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Abstract. In this article we identify several beautiful properties of Jacobi
sums that become evident when these numbers are organized as a matrix
and studied via the tools of linear algebra. In the process we reconsider a
convention employed in computing Jacobi sum values by illustrating how
these properties become less elegant or disappear entirely when the stan-
dard definition for Jacobi sums is utilized. We conclude with a conjecture
regarding polynomials that factor in an unexpected manner.

1. JACOBI SUMS. Carl Jacobi’s formidable mathematical legacy includes such
contributions as the Jacobi triple product, the Jacobi symbol, the Jacobi elliptic func-
tions with associated Jacobi amplitudes, and the Jacobian in the change of variables
theorem, to but scratch the surface. Among his many discoveries, Jacobi sums stand
out as one of the most brilliant gems. Very informally, a Jacobi sum adds together
certain roots of unity in a manner prescribed by the arithmetic structure of the finite
field on which it is based. (We will supply a precise definition momentarily.) For a
given finite field a Jacobi sum depends on two parameters, so it is natural to assemble
these values into a matrix. We have done so below for the Jacobi sums arising from
the field with eight elements. We invite the reader to study this collection of numbers
and identify as many properties as are readily apparent.
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(1)

Before enumerating the standard properties of Jacobi sums we offer a modest back-
ground on their development and applications. According to [2] Jacobi first proposed
these sums as mathematical objects worthy of study in a letter mailed to Gauss in 1827.
Ten years later he published his findings, with extensions of his work provided soon
after by Cauchy, Gauss, and Eisenstein. It is interesting to note that while Gauss sums
will suffice for a proof of quadratic reciprocity, a demonstration of cubic reciprocity
along similar lines requires a foray into the realm of Jacobi sums; Eisenstein formulated
a generalization of Jacobi sums (see [3]) in order to prove biquadratic reciprocity. As
shown in [5], Jacobi sums may be used to estimate the number of integral solutions

1



to congruences such as x3 + y3 ≡ 1 mod p. These estimates played an important role
in the development of the Weil conjectures [6]. Jacobi sums were also employed by
Adleman, Pomerance, and Rumely [1] for primality testing.

Although Jacobi sums have been around for a long time, several of the results
presented below seem to have gone unnoticed. We suspect this has to do in part with
the fact that the usual definition of Jacobi sums differs slightly from the one we use.
Conventional wisdom would have us forego the 6 in the upper left corner of (1) in favor
of an 8 and replace each −1 along the top row and left column by a 0. However, some
of the most compelling features of Jacobi sum matrices evaporate when the standard
definition is used. Therefore one of our purposes in presenting these results is to suggest
that this alternative warrants serious consideration as the “primary” definition, at least
in the setting of finite fields. To be fair, the version of Jacobi sums we study does appear
in the literature: e.g., in [2, Section 2.5], which discusses the relationship between
Jacobi sums and cyclotomic numbers.

2. PRELIMINARIES. Recall that there exists a finite field Fq with q elements if
and only if q = pr is a power of a prime, and such a field is unique up to isomorphism.
We shall not require any specialized knowledge of finite fields beyond the fact that the
multiplicative group F∗

q of nonzero elements forms a cyclic group of order q − 1. The
quantity q − 1 appears throughout our discussion, so we set m = q − 1 from here on.
Thus F∗

q has m elements.

Fix a generator g of F∗
q and let ξ = e2πi/m. The function χ defined by χ(gk) = ξk

for 1 ≤ k ≤ m is an example of a multiplicative character on F∗
q ; that is, a function

χ : F∗
q → C satisfying

χ(1) = 1, χ(uv) = χ(u)χ(v), u, v ∈ F∗
q . (2)

We use an mth root of unity since (χ(g))m = χ(gm) = χ(1) = 1. As the reader may
verify, there are precisely m multiplicative characters on F∗

q , namely χ, χ2, . . . , χm,

where χa(gk) = (χ(gk))a = ξak as one would expect. Note that χm(gk) = 1 for all k,
so we call χm the trivial character. It follows that the value of the exponent a only
matters mod m. In particular, the inverse of χa (which is also the complex conjugate)
may be written either as χ−a or as χm−a. By the same token, we will usually write
the trivial character as χ0.

To define a Jacobi sum it is necessary to extend each character χa to all of Fq by
defining χa(0). The multiplicative condition forces χa(0) = 0 whenever 1 ≤ a < m. But
for the trivial character a seemingly arbitrary choice1 must be made, since taking either
χ0(0) = 0 or χ0(0) = 1 satisfies (2). Convention dicates that we declare χ0(0) = 1
for the trivial character. However, we opt for setting χa(0) = 0 for all a. As the
opportunity arises we will point out the ramifications of this choice. Properties of
roots of unity now imply that

∑

u∈Fq

χa(u) = 0, 1 ≤ a < m,
∑

u∈Fq

χ0(u) = q − 1 = m. (3)

(One rationale behind taking χ0(0) = 1 is presumably rooted in the fact that the latter
sum would come to q rather than q − 1, giving a more pleasing value.)

1Ireland and Rosen explain that Jacobi sums arise when counting solutions to equations over Fp.
In this context χ0(0) tallies solutions to x

e = 0, which would seem to motivate the value χ0(0) = 1.
However, one might also argue that the zero solution should not be included since the equations are
homogenous, leading to χ0(0) = 0 instead.
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A Jacobi sum takes as its arguments a pair of multiplicative characters on a given
finite field and returns a complex number:

Jq(χ
a, χb) =

∑

u∈Fq

χa(u)χb(1 − u) =
∑

u,v∈Fq

u+v=1

χa(u)χb(v). (4)

The middle expression is more utilitarian, while the final one highlights the symmetry
in the definition. When the field Fq is clear we will drop the subscript q. We will also
often omit χ and refer to a particular Jacobi sum simply as J(a, b). Because the terms
of the sum corresponding to u = 0 and u = 1 always vanish, we may write

J(a, b) =
∑

u6=0,1

χa(u)χb(1 − u), (5)

where it is understood that the sum is over u ∈ Fq. Thus a Jacobi sum adds together
q − 2 not necessarily distinct mth roots of unity.

In a marvelous manner this sum plays the additive and multiplicative structures of
the field off one another, yielding a collection of numbers with extraordinary properties.
To illustrate how these numbers are computed we return to matrix (1), which catalogs
the values J8(χ

a, χb) for 0 ≤ a, b ≤ 6 for a particular generator g of F∗
8. (For aesthetic

reasons we begin numbering rows and columns of this matrix at 0.) The generator g

of F∗
8 chosen satisfies

g1 + g3 = 1, g2 + g6 = 1, g4 + g5 = 1, g7 + 0 = 1. (6)

Letting ξ = e2πi/7 we may now calculate, for instance,

J(1, 2) = χ(g)χ2(1 − g) + χ(g2)χ2(1 − g2) + · · · + χ(g6)χ2(1 − g6) (7)

= χ(g)χ2(g3) + χ(g2)χ2(g6) + · · · + χ(g6)χ2(g2)

= χ(g7) + χ(g14) + χ(g5) + χ(g14) + χ(g13) + χ(g10)

= ξ7 + ξ14 + ξ5 + ξ14 + ξ13 + ξ10

= 1 + 1 + ξ5 + 1 + ξ6 + ξ3

= 5

2
− 1

2
i
√

7,

which explains the entry in row 1, column 2 of (1). For 1 ≤ a ≤ 6 we find

J(a, 0) = χa(g)χ0(1 − g) + χa(g2)χ0(1 − g2) + · · · + χa(g6)χ0(1 − g6) (8)

= χa(g) + χa(g2) + · · · + χa(g6)

= −χa(g7)

= −1,

where the penultimate step follows from (3). If we had employed the conventional value
for χ0(0) the term χa(g7) would also appear in the sum, giving a total of 0 instead. By
way of further orientation the reader is encouraged to confirm that J(5, 1) = −1+ i

√
7

and that J(3, 4) = −1.
A cursory examination shows that matrix (1) is symmetric, that the top left entry

equals q−2, and that the remaining entries along the top row, the left column, and the
secondary diagonal are −1. Slightly less obvious is the fact that all other entries have
an absolute value of

√
8. The sum of the entries along the top row is 0; a quick check

reveals the same is true for every row and column. We summarize these properties
below without proof. (One may consult [5] for details.)
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Proposition 1 Fix a generator g of F∗
q, let χ(gk) = ξk with ξ = e2πi/m be the corre-

sponding character, take χa(0) = 0 for all a, and abbreviate Jq(χ
a, χb) to J(a, b). Then

for 0 ≤ a, b ≤ m − 1 we have

i. J(a, b) = J(b, a),

ii. J(0, 0) = q − 2,

iii. J(a, 0) = J(0, b) = −1 when a, b 6= 0,

iv. J(a, m − a) = −χa(−1),

v. |J(a, b)|2 = q when a, b 6= 0 and a + b 6= m,

vi.
∑m−1

k=0
J(a, k) =

∑m−1

k=0
J(k, b) = 0.

Observe that |J(a, b) + 1|2 and |J(a, b) + 8|2 are either 0 or of the form 2r7s with
r, s ∈ N for every entry of (1). In general the quantities Jq(a, b) + 1 and Jq(a, b) + q

satisfy interesting congruences. We also remark that all the results presented here
continue to be valid regardless of the generator g of F∗

q used to define χ. The value of

Jq(χ
as, χbs) obtained by using the generator gs is identical to that of Jq(χ

a, χb) using
the original generator g, so altering the generator only permutes the rows and columns
of a Jacobi sum matrix in a symmetric fashion.

3. EIGENVALUES. Thus far our discussion has focused on properties of Jacobi
sums taken individually. However, we are primarily interested in what can be said
about the set of all Jacobi sum values for a particular finite field, viewed collectively as
a matrix. It may have occurred to the curious individual to calculate the eigenvalues
of matrix (1). We are rewarded for our efforts upon finding that its characteristic
polynomial factors as

p(x) = −x(x − 7)2(x − 7ω)2(x − 7ω)2, (9)

where ω = e2πi/3. One might speculate that cube roots of unity make an appearance
since we used characters of F8, and 8 = 23. But in fact the same phenomenon occurs for
every value of q. This is explained by the fact that powers of these matrices (suitably
scaled) cycle with period three, a property that depends on using the nonstandard
value for χ0(0).

Theorem 1 Defining J(a, b) as in Proposition 1, let B be the m × m matrix with
entries J(a, b) for 0 ≤ a, b ≤ m − 1. Then the powers of B satisfy

i. B2 = mB,

ii. B3 = m3I − m2U ,

iii. Bn = m3Bn−3 for n ≥ 4,

where I is the m × m identity matrix and U is the matrix all of whose entries are 1.

Proof. The first claim is equivalent to the assertion that

m−1
∑

k=0

J(a, k)J(k, b) = mJ(a, b) (10)
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for all a and b. Using definition (5) for J(a, b) we expand the left-hand side as

m−1
∑

k=0





∑

u6=0,1

χa(u)χk(1 − u)









∑

v 6=0,1

χk(v)χb(1 − v)



 . (11)

It is a standard opening gambit in these sorts of proofs to move the summation over k

to the inside and then use the fact that
∑m−1

k=0
χk(u) = 0 unless u = 1, in which case

the sum equals m. (It is this feature of characters that make them useful for counting
arguments.) Employing this strategy leads to

∑

u6=0,1

∑

v 6=0,1

χa(u)χb(1 − v)

m−1
∑

k=0

χk((1 − u)v). (12)

The final sum vanishes unless (1−u)v = 1, or u = 1− 1

v . Hence our expression reduces
to

m
∑

v 6=0,1

χa

(

1 − 1

v

)

χb(1 − v) = m
∑

v 6=0,1

χ−a

(

v

v − 1

)

χ−b

(

1

1 − v

)

, (13)

where we have used χa(u) = χ−a( 1

u ). Next observe that J(a, b) = J(−a,−b) since
χa = χ−a; we introduced negative exponents in anticipation of this fact. And now in
a beautiful stroke we realize that v

v−1
+ 1

1−v = 1, and as v runs through all elements
of Fq other than 0 and 1 so does v

v−1
. Hence the right-hand side of (13) is precisely

the sum defining J(−a,−b), thus proving the first part.
With this result in hand the second part will follow once we show BB = m2I−mU .

This is equivalent to demonstrating that

m−1
∑

k=0

J(a, k)J(k, b) =

{

m2 − m a = b

−m a 6= b.
(14)

The same ingredients are needed as above (but without negative exponents at the end),
so we omit the proof in favor of permitting the reader to supply the steps. There are
no major surprises along the way, and the explanation is quite satisfying.

The final claim is an immediate consequence of the second part. For n ≥ 4 we
compute

Bn = Bn−4B(m3I − m2U) = m3Bn−3, (15)

where we have used the fact that BU is the zero matrix because the entries within
each row of B sum to 0. This completes the proof. �

Corollary 1 If λ is an eigenvalue of a Jacobi sum matrix B then λ ∈ {0, m, mω, mω},
where ω = e2πi/3.

Proof. Suppose that Bv = λv for some nonzero vector v. Then multiplying B4 = m3B

on the right by v yields λ4v = m3λv. Therefore λ4 = m3λ since v 6= 0, which implies
that λ ∈ {0, m, mω, mω}. �

Corollary 2 Every Jacobi sum matrix B has an orthogonal basis of eigenvectors.

Proof. Since B is symmetric its conjugate transpose B∗ is just B. But B is a scalar
multiple of B2, so we deduce that B and B∗ commute, and hence B is normal. The
assertion now follows from well-known properties of normal matrices as furnished by [4],
for instance. �

The fact that the eigenspaces for λ = 7, 7ω, and 7ω have the same dimension has
probably not escaped notice. In general the eigenspaces are always as close in size as
possible, a fact that depends upon ascertaining the traces of Jacobi sum matrices.
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Proposition 2 The trace tr(B) of a Jacobi sum matrix B is equal to 0, m, or 2m

according to whether m − 1 ≡ 0, 1, or 2 mod 3.

Proof. The values occurring along the main diagonal of B are J(a, a). Hence

tr(B) =
m−1
∑

a=0

J(a, a) =
m−1
∑

a=0

∑

u∈Fq

χa(u)χa(1 − u) =
∑

u∈Fq

m−1
∑

a=0

χa(u − u2). (16)

But the inner sum vanishes unless u − u2 = 1, in which case its value is m. When Fq

has characteristic 3 we find that u = −1 is a double root of the equation, while for
other characteristics u = −1 is not a root. Since (u2 − u + 1)(u + 1) = u3 + 1, in these
cases we seek values of u with u3 = −1 other than u = −1. For m ≡ 0 mod 3 there
will be two such values, while for m ≡ 1 mod 3 there are no such values, because F∗

q is
a cyclic group of order m. In summary, u− u2 = 1 has one, two, or zero distinct roots
when m ≡ 2, 0, 1 mod 3, as claimed. �

Proposition 3 The characteristic polynomial of a Jacobi sum matrix B has the form

pB(x) = ±x(x − m)r(x − mω)s(x − mω)s (17)

for nonnegative integers r ≥ s satisfying r+2s = m−1 with r as close to s as possible.

Proof. Clearly pB(x) is monic. Furthermore, the sign will be positive unless m is odd;
i.e., when q = 2r. We will also see below that rank(B) = m−1, giving the single factor
of x. Now let us show that pB(x) has real coefficients, meaning that the eigenvalues mω

and mω occur in pairs. This follows from the relationship J(m − a, m − b) = J(a, b).
In other words, swapping rows a and m − a as well as columns b and m − b for all a

and b with 1 ≤ a, b ≤ m
2

does not alter pB(x) but does conjugate every entry of B, and
therefore pB(x) is real. The trace of B is the sum of the eigenvalues, and each triple
m, mω, mω will cancel. The result now follows from the fact that tr(B) is equal to 0,
m, or 2m. �

4. RELATED MATRICES. Observe that the list of eigenvalues for a Jacobi sum
matrix constructed using the conventional definition is nearly identical to the list given
by Proposition 3, the difference being that the eigenvalue λ = 0 is replaced by λ = 1
and a single occurrence of λ = m changes to λ = m + 1 = q. This is a consequence of
the close relationship in each case between the characteristic polynomial of the entire
matrix and that of the lower right (m − 1) × (m − 1) submatrix of values they share.

Lemma 1 Let M be an n×n matrix whose first column contains the entries c−1, −1,
. . . , −1 for some number c, as shown below, and such that the sum of the entries in each
row of M is 0. Let M ′ be the (n− 1)× (n− 1) submatrix obtained by deleting the first
row and column of M . Then the list of eigenvalues of M ′ (with multiplicity) is given
by removing the values λ = 0, c from the list of eigenvalues for M and including λ = 1.

M =











c − 1 · · ·
−1
... M ′

−1











(18)

Proof. Multiplying the first column of M −xI by (1−x) before taking the determinant
yields

(1 − x) det(M − xI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(c − 1 − x)(1 − x) · · ·
x − 1

... M ′ − xI ′

x − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (19)
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Figure 1: A plot of the roots of det(PB−xI) on the left and the roots of det(PB̃−xI)
on the right for all 7 × 7 permutation matrices P .

We next add columns 2 through n to the first column. Since the sum of the entries
within each row of M is zero this operation cancels every term in the first column
below the top entry, which becomes

(c − 1 − x)(1 − x) + (1 − c) = x(x − c). (20)

Therefore the value of the determinant may be rewritten as

(1 − x) det(M − xI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x(x − c) · · ·
0
... M ′ − xI ′

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= x(x − c) det(M ′ − xI ′). (21)

The assertion follows. �

If Jq(a, b) were computed in the traditional manner the top row of our Jacobi sum
matrix would be q followed by a row of 0’s, so the list of eigenvalues would consist of
those of the lower right submatrix, augmented by the value λ = q. Invoking the lemma
now leads to the statement made above comparing lists of eigenvalues.

Purely to satisfy our curiosity, we now propose permuting the rows and columns
of a Jacobi sum matrix B before computing the eigenvalues. For example, take B to
equal matrix (1), let P be any 7×7 permutation matrix, and consider the degree-seven
polynomial det(PB − xI). Compiling the roots to all 5040 polynomials that arise in
this manner produces a list with somewhat more than 3500 distinct complex numbers;
locating them in the complex plane yields the scatterplot on the left in Figure 1. The
roots, whose locations are marked by small solid discs, form a nearly unbroken chain
along the circle of radius 7 centered at the origin, with discernible gaps located only
near the real axis. By way of comparison, the related 7 × 7 matrix B̃ of conventional
Jacobi sum values yields the right-hand plot in Figure 1. Put another way, matrix B

generates in excess of 3500 algebraic integers, each of degree 14 or less over Q and
each having absolute value 7. As one might hope, this property is shared by all Jacobi
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sum matrices. The following result was conjectured by the author and proved by Ron
Evans (personal communication, Jan. 2011); we present this proof below.

Proposition 4 Let B denote a Jacobi sum matrix for the finite field Fq and let P be
any m×m permutation matrix, where m = q− 1. Then every nonzero eigenvalue λ of
the matrix PB satisfies |λ| = m.

Proof. Let λ be a nonzero eigenvalue of PB, so that PBv = λv for some nonzero
vector v. Letting M∗ denote the conjugate transpose of a matrix M , it follows that
(PBv)∗(PBv) = (λv)∗(λv). Expanding yields v∗B∗P ∗PBv = |λ|2v∗v, which implies

v∗
(

1

mB3
)

v = |λ|2v∗v, (22)

since P ∗P = I for any permutation matrix and B∗ = B = 1

mB2 using Theorem 1
and the fact that B is symmetric. Appealling once more to Theorem 1, we find that
1

mB3 = m2I − mU , where every entry of U equals 1. Next observe that Uv = 0, since
multiplying PBv = λv on the left by U gives UPBv = λUv, and UPB = UB = 0
while λ 6= 0. Therefore (22) becomes

v∗(m2I − mU)v = m2v∗v − mv∗Uv = m2v∗v = |λ|2v∗v. (23)

But v∗v > 0 since v is a nonzero vector, and hence |λ| = m, as desired. �

5. DETERMINANTS. One of the more striking properties of Jacobi sum matrices
emerges once we begin to examine submatrices and their determinants, in particular.
Thus the alert reader may have wondered about the determinant of (1). Since the sum
of the entries in each row is zero, it is clear that det(B) = 0 for any Jacobi sum matrix.
Not content, the truly enterprising individual next computes det(B′) for the lower right
6× 6 submatrix B′ of matrix (1), obtaining the intriguing value det(B′) = 16807 = 75.
The obvious generalization is true, and the groundwork for a proof has largely been
laid. We need only one further observation, which is a nice result in its own right.

Proposition 5 Let B denote a Jacobi sum matrix with lower right (m− 1)× (m− 1)
submatrix B′. Then (B′)−1 = 1

m2 (B′ + (m + 1)U ′), where every entry of U ′ is 1.

Proof. The statement follows readily from the equality BB = m2I − mU stated in
Theorem 1. We omit the details. �

Proposition 6 With B and B′ as above, we have det(B′) = mm−2.

Proof. According to Corollary 1 the eigenvalues of B belong to the set {0, m, mω, mω}.
We know det(B) = 0, so rank(B) < m. But by the previous lemma B′ is nonsingular;
therefore rank(B) = m − 1, implying that exactly one eigenvalue of B is 0. We next
apply Lemma 1 to conclude that the eigenvalues of B′ are among {1, m, mω, mω},
with the value 1 occurring precisely once. Finally, the discussion within Proposition 3
indicates that the values mω and mω come in pairs. Hence the product of the m − 1
eigenvalues, which is det(B′), comes to mm−2. �

Corollary 3 Let A be the submatrix of a Jacobi sum matrix B obtained by deleting
row i and column j. Then we have det(A) = (−1)i+jmm−2.

Proof. The case i = j = 0 is handled by Proposition 6. When j > 0 note that adding
all other columns of B′ to column j effectively replaces that column with the negative
of column 0 of B, since the sum of the entries within every row is 0. Moving this
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column back to the far left and negating it introduces a sign of (−1)j to the value of
the determinant. The same reasoning applies to the rows; therefore B′ is transformed
into A by operations that change the sign of det(B′) by (−1)i+j . �

But why stop there? If A is the lower right 5×5 submatrix of (1), we discover that
det(A) = 343(7 − i

√
7). The power of 7 is nice, but even more interesting is

7 − i
√

7 = J(0, 0) − J(0, 1) − J(1, 0) + J(1, 1). (24)

In other words, the determinant of this submatrix appears to be related to the con-
jugates of the entries in the “complementary” upper left 2 × 2 submatrix. The same
phenomenon occurs elsewhere; for instance, if A is the upper left 5×5 submatrix of (1)
then we find that det(A) = 343(−7 + 3i

√
7), and sure enough

−7 + 3i
√

7 = J(5, 5) − J(5, 6) − J(6, 5) + J(6, 6). (25)

These computations hint at a beautiful extension to Corollary 3. We first formalize a
few of the above ideas.

A k × k submatrix A is determined by a subset r1, . . . , rk of the rows of B, where
0 ≤ r1 < · · · < rk ≤ m − 1, and a similar subset c1, . . . , ck of k columns. Deleting
these rows and columns yields the complementary submatrix Ac, which contains exactly
those entries of B that are not in the same row or column as any element of A. The
sign of the submatrix, denoted by ǫA, is based on its position within B. It is given by

ǫA = (−1)r1+···+rk+c1+···+ck . (26)

It is routine to verify that ǫA = ǫAc . Finally, the diminished determinant ddet(A) of A

is an alternating sum of the determinants of all maximal submatrices of A. Letting Ai
j

represent the matrix obtained by deleting row i and column j of A we have

ddet(A) =

k
∑

i,j=1

(−1)i+j det(Ai
j) =

∑

A′⊂A

ǫA′ det(A′), (27)

where A′ ⊂ A signifies a (k − 1) × (k − 1) submatrix of A. We have chosen the term
“diminished” since the degree of ddet(A) as a polynomial in the entries of A is one less
than the degree of det(A).

So that the upcoming result will apply to all possible submatrices of B, we adopt
the convention that ddet(A) = 1 for a 1× 1 matrix A, while ddet(A) = 0, det(A) = 1,
and ǫA = 1 when A is the 0 × 0 “empty” matrix. With the foregoing definitions in
hand we are now prepared to state our main result.

Theorem 2 Given a Jacobi sum matrix B, let A be any k × k submatrix of B, where
0 ≤ k ≤ m. Denote the complementary submatrix to A and its sign by Ac and ǫAc,
respectively. Then the following identity holds:

det(A)

mk
= ǫAc

ddet(Ac)

mm−k
. (28)

Observe that the power of m in each denominator corresponds to the size of the matrix
in the numerator. Also, the examples outlined above illustrate the case m = 7, k = 5;
in both examples the sign happened to be ǫAc = 1. We provide a proof of this result in
the appendix. The reader is encouraged to peruse the argument—among other things,
a number of steps would make excellent exercises for linear algebra students.
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Before considering a collection of multivariable polynomials with unlikely factor-
izations, we pause to present a couple of elementary facts concerning the diminished
determinant, which arose naturally in the preceding discussion. Early in the proof of
Theorem 2 we will need an analogue to expansion by minors to handle the transition
between diminished determinants for matrices of different sizes. To clarify the analogy,
let M be an n× n matrix with entries mij and let M i

j denote the submatrix obtained
by deleting row i and column j from M . Then expansion by minors implies that

det(M) =
1

n

n
∑

i,j=1

(−1)i+jmij det(M i
j). (29)

Lemma 2 With M and M i
j as above we have

ddet(M) =
1

n − 1

n
∑

i,j=1

(−1)i+jmij ddet(M i
j). (30)

Proof. Applying (29) to the definition of ddet(M) yields

ddet(M) =

n
∑

k,l=1

(−1)k+l det(Mk
l )

=
∑

k,l

(−1)k+l 1

n − 1

∑

i6=k
j 6=l

(−1)i′+j′mij det(M ik
jl ). (31)

Here M ik
jl is the submatrix of M obtained by deleting rows i, k and columns j, l. Note

that if row i is below row k then we must use i−1 in the exponent when applying (29)
to det(Mk

l ); otherwise i is the correct value. Hence we set i′ = i − 1 when i > k and
i′ = i when i < k, and similarly for j′ relative to l.

The key to ensuring that the signs behave is to realize that (−1)i′+k = (−1)i+k′
+1,

where k′ = k − 1 when k > i and k′ = k otherwise. Defining l′ in the same manner
relative to j enables us to rewrite (31) as

ddet(M) =
1

n − 1

∑

i,j

(−1)i+jmij

∑

k 6=i
l 6=j

(−1)k′
+l′ det(M ik

jl ) (32)

=
1

n − 1

n
∑

i,j=1

(−1)i+jmij ddet(M i
j).

This completes the proof. �

Diminished determinants also resemble determinants with respect to row and col-
umn transpositions.

Lemma 3 Interchanging a pair of adjacent rows or columns in a matrix M negates
the value of ddet(M).

Proof. Every term in the sum
∑

(−1)i+j det(M i
j) is negated by such an operation, for

one of two reasons. If column i and row j stay put then a pair of rows or columns
within M i

j trade places, negating det(M i
j) without affecting (−1)i+j . On the other

hand, if column i or row j is involved in the exchange then M i
j still appears in the sum

with entries intact, but now with an attached sign of (−1)i+j±1. �
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6. FURTHER INQUIRY. To conclude we offer an observation regarding Jacobi
sum matrices that suggests there is still gold left to be mined. Define the three per-
mutation matrices

P1 =















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1















, P2 =















1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0















, P4 =















1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0















.

(33)
In each case the 1s are situated along a “line through the origin,” where the origin is
the upper left entry and we reduce coordinates mod 7; the subscript indicates the slope
of the line. We have already observed that the characteristic polynomial of matrix (1),
which we shall denote as B once again, splits completely over the field Q(ω):

pB(x) = det(B − xP1) = −x(x − 7)2(x − 7ω)2(x − 7ω)2. (34)

Remarkably, much more is true:

det(B − xP1 − yP2 − zP4) = −(x + y + z)(x + y + z − 7)2 (35)

(x + ωy + ωz − 7ω)(x + ωy + ωz − 7ω)

(x + ωy + ωz − 7ω)(x + ωy + ωz − 7ω).

Further experimentation suggests that it is not a coincidence that the slopes used for
P1, P2, and P4 are powers of 2. For instance, det(B−wP1−xP2−yP4−zP8) splits into
linear and quadratic factors, where B is the Jacobi sum matrix for F16 and all matrices
are 15 × 15 in size. This phenomenon persists for finite fields of odd characteristic as
well. Thus when working over F9 we find that det(B − xP1 − yP3) splits completely
over Q(ω). We also point out the related beautiful factorization

det(B − xP5 − yP7) = (x + y)(x + y + 8)(x − y + 8)(x − y − 8)2(x + y − 8)3. (36)

Based on these observations we surmise the following.

Conjecture 1 Let B be a Jacobi sum matrix for the finite field Fq, where q = pr and
m = q − 1. For (k, m) = 1 denote by Pk the m × m permutation matrix whose entry
in row s, column t is 1 for all 0 ≤ s, t < m with s ≡ kt mod m. Then the polynomial

det(B − x0P1 − x1Pp − x2Pp2 − · · · − xr−1Ppr−1) (37)

in the r variables x0, x1, . . . , xr−1 may be written as a product of factors each of which
has degree at most two in these variables.

Other evidence that we have not included here suggests that this conjecture can be
extended in scope.

In summary, we have examined an elegant tool from number theory via the lens
of linear algebra and uncovered several nice results in the process. At the very least
this approach demonstrates a tidy manner in which many of the elementary (though
perhaps not fully mapped out) facts concerning Jacobi sums may be packaged. On an
optimistic note, this avenue of inquiry may even lead to a more complete understanding
of Jacobi sums.

7. APPENDIX. Our main result relates the determinant of a submatrix of a Jacobi
sum matrix to the diminished determinant of the conjugate complementary submatrix.
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Theorem 2 Given a Jacobi sum matrix B, let A be any k × k submatrix of B, where
0 ≤ k ≤ m. Denote the complementary submatrix to A and its sign by Ac and ǫAc,
respectively. Then the following identity holds:

det(A)

mk
= ǫAc

ddet(Ac)

mm−k
. (38)

Proof. For k = 0 and k = m the statement to be proved reduces to

1 =
ddet(B)

mm
,

det(B)

mm
= 0. (39)

The former is a consequence of Corollary 3, while the latter is clear. Furthermore, the
statement for k = m − 1 is equivalent to Corollary 3. Hence we need only show that
case k follows from case k + 1 for 1 ≤ k ≤ m − 2. In the interest of presenting a lucid
argument, we will provide a sketch of the proof in the case k = m − 3, followed by a
summary of the algebra for the general case, which is qualitatively no different.

Therefore suppose the result holds for k = m−2 and that A is an (m−3)× (m−3)
submatrix of B. For the sake of organization we permute the rows and columns of B

in order to situate the entries of Ac in the upper left corner, but otherwise maintain
the original order of the rows and columns within A and Ac. Let us label the permuted
matrix as C, having entries γij for 0 ≤ i, j ≤ m − 1.

C =























γ00 γ01 γ02 γ03 γ04

γ10 γ11 γ12 γ13 γ14 · · ·
γ20 γ21 γ22 γ23 γ24

γ30 γ31 γ32

γ40 γ41 γ42 A
...























(40)

We claim that the result for k = m − 2 continues to hold for matrix C, up to a
sign which we now determine. For exchanging a pair of adjacent rows or columns of B

will negate exactly one of det(A), ddet(Ac) or ǫAc , according as the pair of rows or
columns both intersect A, both intersect Ac (by Lemma 3), or intersect both. If the
entries of Ac reside in rows r1, r2, r3 and columns c1, c2, c3 then it requires

r1 + (r2 − 1) + (r3 − 2) + c1 + (c2 − 1) + (c3 − 2) (41)

swaps of adjacent rows or columns to transform B into C; hence we must include a
factor of ǫAc when applying (28) to C. In other words, if D is an (m − 2) × (m − 2)
submatrix of C then

ǫAc

det(D)

mm−2
= ǫDc

ddet(Dc)

m2
. (42)

The final observation to be made before embarking upon a grand calculation is
that the dot product of any row vector of C with the conjugate of another row vector
is −m, while the dot product of a row vector with its own conjugate is m2 − m. This
relationship holds for B since B is symmetric and BB = m2I − mU , as noted in the
proof of Theorem 1. Permuting rows and columns of B does not destroy this property,
which consequently holds for C as well. Now to begin.

We wish to relate ddet(Ac) to det(A). By Lemma 2 we may begin

ddet(Ac) =
1

2

(

γ00 ddet

(

γ11 γ12

γ21 γ22

)

− γ01 ddet

(

γ10 γ12

γ20 γ22

)

+ · · ·
)

=
ǫAc

2mm−4

(

γ00 det(C12
12 ) + γ01 det(C12

02 ) + γ02 det(C12
01 ) + · · ·

)

, (43)
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since the result holds for k = m − 2 with a correction factor of ǫAc . As before Cik
jl

denotes the submatrix of C obtained by deleting rows i, k and columns j, l. We then
expand each of det(C12

12 ), det(C12
02 ), and det(C12

01 ) by minors along row 0, which gives
(γ00γ00 + γ01γ01 + γ02γ02) det(A), along with a fair number of other terms. We next
collect the remaining terms according to whether they involve γ03, γ04, γ05, and so on.
The reader may verify that the sum of the terms containing a factor of γ03 is

γ03γ03 det(A) + m det(Aγ03⊲3), (44)

where Aγ03⊲3 refers to A with all entries in the left column replaced by γ03. Combining
the terms involving γ04, γ05, . . . , we may rewrite the first three terms of (43) as

(γ00γ00 + γ01γ01 + γ02γ02 + γ03γ03 + γ04γ04 + γ05γ05 + · · · ) det(A)

+ m det(Aγ03⊲3) + m det(Aγ04⊲4) + m det(Aγ05⊲5) + · · · . (45)

The coefficient of det(A) is the dot product of row 0 of C with its own conjugate, so

(m2 − m) det(A) + m det(Aγ03⊲3) + m det(Aγ04⊲4) + m det(Aγ05⊲5) + · · · . (46)

Finally, this entire sequence of steps may be performed on the second trio and third
trio of terms in (43), yielding

3(m2 − m) det(A) + m(det(Aγ03⊲3) + det(Aγ04⊲4) + det(Aγ05⊲5) + · · · )
+ m(det(Aγ13⊲3) + det(Aγ14⊲4) + det(Aγ15⊲5) + · · · )
+ m(det(Aγ23⊲3) + det(Aγ24⊲4) + det(Aγ25⊲5) + · · · ). (47)

Since the sum of the entries of any column of C is 0, we have

det(Aγ03⊲3) + det(Aγ13⊲3) + det(Aγ23⊲3) = − det(Ã3), (48)

where Ã3 represents matrix A with each entry in its leftmost column replaced by the
sum of all the entries in that column. Defining Ãj similarly for j ≥ 3, (47) reduces to

3(m2 − m) det(A) − m(det(Ã3) + det(Ã4) + det(Ã5) + · · · ). (49)

It is a neat exercise in linear algebra to confirm that
∑

det(Ãj) = (m−3) det(A). Each

term of det(A) appears in det(Ãj) for every j and hence appears m − 3 times in the
sum; all other terms cancel in pairs, as the reader may verify. Hence we are left with

3(m2 − m) det(A) − m(m − 3) det(A) = 2m2 det(A). (50)

In summary, we have shown that

ddet(Ac) =
ǫAc

2mm−4
(2m2 det(A)) = ǫAc

det(A)

mm−6
. (51)

Dividing through by ǫAcm3 gives the desired equality.
The calculation proceeds in an identical fashion for other values of k. We reach

k(m2 − m) det(A) − m(m − k) det(A) = (k − 1)m2 det(A) (52)

in place of (50), yielding

ddet(Ac) =
ǫAc

(k − 1)mm−2k+2
((k − 1)m2 det(A)) = ǫAc

det(A)

mm−2k
. (53)

Rearranging gives the result. �
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