(* Operand formats and addressing modes *)

and Operand = RegDirect of int
RegIndirect of int
AutoInc of int
Immediate of int
Indexed of (int * int)

AutoIncIndirect of int

| MOVB | SUB | CMP

Operand * Operand) |

| CMPB

Figure 1: Syntactic domain that specifies PDP-11 instruction formats.

For example, consider the auto-increment address-
ing mode. The valuation function Op is

Op[AutoInc (RegNum)] Mode =
let
val r = Reg(Addr, RegNum)
in
(Mem(Mode, 1),

Assign(r,Add (Addr,r,Int (Int8,Sizeof (Mode)))))

end

Op returns a tuple, the first item of which is how
the operand is accessed and the second item is the
side-effect of the auto-increment addressing mode.
“AutoInc(RegNum)” is abstract syntax and Reg, Mem,
Assign, Add, and Integer are semantic actions. The
remainder of the PDP-11’s addressing modes are sim-

ilarly defined.

Instructions— A valuation function for an in-
struction constructs an Imperative by combining the
actions of the operands with the action that repre-
sents the semantics of the instruction. The function

Instr has type
Instr : Instruction — Imperative

For example, the PDP-11 MOV instruction is speci-
fied by the following valuation function, Instr.

Instr[(TwoOp1(MOV, DestMode, SrcMode))] =
let
val (Dest, S’) = Op[DestMode] Int16
and (Src, $’’) = Op[SrcMode] Int16
in
Sequence ([
Parallel[
Assign(Dest,Src),
Assign(Z,Eq(Int16,Src,Int (Int16,0))),
Assign(N,Lt (Int16,Src,Int (Int16,0)))],
Parallel[S’, S°°11)
end

Two subtrees, S’ and S”, are constructed that repre-
sent side-effects from both operand accesses. These
subtrees are combined with the subtree that repre-
sents the effect or meaning of the operation.

An instruction can alter the state in three ways.

e Through a side effect of the addressing mode.

e The primary instruction operation, in this case
a register transfer representing the Mov.

e Setting condition codes.

The remainder of the PDP-11 instructions are simi-

larly defined.

datatype

Mode = CC | Addr | Int8 | Int16 | Int32 | Int64 | Float | DoubleFloat

and
Value =

(*x Arithmetic operators *)

Mem of (Mode * Value)

Reg of (Mode * int)

Add of (Mode * Value * Value)
Uminus of (Mode * Value)

Int of (Mode * int)

(x Comparison operators *)

Compare of (Mode * Value * Value)
Eq of (Mode * Value * Value)

Cond of (Value * Value * Value)

(* Program counter and condition codes. *)
PCINIVIZI|C

and

Imperative =

Sequence of (Imperative list) |
Parallel of (Imperative list) |
Assign of (Value * Value)
Call of Value |
Nop | Return

Figure 2: Syntax of semantic actions that specify RTL.

3 Action Implementation

This section outlines a denotational semantics of the
RTL semantic actions used in the previous section.
The implementation of the semantic actions that de-
scribe the RTL only needs to be done once, the point
being that once the RTL is implemented we can easily
describe a variety of architectures.

We do not have room here to present the semantics
of the actions but we will briefly outline the type
signatures of the actions and the kinds of values that
they operate on. We first define an abstract notion
of state.

The State— Our state consists of memory (byte
addressable), registers (32-bit), and a status register
(i.e, condition codes; C, N, V, Z) that operate on the
data types given by Mode.

Mode = Addr + Int8 + Inti6 +
Int32 + Inté4 + Float + CC
State = Memory X Registers Xx StatusReg

Each of Memory, Registers, and the StatusReg
are stores. An abstract notion of a store is a function
from locations (addresses, register numbers, condi-
tion codes) to data. This suggests the following defi-
nition for the three stores:

Memory = Address — Int8
Registers = RegNum — Int32
StatusReg = Flags — Bit
Action Signatures— The Mem action takes two

parameters: a mode (Mode) that specifies how many
bytes to fetch, and a value producing action (Value)
that yields an address. Mem itself is a value producing
action. Its signature is given by the following equa-

tion.
Mem: Mode x Value — Value

An example of an imperative action (Imperative)
is Assign. Assign takes two value actions, the first
of which must be an L-value that will be assigned the
data the second action produces (the R-value). The
signature of Assign is:

Assign: Value x Value — Imperative

Denotation = CC of Bit + Address of int +
Int8 of int + Int16 of int .-

A value action is consequently a function from a state
to a denotation. An imperative action is a function
from a state to a state.

Imperative = State — State

Value = State — Denotation

To be complete, we must specify the semantics of
individual actions. We only note that there is an
SML function for each of the actions in figure 2. For
example, there is an SML function Assign that has

the following signature.

Assign Value x Value — Imperative

Simulation — SML is, essentially, an implementa-
tion of the call-by-value typed A-calculus. The simu-
lator for the architecture is the SML interpreter. The
simulation should be viewed as computational; that
18, we model the computation of the individual in-

structions as functions described in the A-calculus.

4 Conclusions

An instruction set architecture is, in a sense, a pro-
gramming language and can be treated as such. Us-
ing denotational semantics we have specified, for-
mally, the semantics of an instruction set architecture
which allows for the design of modular, readable, and
usable architectural specifications. We have imple-
mented the semantics using the functional language
SML which makes our specification executable and
automatically providing a simulator for the instruc-
tion set architecture.

We are currently developing a purely architec-
tural specification language called LISAS[CFHM93].
LISAS descriptions are translated into the formal se-
mantics presented in this paper. One problem with

using a functional semantics is their difficulty in cop-
ing with ezplicit temporal and concurrent properties.
Many modern RISC architectures have temporal con-
straints on the instructions that effect their meaning.
Also, in Superscalar architectures instructions can
be issued in parallel. We are currently investigat-
ing specifying the high-level timing and concurrent
properties of an instruction set [HMC93].

References

[AGT89] Alfred V. Aho, Mahadevan Ganapathi,
and Steven W.K. Tjiang. Code gen-
eration using tree matching and dy-
namic programming. ACM Transactions
on Programming Languages and Systems,

11(4):491-516, October 1989.

[BS89] G. Birtwistle and P. A. Subrahmanyam,
editors. Current Trends in Hardware Ver-
tfication and Automated Theorem Prouv-

ing. Springer-Verlag, 1989.

Todd A. Cook, Paul D. Franzon, Ed A.
Harcourt, and Thomas K. Miller. System-
level specification of instruction sets. In
ICCD 93, Proceedings of the Interna-
tional Conference on Computer Design,

1993.

Jack W. Davidson. Code selection
through object code optimization. ACM
Transactions on Programming Languages
and Systems, 6(4):506-526, October
1984.

Christopher Fraser and Alan Wendt. Au-
tomatic generation of fast optimizing
code generators. In ACM SIGPLAN 88
Conference on Programming Language
Design and Implementation, 1988.

Ed Harcourt, Jon Mauney, and Todd
Cook. Specification of instruction-level
parallelism. In Proceedings of NA-
PAW’93, the North American Process Al-
gebra Workshop, 1993.

[CFHM93]

[Dav84]

[FW88]

[IMC93]

[Lee89]

Peter Lee. Realistic Compiler Genera-
tion. MIT Press, 1989.

[Sch86] David A. Schmidt. Denotational Seman-
tics, A Methodology for Language Devel-

opment. Allyn and Bacon, 1986.

