
Expected Value Road Trip

As a result of a questionable decision to combine a
cross-country move with a four-week stay at a sum-
mer math program, I found myself driving solo from
San Francisco to Salt Lake City in a single day dur-
ing the summer of 2007. To combat the lethargic
mid-afternoon stretch I decided to mentally recon-
struct the solution to a classic problem which dates
back at least to Laplace [N]; namely, to determine
how many numbers, chosen uniformly at random
from the interval [0, 1], one must select before their
sum exceeds 1. The delightful answer, as we all
know, is e.

This question has been the subject of renewed
interest lately. In [N], Ćurgus and Jewett examine
the function α(t), defined as the expected number
of random selections from [0, 1] that must be made
before the cumulative total exceeds t. They go on to
find an explicit formula for α(t) using the theory of
delay functions. It stands to reason that α(t) ≈ 2t,
since each selection is equal to 1

2 , on average. Their
surprising observation is that

lim
t→∞

(α(t)− 2t) =
2
3
.

One can independently show [N] that the value of
α(t) may be expressed in terms of powers of e for
integral values of t. We are thus led to statements
such as

e6 − 5e5 + 8e4 − 9
2e3 + 2

3e2 − 1
120e ≈ 122

3 ,

by considering α(6), for example. The two quanti-
ties agree to six digits past the decimal point.

Our purpose here is to pursue a thought which
struck as yet another low mountain range passed
by to the south somewhere in Nevada. We wish to
know how many numbers, chosen uniformly at ran-
dom from the interval [1, e], one must select before
their product exceeds e. To cut the suspense, the
answer is the somewhat unlikely expression

e
1

e−1 +
e− 1

e
.

Readers may test their intuition by predicting
whether this quantity is greater than or less than e.

The assault proceeds in predictable fashion: for
n ≥ 1 let qn be the probability that a product of n
numbers chosen from [1, e] is not greater than e. (It
will be convenient to define q0 = 1 as well.) Then

the probability that the product exceeds e for the
first time at the nth selection is

(1− qn)− (1− qn−1) = qn−1 − qn,

valid for n ≥ 1. The expected value we seek is
∞∑

n=1

n(qn−1 − qn)

=
∞∑

n=1

qn−1 +
∞∑

n=1

(n− 1)qn−1 −
∞∑

n=1

nqn

=
∞∑

n=0

qn.

The fact that all sums converge absolutely will be
clear once we obtain a closed form expression for qn.
The ticklish part is finding the formula.

The region Rn within the n-cube [1, e]n consisting
of points (x1, . . . , xn), the product of whose coordi-
nates is at most e, is described by

1 ≤ x1 ≤ e

1 ≤ x2 ≤
e

x1

...
1 ≤ xn ≤ e

x1 · · ·xn−1
.

We may then compute qn via

qn =
1

(e− 1)n

∫
Rn

dxn · · · dx1.

We focus our attention on the integral by defining
θn =

∫
Rn

dxn · · · dx1. The first six values are e − 1,
1, 1

2e − 1, −1
3e + 1, 3

8e − 1, and −11
30e + 1, found

by electronic means. Evaluating these integrals di-
rectly becomes an increasingly arduous affair as n
grows, so it comes as a pleasant surprise to discover
that their value may be ascertained with hardly any
effort. Indeed, we find that

θn+1 =
∫

Rn

(
e

x1 · · ·xn
− 1

)
dxn · · · dx1,

by performing the easy integration with respect to
xn+1. It follows that

θn+1 + θn =
∫

Rn

e

x1 · · ·xn
dxn · · · dx1.

Making the change of variables yk = lnxk so that
dyk = 1

xk
dxk we find that

θn+1 + θn =
∫

R′
n

e dy1 · · · dyn.
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It is clear that the region R′n consists of those points
(y1, . . . , yn) satisfying yk ≥ 0 and y1 + · · ·+ yn ≤ 1,
i.e. R′n is a right unit n-simplex. It is well-known
that the volume of this region is 1

n! , so we have
shown that

θn+1 + θn =
e

n!
.

It is conceivable that one might stumble upon this
approach while navigating northern Nevada by car.
In fact, I initially headed down another road by ask-
ing how many numbers from the interval [1, 2] would
be required to obtain a product that exceeded 2.
Several mental integrations later it became clear
that I had taken a wrong turn when the accumula-
tion of ln 2’s became overwhelming. By the time the
question had been properly formulated the Great
Salt Flats beckoned, and the interesting task of an-
swering it was postponed until a later time.

Resuming the argument, we now find an expres-
sion for θn. For n ≥ 1 let bn be the nth partial sum
of the usual series for e−1, so that

bn = 1− 1
1

+
1
2
− · · ·+ (−1)n−1 1

(n− 1)!
.

We claim that θn = (−1)n(1− bne). The quantities
agree for n = 1, and for n ≥ 2 we compute

θn + θn+1 = (−1)n(1− bne) + (−1)n+1(1− bn+1e)
= e(−1)n(bn+1 − bn)

= e(−1)n
(

(−1)n

n!

)
=

e

n!
,

as desired. This provides the sought after expression
for qn, namely

qn =
(−1)n(1− bne)

(e− 1)n

for n ≥ 1. Clearly |qn| ≤ (e − 1)−n, which justifies
the manipulations of the infinite series above.

The final step of summing the qn presents a very
satisfying exercise involving geometric and exponen-
tial series. To begin,

∞∑
n=0

qn = 1 +
∞∑

n=1

(−1)n

(e− 1)n
−

∞∑
n=1

(−1)n(bne)
(e− 1)n

=
e− 1

e
−

∞∑
n=1

(−1)n(bne)
(e− 1)n

.

We evaluate the remaining term by writing bn as
a sum and interchanging the order of summation,
obtaining

−
∞∑

n=1

(−1)n(bne)
(e− 1)n

= −e
∞∑

n=1

(−1)n

(e− 1)n

n−1∑
k=0

(−1)k

k!

= −e
∞∑

k=0

(−1)k

k!

∞∑
n=k+1

(−1)n

(e− 1)n

= −e
∞∑

k=0

(−1)k

k!
· (−1)k+1

e(e− 1)k

=
∞∑

k=0

1
k!
· 1
(e− 1)k

= e
1

e−1 .

This completes the computation.
It is natural to revisit the phenomenon described

by Ćurgus and Jewett in this multiplicative context.
So let β(t) be the expected number of random se-
lections that must be made from the interval [1, e]
before the product exceeds et. Since the average
value of lnx on the interval [1, e] is 1

e−1 , we antici-
pate that

β(t) ≈ e
t

e−1 .

But can a more precise statement be made regard-
ing the relationship between these two quantities,
similar to the observation that (α(t)− 2t) → 2

3? So
far we have established that

β(1)− e
1

e−1 =
e− 1

e
.

Incidentally, since lnx is concave down, a number
x chosen uniformly from [1, e] will yield a value for
lnx that is closer to 1, on average, than we would
have obtained by simply having chosen a number
uniformly from [0, 1]. In other words, a random se-
lection from [1, e] contributes “more” to a product
than a selection from [0, 1] will contribute to a sum.
So we expect that fewer selections are required for
our product to exceed a given value; i.e. we predict
that β(t) < α(t) for all positive t. As anticipated,

β(1) ≈ 2.42169 < e,

settling the matter raised earlier. And this remark
will serve nicely as our Salt Lake City, concluding
the journey, or at least this leg of the trip.
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