
A Virtual Machine Model for Accelerating Relational
Database Joins using a General Purpose GPU

Kevin Angstadt
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

kaa2nx@virginia.edu

Ed Harcourt
Department of Computer Science

St. Lawrence University
Canton, NY 13617

edharcourt@stlawu.edu

ABSTRACT
We demonstrate a speedup for database joins using a gen-
eral purpose graphics processing unit (GPGPU). The tech-
nique is novel in that it operates on an SQL virtual machine
model developed using CUDA. The implementation compiles
an SQL statement to instructions of the virtual machine that
are then executed in parallel on the GPU. We use the three-
dimensional structure of the CUDA grid and thread model to
perform a join on up to three relations at a time. Query exe-
cution results in speedups of 2 to 60 times on consumer-level
GPUs depending on the size of the result set.

Author Keywords
GPGPU, SQL, virtual machine, join, relational database

ACM Classification Keywords
D.1.3 Concurrent Programming: Parallel Programming;
H.2.4 Database Management: Parallel Databases

INTRODUCTION
A GPU, the major computational resource on a graphics
card, has a primary role of computing and rendering im-
ages on a computer monitor. The massively parallel archi-
tecture of these chips has also been harnessed by researchers
and applied to many computationally intense problems. Be-
cause GPUs are found in almost all modern computers, mov-
ing data processing to a host computer’s GPU is a cost-
effective method for decreasing execution time. While mod-
ern, consumer multi-core CPUs are designed with four to
twelve simultaneously-executing threads, current, consumer-
level GPUs can execute thousands of threads simultaneously.
Such computational power is created at the expense of in-
dependent thread execution and large caches; however, the
GPU’s SIMD architecture is ideal for data processing that ex-
ecutes the same, independent calculation over a very large
data set.

GPU manufacturers, such as AMD and NVIDIA have re-
leased APIs for their hardware, and the OpenCL framework
also allows for the programming of GPUs. NVIDIA’s API

HPC 2015, April 12-15, 2015, Alexandria, VA, USA
c© 2015 Society for Modeling & Simulation International (SCS)

and framework, together known as CUDA [11] (Compute
Unified Device Architecture), provides extensions to C/C++
as well as a programming interface for utilizing the mas-
sively parallel GPU. CUDA allows the programmer to con-
trol the memory spaces of both the host device (CPU) and the
GPU, inter-thread communication, and mapping of threads
and thread blocks to GPU hardware.

Relational database queries often fit a SIMD execution pat-
tern; for example, the operations in a where-clause are
mapped to every row in a table. A database join occurs when
two or more source tables are combined into one resulting ta-
ble based upon pre-defined and static relationships between
rows and columns in the tables. The Structured Query Lan-
guage (SQL), used by most relational database management
systems (RDBMS), defines several different types of joins,
but the most generic is the cross-join. Other joins can be de-
fined in terms of the cross-join. Mathematically, the cross-
join of two or more tables computes the Cartesian product (or
cross-product) of the rows from each table (e.g., with two ta-
bles all possible pairs of rows, three tables all possible triples
of rows, etc.). The entire cross product is rarely meaning-
ful. Predicates on the rows of the resulting cross product then
restrict the resulting rows to those of interest. Such com-
putations are simple to represent in SQL but are extremely
compute-intense.

The scope of this research is to extend a GPU-based SQL vir-
tual machine to allow for the execution of SQL statements
containing joins and to demonstrate the efficacy of such exe-
cution methods. While most GPU-based database implemen-
tations utilize various parallel primitives, our implementation
instead executes queries on an SQL virtual machine. The vir-
tual machine executes on either the host CPU or a CUDA
capable GPU allowing for performance comparisons.

RELATED WORK
Using GPUs to accelerate computations is well-established
[10] and has a history of being applied to database operations
[4, 6, 7]. Our work differs in that it uses an SQL virtual ma-
chine to represent the parallelism in the cross join and to map
it directly to the geometry of the GPU.

This paper builds directly on the work presented in [1, 2, 3] by
adding the join operation, which was not part of the original
framework, to the Virginian database. In its initial form, this
database was built directly on the SQLite Virtual Machine
[12]; however, the current virtual machine implementation,

though inspired by SQLite, is completely custom. The vir-
tual machine represents a compilation target for SQL that can
then be executed on either a host CPU or a GPU. The authors
show significant speedup in non-join related SQL queries.
The Virginian project introduced two new SQL virtual ma-
chine instructions for parallel processing, the Parallel and
Converge instructions, to denote the instructions to execute
on the GPU. We extend these instructions further for our GPU
implementation to allow for parallel joins.

The work [5, 9, 8] includes join queries on GPUs by relying
on a set of parallel primitives and produce speedups of 2 to 27
times. A primitive is a function implemented directly as an
independent CUDA kernel such as sort, map, and filter. The
authors then implement and evaluate various algorithms for
joining tables in terms of these primitives including nested
loop joins, sort-merge joins, and hash joins. Our work dif-
fers in that we implement an SQL virtual machine rather than
individual primitives. SQL statements are compiled directly
to a virtual machine opcode model rather than represented in
terms of higher level CUDA kernel primitives. The benefits
of executing a virtual machine as a kernel rather than parallel
primitives is thoroughly explored in [2].

IMPLEMENTATION
Consider tables T1 and T2 that share an attribute c2. The
SQL query below computes a cross-join with a predicate that
yields the rows in the cross product where the values of c2 in
each table are equal. This SQL statement is the equivalent of
the natural-join.

SELECT * FROM T1,T2 WHERE T1.c2 = T2.c2

For example, the cross join of tables T1 and T2 in Figure 1
with the predicate T1.c2 = T2.c2 (denoted T1 1 T2) con-
tains nine rows but the predicate restricts the result table to
just the three highlighted rows.

A join such as this can be implemented through nested loops,
where each loop iterates over an input table and emits rows
matching the predicate. Such an implementation is used by
SQLite [12]. We adopt this algorithm for our virtual machine
as well and use the three-dimensional CUDA thread topology
to implement the loop nesting directly.

SQL to Opcode Translation
The implementation parses an SQL query and generates an
abstract syntax tree (AST) for the query. The AST is then
processed in several passes to generate a virtual machine pro-
gram that represents the query.

Consider the following SQL join query, (part of our bench-
marking queries listed in the appendix):

SELECT test.id, test1.uniformi,
test.normali5 FROM
test,test1 WHERE
test1.uniformi > 60 AND
test.normali5 < 0

Here, the two tables test and test1 each have six
columns: the first three are integer columns and the last three

T1

c1 c2
1 w
2 z
3 z

1

T2

c2 c3
x 5
z 6
w 7

=

T1 1 T2

c1 c2 c2 c3
1 w x 5
1 w z 6
1 w w 7
2 z x 5
2 z z 6
2 z w 7
3 z x 5
3 z z 6
3 z w 7

Figure 1: The cross join, T1 1 T2. The rows in the natural
join are highlighted.

0: Table 0 0 0 0
1: Table 1 0 1 0
2: ResultColumn 0 0 0 id
3: ResultColumn 0 0 0 uniformi
4: ResultColumn 0 0 0 normali5
5: Parallel 0 0 16 0
6: Column 3 0 1 0
7: Integer 0 60 0 0
8: Le 3 0 14 0
9: Column 4 1 0 0

10: Integer 1 0 0 0
11: Lt 4 1 13 1
12: Invalid 0 0 0 0
13: Rowid 2 0 0 0
14: Result 2 3 0 0
15: Converge 0 0 0 0
16: Finish 0 0 0 0

Figure 2: A sample virtual machine program generated by the
SQL compiler.

are floating-point. The query above computes the cross prod-
uct of the two tables restricting the result table so that the col-
umn test1.uniformi is greater than 60 and the column
test.normali5 is negative. The resulting virtual machine
program is shown in Figure 2.

The virtual machine instructions are explained in [1]; how-
ever, this instruction set only operates over a single source
table. We therefore extend this to support multiple tables us-
ing table cursors, which are similar to cursors in SQLite. A
table cursor is a positive integer that acts as a pointer to the
table data associated with a specific instruction. A cursor is
assigned to a table through the third parameter of Table in-
struction, which opens a handle to a table. Similarly, we ex-
tend the Column and Rowid instructions, used for access-
ing data in a table, to read from a specific table via its cursor.
More formally, the syntax of these three modified opcodes is:

Table [table id], [], [cursor], []
Column [destination register], [source column], [cursor], []
Rowid [destination register], [], [cursor], []

For the sample opcode program given in Figure 2 and its cor-
responding SQL statement given previously, lines 0 and 1
open cursors 0 and 1 to tables test and test1, respec-
tively. Lines 2 through 5 configure the result table and in-
voke the parallel portion of the SQL query. Line 6 reads and
copies column 0 of the row at cursor 1 to register 3. This
value is compared with 60 (loaded in line 7) in line 8. This
constitutes the first portion of the WHERE clause. A similar
comparison is then made in lines 9 through 11 for the second
portion of the clause. The value of this column is stored in
register 4. If the row is still valid after this filtering, we load
the primary key for the row at cursor 0 in line 13. We then
copy three registers, beginning with register 2 to the result
table in line 14. Lines 15 and 16 complete and clean up the
query.

These extensions to the syntax of the instructions maintain
backwards compatibility with the previous version of the Vir-
ginian database because cursors are passed using previously
unused parameters in the instructions.

The execution of the virtual machine program is done at
two levels. Instructions outside of the Parallel and
Converge boundary initialize the query and are executed
on the host CPU. The parallel portion (those between
Parallel and Converge) of the query runs in a separate
virtual machine, which can be implemented on the CPU or
also on an accelerator (in our case, a CUDA kernel running
on the GPU). The inherent looping over the source table data
is obfuscated in this section of the opcode program. This is
because the individual result rows in a join are independent.
Instead of programming the iteration into the virtual machine
program, we describe the processing necessary for a single
data point in the join and allow the virtual machine (imple-
mented as a kernel) to map this efficiently over all data points
in the query.

Therefore, the code generated between the Parallel (line
5) and Converge (line 15) instructions and how that re-
gion can be mapped to the three-dimensional CUDA thread
topology described later is of particular interest to us. This
mapping essentially flattens the nested loop structure used to
compute cross products and allows for all data points to be
computed in parallel on the GPU, which we describe shortly.

Tablet Management
We present a brief overview of table data management; for
a detailed description, see [2]. Database tables are typically
stored using a balanced tree data structure (e.g., a BTree). To
take advantage of the grid topology of a CUDA-based GPU
we instead store subsets of a table known as tablets, which
partition the overall table vertically. Data within tablets is
stored in column-major order, which allows for better data co-
alescing on GPUs and caching on CPUs. Each table also con-
tains meta-data about its contents as well as space for keys,
fixed-width, and variable-width data. To represent an entire
table, tablets are organized into a linked list, and the SQL vir-
tual machine processes one tablet at a time. Data in a tablet
can be accessed in constant time via a pointer to the start of
a column and a row offset. Currently we assume that source
tables fit within one tablet (and the join result may span many

Figure 3: The result table is a linked list of tablets. To allow
for constant time access to any row in the table, we maintain
an array of pointers to each tablet.

tablets); though, it is straightforward to support larger source
tables that span multiple tablets.

When executing a query to join two tables, careful attention
must be paid to the resulting table and its tablet representa-
tion. The result of a query that involves computing a Carte-
sian product can consume large amounts of memory. Given a
table with m rows and a table with n rows, the length of the
table resulting from the cross product can contain as many
as m · n rows. Consider the example of crossing two ta-
bles, each with 3 500 rows. The result table will contain at
most 3 500 · 3 500 = 12 250 000 rows. Because there is a
limited amount of memory on a GPU, it is possible that this
result cannot fit into the available global memory. Conse-
quently, we use mapped memory to store both the data and
results tablets. Mapped memory is main system memory that
has been pinned and mapped via the NVIDIA CUDA API to
the graphics card’s memory space. The memory is pinned
(page-locked) in that it cannot be swapped out by the operat-
ing system, and is then guaranteed to be available when ac-
cessed from either the host code or the CUDA kernel. By
using mapped memory, we can allow for larger joins. One
drawback, however, is that memory accesses must now travel
across the PCI bus, which is significantly slower than global
memory accesses on the GPU. As noted by Bakkum, using
mapped memory is still faster than the combined time needed
to copy data to and from the GPU as well as executing the
code [2].

Suppose that a tablet can hold at most 1 000 000 rows (this
number is dependent on the data in the table, but a tablet is no
larger than 8MB), and we execute a query that produces the
Cartesian product of two tables with 3 500 rows each. The
resulting table will span⌈

3 500 · 3 500

1 000 000

⌉
=

⌈
12 250 000

1 000 000

⌉
= 13 tablets.

Prior to query execution, we do not know how many rows
will be in the result, and so we conservatively allocate all
13 tablets. After query execution, we can delete any unused
tablets before returning the result. Because tablets are stored
as a linked list, the result table does not provide constant time
access to its rows. To retain constant time access, we generate
an array of pointers to each tablet in the result table. Instead
of walking through the linked list of tablets, we can now di-
rectly access each tablet in constant time. Figure 3 shows an
example result tablet structure that might be allocated for a
query.

T1

c1 c2
1 w
2 z
3 z

1

T2

c2 c3
x 5
z 6
w 7

=

T1 1 T2

(1,w,x,5) (1,w,z,6) (1,w,w,7)
(2,z,x,5) (2,z,z,6) (2,z,w,7)
(3,z,x,5) (3,z,z,6) (3,z,w,7)

Figure 4: The join of two tables can be constructed in a two-
dimensional grid. Highlighted cells indicate rows that remain
after filtering on the WHERE clause.

Query Execution
CUDA organizes threads into a grid of up to three dimen-
sions. We exploit this 3D topological structure as it coincides
nicely with the structure of a Cartesian product where a two
table join is a two dimensional grid and a three table join is a
three dimensional grid. Consider again the join of two tables
T1 and T2 from the introduction.

SELECT * FROM T1,T2 WHERE T1.c2 = T2.c2

An alternative view of the result table is as a two-dimensional
CUDA grid as in Figure 4. Here, the row index in the two-
dimensional table corresponds to the row index of T1 while
the column index corresponds to the row index of T2. We
translate this directly to the dimensions of the instantiated
CUDA kernel. Thread indices in the x-axis correspond to
row indices of the first table in the SQL query, and thread in-
dices in the y-axis correspond similarly to the second table in
the query.

Each kernel thread has access to 1) the virtual machine pro-
gram in constant GPU memory, 2) pointers to the data in the
tables it requires as well as 3) pointers to the tablet structure to
write back the result rows. For example, in Figure 4 each cell
in the result table coincides with a thread and would contain
a pointer to the appropriate rows in T1 and T2.

A high-level outline of the process of executing a query is:

1. Copy table meta-data to the GPU

2. Copy source tablets to the GPU

3. Allocate pointers to meta-data on the GPU

4. Launch kernel threads (described below)

A single thread operates on one item in the cross prod-
uct interpreting the instructions between Parallel and
Converge in the generated opcode program. Recall that
these instructions are independent as they describe operations
on a single data point in the cross product being evaluated in
the query. Therefore, all kernels operate in parallel for all
entries in the cross product of the source tables. All threads
execute the same exact SQL virtual machine program on the

table rows the thread has been assigned. The kernel imple-
ments a function for each virtual machine instruction. These
functions run on the GPU only (device functions) and
are called by the kernel threads. Much of the work prior to
launching the kernels is in setting up the tablet structure for
each thread. Each thread computes the source rows it is re-
sponsible for using the built-in CUDA variables blockIdx,
blockDim, and threadIdx:

row = blockIdx.dim ∗ blockDim.dim + threadIdx.dim

where dim = x for the table at cursor 0 and dim = y for
the table at cursor 1.

When writing rows to the result table, we must calculate the
correct result row indices. Because a thread does not know
which other threads will produce rows for the result tablets
this requires synchronization between the kernel threads. For
all threads within a block that have a valid result row, we
atomically add 1 to a counter, block. Within the CUDA
framework, an atomic add returns the current value of block
to the thread, which we store as place. Within a block, each
kernel now knows its result row offset. The threads are then
synchronized to ensure that all threads have a place before
proceeding. Next, for each block, we now atomically add
block to another counter, and threads in each block share
the returned value as start of block. This value indi-
cates the offset in the result table of each block of threads for
writing result rows. After another thread synchronization, we
are guaranteed that each thread now has a valid place and
start of block. The row index in a thread is therefore

row index = start of block + place

for all threads with a valid result row. With this index, writing
to the result table does not require coordination between the
threads. From the row index, each thread calculates the tablet
and offset of the row relative to a given tablet:

tablet index =

⌊
row index

rows per tablet

⌋
offset = row index−

(tablet index · rows per tablet).

Using theses values, the thread writes its row across the PCI
bus to the result table stored in mapped memory.

RESULTS
Tests were performed using two 3 500 row tables containing
randomly generated values. We use the same source table
layout as [2]. Each table consists of an integer primary key,
and three columns of values each for both 32-bit integers and
IEEE 754 32-bit floating point values. One column is ran-
domly distributed across [−100, 100], the second is a normal
distribution with a sigma of 5, and the final column contains
a normal distribution with a sigma of 20.

Tests were conducted both on an NVIDIA GTX460 GPU
(336 CUDA cores and 1GB memory) and an NVIDIA
GTX760 GPU (1152 CUDA cores and 2GB memory) using
CUDA 6.5 and the NVIDIA 340.29 driver. The host CPU for

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9

E
xe

cu
tio

n
Ti

m
e

(s
)

Query

Query Execution Times

CPU
GTX460
GTX760

(a)

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

(x
)

Query

GPU Query Speedup

GTX460
GTX760

(b)

Figure 5: Queries show varied execution times (a) and speedup (b) on the GPU for different queries in the test suite.

CPU GTX460 GTX760
Integer 1.183 0.673 0.304
Floating Pt. 1.127 0.561 0.279
All 1.155 0.617 0.291

Table 1: Running times in seconds for CPU and GPU execu-
tion of integer and floating-point arithmetic queries.

both GPUs was a 2.6 GHz Intel Core i7 920 CPU running
the 3.13.0-39-generic Linux kernel. Tests were executed ten
times and the data presented here is the average of these runs.

Figure 5 graphically demonstrates the differences in running
times on both the CPU and GPU for ten different join queries.
The mean execution time for all ten queries on the CPU was
1.155 seconds, and the mean GPU execution time was 0.617
seconds and 0.291 seconds for the GTX460 and GTX760 re-
spectively. Even numbered queries contain predominately in-
teger arithmetic, with each subsequent odd-numbered query
executing the same query with floating-point data. Table 1
lists the average running times for each of these two cate-
gories on both the GPUs and the CPU. There is no significant
difference in values between these integer and floating-point
queries, which indicates that speedup is independent of the
data type. Additionally, the GPU executed faster than the
CPU on average for both tests.

Figure 6(a) depicts the average running time for our suite of
ten queries for increasing source table sizes, and figure 6(b)
represents this data as speedups. Performance on smaller ta-
ble sizes is less due to memory writes making up a greater
portion of the total execution time. Nevertheless, the GPU
implementation of the SQL virtual machine executes approx-
imately twice to four times as fast as the CPU virtual machine
on average for this query suite.

Queries 4 and 5 in Figure 5 executed more slowly on the
GTX460 than the CPU, and the GTX760 executed in approx-
imately equal time compared with the CPU. We hypothesize
that this is due to result table sizes. While all other queries
output 2.25 million rows or fewer, these two queries output
approximately 6 million rows each. The additional time re-
quired to write these results across the PCI bus to the host
memory significantly slowed execution time. We then con-
ducted additional benchmarking in order to verify that the
memory writes are the limiting step during query execution.
To test this hypothesis, we incrementally increase the num-
ber of result rows in a cross-join of two, 3 000 row tables.
As represented by Figure 7, the GPU becomes less efficient
until the GPU executes in the same time as the CPU. For the
GTX460, this occurs at approximately 1.8 million rows, and
at 4.5 million rows for the GTX760. These values will vary
with the computation required by the query and the layout of
the desired data in the source tables. The PCI bus was also
a limiting factor in our tests because the test machine only
supported PCIe2. The GTX760 is designed to utilize the ad-
ditional throughput of PCIe3, and this additional throughput
would push the break-even point even closer to a full Carte-
sian product.

0

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500 2000 2500 3000 3500

E
xe

cu
tio

n
Ti

m
e

(s
)

Source Data Rows

Running Time Growth

CPU
GTX460
GTX760

(a)

0

1

2

3

4

5

500 1000 1500 2000 2500 3000 3500

Sp
ee

du
p

(x
)

Source Data Rows

GPU Speedup for Increasing Source Tables

GTX460
GTX760

(b)

Figure 6: Average performance on the ten query suite for in-
creasing source table sizes. (a) measures running times and
(b) measures speedup relative to CPU.

SQL joins that result in a massive number of result rows ap-
proaching a full Cartesian product are uncommon and are
inherently problematic even in commercial RDBMSs. For
more reasonable queries, in which the predicate filters most
rows, the GPU remains extremely efficient for varying source
table sizes. Figure 8 shows the growth of execution time as
a function of source table size for a query with a restrictive
predicate. This query limits the result table to be the same
size as the input table by joining the two tables on their key,
a common join operation in database queries. For this query,
speedup ranges from 20 to 30 times on the GTX460 and 40
to 60 times on the GTX760.

CONCLUSIONS AND FUTURE WORK
This paper demonstrates the efficacy of accelerating database
joins using an SQL virtual machine based GPU execution.
Previous research has shown speedup for VM-based execu-
tion for single-table queries on GPUs, and our results indicate
that this holds for multiple-table queries as well. Our im-
plementation achieves equal or better speedups as compared
with joins implemented with primitives-based kernels.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
Ti

m
e

(s
)

Proportion of Cross Product

Proportion of Rows Returned vs. Execution Time

CPU
GTX460
GTX760

Figure 7: As fewer rows in the Cartesian product are filtered,
the GPU becomes less efficient.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

500 1000 1500 2000 2500 3000 3500

E
xe

cu
tio

n
Ti

m
e

(s
)

Source Data Rows

Running Time Growth with Restrictive Predicate

CPU
GTX460
GTX760

Figure 8: Average running times with restrictive predicate for
increasing source table sizes.

Our extensions to the Virginian database system primarily
demonstrate the techniques needed to allow for joining multi-
ple tables. The next step would be to ensure that all stages of
the virtual machine’s execution are efficiently implemented.
Although, we took care to implement a fair computational
schema on both the CPU and GPU, kernel memory writes
across the PCI bus are currently inefficient. The current
method for copying results to the mapped memory space does
not take full advantage of coalesced memory accesses, a fea-
ture which can be up to an order of magnitude faster than non-
coalesced memory accesses [11]. Because memory writes are
the limiting step in queries with joins, we anticipate such an
implementation to improve the performance of the GPU vir-
tual machine.

Although our framework does not currently support coa-
lesced writes to mapped memory, our multi-dimensional ker-
nel instantiation and use of mapped memory results in an av-
erage of 2x-4x speedup over CPU-based query execution. For
joins with reasonably restrictive predicates, speedups can be
as much as 20x-60x on consumer-level GPUs. Due to the rel-
atively low cost of GPU hardware and its ubiquitous nature in

modern computer systems, a framework such as this provides
a low cost alternative to distributed RDBMSs for accelerating
query processing.

Another interesting extension to this research would be the
dual use of the CPU- and GPU-based virtual machines. In
this scenario, pre-processing of the data could help to de-
termine the most efficient virtual machine for query execu-
tion. In queries resulting in large amounts of data with rela-
tively little computation, the CPU virtual machine would be
selected; otherwise queries would be executed on the GPU.
This would help avoid the cases where memory writes limit
the overall performance of query execution, but still benefit
from GPU speedup in the general case.

The current implementation technique is also limited to join-
ing at most three tables at a time because of the three dimen-
sional nature of CUDA thread blocks. Because joins in SQL
are closed (the result of joining two tables is another table) in
order to join more than three tables a query must be divided
into multiple stages. By automating this process, our frame-
work could then theoretically handle an arbitrary number of
tables. Additionally, we would like to incorporate other join
syntaxes into the SQL parser to allow for additional support
of the SQL language. Such extensions allow for simple nota-
tion for several types of joins, including inner, outer, and
natural joins.

More generally, a natural follow-up to this research would be
a study on the scalability of this technique. Our tests use at
most 3 500 rows in each source table. Do speedups remain
consistent for larger source table sizes, or will tablet manage-
ment and writes across the PCI bus subsume the overall com-
putation time? Additionally, how does increasing the number
of joined tables affect performance?

In addition to improving the efficiency of the software it-
self, another interesting research path would be multi-card
implementations. Splitting data across multiple GPUs has a
two-fold advantage: data can be processed more quickly and
more data can be processed. Since all table data is stored in
mapped memory rather than on the GPU itself, such an im-
plementation could be straight-forward. Each graphics card
would be responsible for a different section of the cross prod-
uct, but each would access the same host memory space. Use
of mapped memory also avoids the overhead of copying ta-
bles to multiple devices and joining the results back into a
single result table after the kernel execution on separate de-
vices completes.

The benchmarks associated with the Virginian framework are
highly dependent on the hardware configuration of the test
machine; using different hardware may demonstrate differ-
ent speedups. Compared with more expensive higher perfor-
mance graphics cards, our hardware was relatively inexpen-
sive with lower performance.

REFERENCES
1. Bakkum, P. The Virginian Database. https://github.

com/bakks/virginian/blob/master/README.md. Date
accessed: February 12, 2015.

https://github.com/bakks/virginian/blob/master/README.md
https://github.com/bakks/virginian/blob/master/README.md

2. Bakkum, P., and Chakradhar, S. Efficient data
management for GPU databases. Tech. rep., NEC
Laboratories America, Princeton, NJ.

3. Bakkum, P., and Skadron, K. Accelerating SQL
Database Operations on a GPU with CUDA. In
Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, GPGPU
’10, ACM (New York, NY, USA, 2010), 94–103.

4. Bandi, N., Sun, C., Agrawal, D., and El Abbadi, A.
Hardware acceleration in commercial databases: A case
study of spatial operations. In Proceedings of the
Thirtieth International Conference on Very Large Data
Bases - Volume 30, VLDB ’04, VLDB Endowment
(2004), 1021–1032.

5. Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N. K.,
Luo, Q., and Sander, P. V. GPUQP: Query
Co-processing Using Graphics Processors. In
Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07,
ACM (New York, NY, USA, 2007), 1061–1063.

6. Govindaraju, N., Gray, J., Kumar, R., and Manocha, D.
Gputerasort: High performance graphics co-processor
sorting for large database management. In Proceedings
of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, ACM (New York,
NY, USA, 2006), 325–336.

7. Govindaraju, N. K., Lloyd, B., Wang, W., Lin, M., and
Manocha, D. Fast computation of database operations
using graphics processors. In Proceedings of the 2004
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, ACM (New York,
NY, USA, 2004), 215–226.

8. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N. K.,
Luo, Q., and Sander, P. V. Relational Query
Coprocessing on Graphics Processors. ACM Trans.
Database Syst. 34, 4 (Dec. 2009), 21:1–21:39.

9. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N.,
Luo, Q., and Sander, P. Relational Joins on Graphics
Processors. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’08, ACM (New York, NY, USA, 2008),
511–524.

10. Kirk, D., and Hwu, W.-m. Programming Massively
Parallel Processors, Second Edition: A Hands-on
Approach. Morgan Kaufmann, 2012.

11. NVIDIA Corporation. NVIDIA CUDA programming
guide. http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf, February 2014. Date
accessed: February 12, 2015.

12. SQLite. http://www.sqlite.org/vdbe.html. Date
accessed: February 12, 2015.

BENCHMARK QUERIES
Listed below are the queries used to evaluate the performance
of our SQL virtual machine. These were adapted from [3]
and [2].

0: SELECT test.id, test1.uniformi, test.
normali5 FROM test,test1 WHERE test1.
uniformi > 60 AND test.normali5 < 0

1: SELECT test.id, test1.uniformf, test.
normalf5 FROM test,test1 WHERE test1.
uniformf > 60.0 AND test.normalf5 <
0.0

2: SELECT test.id, test.uniformi, test1.
uniformi FROM test,test1 WHERE (test.
id - test1.id) < 5 AND (test.id -
test1.id) > -5 AND test.uniformi >
test1.uniformi

3: SELECT test.id, test.uniformf, test1.
uniformf FROM test,test1 WHERE (test.
id - test1.id) < 5 AND (test.id -
test1.id) > -5 AND test.uniformf >
test1.uniformf

4: SELECT test.id, test1.uniformi, test.
normali20 FROM test,test1 WHERE (
test1.uniformi < test.normali20) AND
(test.normali20 + 40) > (test1.
uniformi - 10)

5: SELECT test.id, test1.uniformf, test.
normalf20 FROM test,test1 WHERE (
test1.uniformf < test.normalf20) AND
(test.normalf20 + 40.0) > (test1.
uniformf - 10.0)

6: SELECT test.id, test.normali5, test1.
normali20 FROM test,test1 WHERE test.
normali5 = test1.normali5 AND test.
normali5 * test1.normali20 >= -5 AND
test.normali5 * test1.normali20 <= 5

7: SELECT test.id, test.normalf5, test1.
normalf20 FROM test,test1 WHERE test.
normalf5 = test1.normalf5 AND test.
normalf5 * test1.normalf20 >= -5.0
AND test.normalf5 * test1.normalf20
<= 5.0

8: SELECT test.id, test1.uniformi, test.
normali5, test.normali20 FROM test,
test1 WHERE test1.uniformi >= -1 AND
test1.uniformi <= 1 or test.normali5
>= -1 AND test.normali5 <= 1 OR test.
normali20 >= -1 AND test.normali20 <=
1

9: SELECT test.id, test1.uniformf, test.
normalf5, test.normalf20 FROM test,
test1 WHERE test1.uniformf >= -1.0
AND test1.uniformf <= 1.0 or test.
normalf5 >= -1.0 AND test.normalf5 <=
1.0 OR test.normalf20 >= -1.0 AND

test.normalf20 <= 1.0

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.sqlite.org/vdbe.html

	Introduction
	Related Work
	Implementation
	SQL to Opcode Translation
	Tablet Management
	Query Execution

	Results
	Conclusions and Future Work
	REFERENCES
	Benchmark Queries

