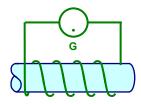

The Laws of Faraday & Lenz – Worksheet

Complete the eight (8) diagrams below for a bar magnetic moving toward and away from each end of a coil. On each draw the following:

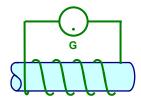
- 1. The arrow in the galvanometer as it appeared while the magnet was moving
- 2. The direction of induced current, \vec{I}_{ind} through the galvanometer
- 3. The direction of $\vec{I}_{\mbox{\tiny ind}}$ in the front of the coil
- 4. The direction of \vec{B} on both poles of the magnet (labeled arrow)
- 5. The direction of \vec{B}_{ind} on both ends of the coil (labeled arrow)
- 6. Circles on the right indicating the direction of the bar magnet's field, \vec{B} , whether the magnetic flux, Φ is increasing or decreasing, the direction of the induced field, \vec{B}_{ind} and the direction of \vec{I}_{ind} through the galvanometer

The first diagram, with a south pole leaving the right side of the coil, is drawn for you. **Test this case** to make sure your observations agree with the picture. You must then complete the other seven.



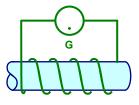
Direction of \overrightarrow{B} : \longleftarrow \longrightarrow Change in Φ : increase decrease Direction of \overrightarrow{B}_{ind} : \longleftarrow \longrightarrow

Direction of I_{ind} in G:



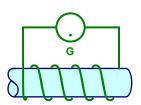
Change in Φ : increase decrease Direction of \overrightarrow{B}_{ind} : \longleftarrow \longrightarrow Direction of I_{ind} in G: \longleftarrow

Direction of \vec{B} : \leftarrow



Change in Φ : increase decrease Direction of \overrightarrow{B}_{ind} : \longleftarrow \longrightarrow Direction of I_{ind} in G: \longleftarrow \longrightarrow

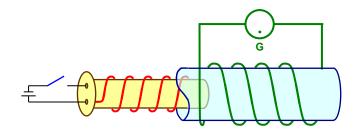
Direction of \vec{B} :

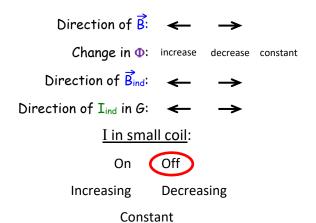


Change in Φ : increase decrease Direction of \overrightarrow{B}_{ind} : \longleftarrow \longrightarrow Direction of I_{ind} in G: \longleftarrow

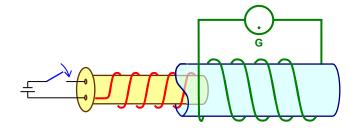
Direction of \vec{B} :

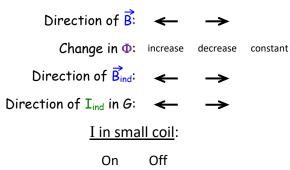
Change in Φ : increase decrease Direction of \overrightarrow{B}_{ind} : \longleftarrow \longrightarrow Direction of I_{ind} in G: \longleftarrow


Direction of \vec{B} :

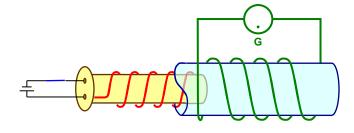

Complete the four (4) diagrams below for two coils and a switch. On each draw the following:

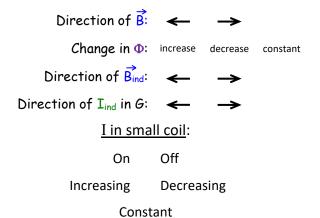
- The arrow in the galvanometer as it appeared while the switch was opened or closed
- The direction of \vec{I} in the front of the small coil
- The direction of \vec{B} in the small coil
- The direction of induced current, \vec{I}_{ind} through the galvanometer
- The direction of $\vec{I}_{\scriptscriptstyle ind}$ in the front of the large coil
- The direction of \vec{B}_{ind} in the large coil
- Circles on the right indicating the direction of the small coil's field, \vec{B} , whether the magnetic flux, Φ is increasing or decreasing, the direction of the induced field, \vec{B}_{ind} through the large coil, the direction of \vec{I}_{ind} through the galvanometer, and the current state in the small coil.


Complete all four diagrams below. Notice that only the current state is circled in the first diagram.

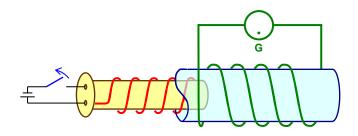

i) Switch Open

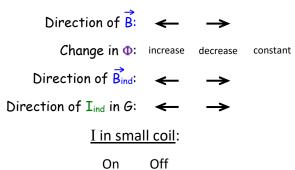
ii) Switch just closed, current begins to flow





Increasing Decreasing


Constant


iii) Switch closed, current flowing steadily

iv) Switch just opened, current flow ending

Increasing Decreasing

Constant