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Abstract

We introduce a formula for the Mahler measure of axy + bx + cy + d with complex
coefficients a, b, c, and d and give examples which demonstrate a connection with L-
functions. We then prove a generalization of Maillot’s formula when the coefficients are
real. Next we discuss operations on the coefficients which fix the Mahler measure. Finally,
we prove an alternate formulation of the main result in order to calculate the Mahler
measure of a two-parameter family of polynomials in three variables.

keywords: Mahler measure, Bloch-Wigner dilogarithm, L-functions, Jensen’s formula,
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1 Introduction

The derivation of explicit expressions for the Mahler measure m(P ) of Laurent polynomials
in two variables has been the focus of some mathematical attention lately. Boyd [Bo1] and
Rodriguez Villegas [RV] have produced polynomials for which m(P ) may be expressed in terms
of the L-function of a quadratic character or of an associated elliptic curve. Smyth [Sm] has
also developed an explicit formula for the Mahler measure of a family of polynomials in three
variables with real parameters. Furthermore, Boyd [Bo2] has made the connection between
Mahler measure and volumes of hyperbolic manifolds. In [Ma], Maillot develops an elegant
formula for m(ax + by + c) which involves the angles of the triangle whose sides have lengths
|a|, |b|, and |c|. Motivated by the fact that linear fractional transformations also possess a
geometrical flavor, we sought an analogous formula for m(axy + bx + cy + d). In this paper we
present a general formula, use it to prove a direct generalization of Maillot’s result, and also
discuss some of its other implications.

The Mahler measure m(P ) of a Laurent polynomial P (x, y) ∈ C[x, x−1, y, y−1] calculates
the average value of log |P (x, y)| over T2, the subset of C2 consisting of all pairs (x, y) with
|x| = |y| = 1. In other words,

m(P ) =
1

(2πi)2

∫
T2

log |P (x, y)| dx

x

dy

y
=

1
(2π)2

∫ 2π

0

∫ 2π

0

log |P (eis, eit)| ds dt.

The Mahler measure of a Laurent polynomial in n variables is defined similarly. The one-variable
case is essentially completely understood, as Jensen’s formula may be employed to show that
for P (x) = a(x− α1) · · · (x− αd),

m(P ) = log |a|+
d∑

k=1

log+ |αk|,

where as usual log+ x = 0 for x < 1 while log+ x = log x when x ≥ 1. In particular, we have
m(ax + b) = max(log |a|, log |b|) for a, b ∈ C∗.

Recall that for n ≥ 2 the general polylogarithm function Lin(z) is given by

Lin(z) =
∞∑

k=1

zk

kn
, |z| ≤ 1.
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The dilogarithm Li2(z) may be extended to an analytic function on C except for a branch cut
along the real axis from 1 to ∞. A modification of this function leads to the Bloch-Wigner
dilogarithm, a real analytic function that can be extended to all of P1(C), vanishing on the real
axis and at infinity. It is defined as

D(z) = Im(Li2(z)) + log |z| arg(1− z), z ∈ C r [1,∞),

This function satisfies a number of identities such as D(z̄) = D(1/z) = −D(z) and the five-term
relation

D(z) + D(w) + D

(
1− w

z

)
+ D

(
z + w − 1

zw

)
+ D

(
1− z

w

)
= 0 (1)

for any z, w ∈ C∗. (See [Bl] or [Za] for a nice introduction to this function.) The Bloch-Wigner
dilogarithm appears as the primitive of a certain differential 1-form, which enables us to perform
the integration in the proof of our formula. The resulting expression for Mahler measure may
be expressed in terms of either of these dilogarithms; each formulation has its advantages.

2 Statement of the formula

Although the expression m(axy + bx + cy + d) is “lexicographically correct,” our notation will
be simplified if we instead compute m(cxy − dy − ax + b). That these two quantities are
equal follows from the fact that multiplying by x−1 and then making the change of variables
(x, y) 7→ (−y−1,−x) transforms the former polynomial into the latter, but does not affect
the value of the integral used to define Mahler measure. Therefore we will only work with
P (x, y) = cxy − dy − ax + b. Also, in the interest of handling special cases separately, we will
initially suppose that the coefficients are non-zero and that ad − bc 6= 0, then later extend our
formula to include all values of the coefficients for which m(P ) is defined.

Solving P (x, y) = 0 for y we find y = (ax − b)/(cx − d), which is a linear fractional trans-
formation since ad− bc 6= 0. In what follows, we will always treat y as this particular function
of x, except when y is used as a dummy variable of integration. The image of the unit circle
|x| = 1 under the transformation x 7→ y will be a circle (or line) which we will denote by T .
The position of T relative to the unit circle |y| = 1 distinguishes between two possibilities. The
“intersection” case occurs when T intersects both the interior and exterior of the unit circle,
while the “non-intersection” case encompasses all other positions of T . This distinction may be
phrased more algebraically by noting that there will be either zero, one, two, or infinitely many
pairs (x, y) ∈ C2 satisfying P (x, y) = 0 and |x| = |y| = 1. The intersection case occurs if there
are exactly two such pairs, otherwise we have the non-intersection case.

In the intersection case denote the two pairs by (x1, y1) and (x2, y2). Those values of x ∈
T1 for which |y| ≥ 1 constitute a path τ on the unit circle with the usual counterclockwise
orientation. Likewise those x for which |y| ≤ 1 form a complementary arc τ ′. Order the pairs so
that τ has initial point x1 and terminal point x2, and vice-versa for τ ′. To each of the coefficients
we now associate a point and an angle. Set za = b/a, zb = ā/b̄, zc = d/c, and zd = c̄/d̄. Let α
be the “winding angle” of the path τ with respect to za, which may be defined formally as

Wind(τ, za) = Im
∫

τ

dz

z − za
, za /∈ τ. (2)

Equivalently, let α be the directed angle x1zax2 with value in (0, 2π) when za is inside the unit
circle, and with value in (−π, π) for za outside the unit circle. We define β in the same way,
while for γ we use the directed angle x2zcx1 instead, and similarly for δ. These correspond
to the winding angles of τ ′ with respect to zc and zd. Note that y = 0 when x = za, so za
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Figure 1: Location of points and angles for m(2xy + 3y − 3ix + 4) computation.

cannot lie on τ . Also, if za is a point on the unit circle then za = zb, so zb /∈ τ either. Similar
considerations apply to zc and zd, so the winding angle is always well-defined.

We are now in a position to state a formula for m(P ).

Theorem 1 Let P (x, y) = cxy − dy − ax + b for a, b, c, d ∈ C∗ such that ad − bc 6= 0. With
the notation introduced above we have

m(P ) = max(log |a|, log |b|, log |c|, log |d|) (3)

in the non-intersection case, while

2πm(P ) = D
(cx2

d

)
−D

(cx1

d

)
−D

(ax2

b

)
+ D

(ax1

b

)
(4)

+α log |a|+ β log |b|+ γ log |c|+ δ log |d|

in the intersection case.

We remark that this expression possesses the properties one would expect of a formula for
Mahler measure. For instance, we shall see that α + β + γ + δ = 2π, so that for λ ∈ C∗, our
formula predicts that m(λP ) = log |λ|+ m(P ), as it should according to the definition.

3 Two examples

In order to illustrate the constructions involved in the theorem we will evaluate m(P ) for
P (x, y) = 2xy + 3y − 3ix + 4 in terms of familiar functions. In this case we have a = 3i,
b = 4, c = 2, and d = −3. To find (x, y) satisfying P (x, y) = 0 and |x| = |y| = 1 we equate
yȳ = 1, where y = (3ix− 4)/(2x + 3), then use x̄ = x−1. The resulting quadratic equation has
two roots, x1 = 1 and x2 = − 1

5 (3 + 4i). These are given in the correct order since |y| = 5 when
x = −1, so −1 ∈ τ . We now plot za = − 4

3 i, zb = − 3
4 i, zc = − 3

2 , and zd = − 2
3 , as shown in

Fig. 1. One finds that α = δ = arctan(12), β = π − arctan( 32
51 ), and γ = arctan( 8

9 ). Thus we
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conclude that

2πm(P ) = D( 6+8i
15 )−D(− 2

3 )−D( 12−9i
20 ) + D( 3i

4 ) +
+ (2π − 2 arctan( 32

51 ) + arctan(8
9 )) log 2 + 2 arctan(12) log 3.

These two quantities do in fact agree numerically.
Next we will show that m(ixy + x + y + 1) = 1

4L′(χ,−1), where χ =
(
−2
p

)
is the quadratic

Dirichlet character associated with Q(
√
−2), namely

χ(n) =

 1 n ≡ 1, 3 mod 8
−1 n ≡ −1,−3 mod 8

0 n even
.

Using the same technique as before we find that x1 = ξ−1 and x2 = ξ3, where ξ = eπi/4. The
values of the angles are irrelevant since the coefficients each have absolute value one. Thus for
P (x, y) = ixy + x + y + 1 we find

2πm(P ) = D(−iξ3)−D(−iξ−1)−D(−ξ3) + D(−ξ−1)
= 2D(ξ) + 2D(ξ3)

= 2 Im
∞∑

k=1

1
k2

(ξk + ξ3k)

= 2
√

2 L(χ, 2).

Recall that the L-series of a character χ is defined by

L(χ, s) =
∞∑

n=1

χ(n)
ns

, Re(s) > 1

and can be extended to a meromorphic function on C. As shown in [La], if χ is a primitive
Dirichlet character with conductor N and Gauss sum W (χ) then L(χ, s) satisfies the functional
equation

L(χ̄, 1− s) = L(χ, s)
(

N

2π

)s

Γ(s)W (χ)−1
(
e

πis
2 + χ(−1)e

−πis
2

)
. (5)

In our case χ(−1) = −1, so the final factor vanishes at s = 2. Taking derivatives and evaluating
at s = 2 yields L′(χ,−1) = 4

√
2

π L(χ, 2) since N = 8 and W (χ) = 2i
√

2. Combining these
computations yields

m(ixy + x + y + 1) =
1
4
L′(χ,−1). (6)

4 Proof of the formula

We first address the intersection case. So that we may apply Jensen’s formula we write P (x, y) =

(cx− d)
(

y − ax− b

cx− d

)
, yielding

m(P ) =
1

(2πi)2

∫
T2

(
log |cx− d|+ log

∣∣∣∣y − ax− b

cx− d

∣∣∣∣) dy

y

dx

x

= m(cx− d) +
1

2πi

∫
T1

log+

∣∣∣∣ax− b

cx− d

∣∣∣∣ dx

x
. (7)
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Let C be the curve defined by P (x, y) = 0, and note that C ∼= P1(C) via the coordinate
function x. We will base our computations in this projective plane. Following [BRV] we introduce
a closed, real-valued differential 1-form η(f, g) on C for each ordered pair of rational functions
f, g ∈ C(C)∗. It is given by

η(f, g) = Im
(

log |f | dg

g
− log |g| df

f

)
, (8)

defined at all points of C where neither f nor g has a zero or pole. As may readily be verified, η
is bimultiplicative and skew-symmetric in its arguments. We will need the fact that η(f, 1− f)
is exact with primitive D ◦ f .

Since the integrand of (7) is zero on the portion of T1 for which |y| < 1 we may write

1
2πi

∫
T1

log+

∣∣∣∣ax− b

cx− d

∣∣∣∣ dx

x
=

1
2π

Im
∫

τ

log |y| dx

x
= − 1

2π

∫
τ

η(x, y),

where τ is the arc of the unit circle on which |y| ≥ 1. Note that log |x| dy
y vanishes on τ since

|x| = 1. Using properties of η we have the identity

η(x, y) = η
(ax

b
, 1− ax

b

)
− η

(cx

d
, 1− cx

d

)
+ η

(
x,

b

d

)
− η

(
x− b

a
,
b

a

)
+ η

(
x− d

c
,
d

c

)
,

so we may evaluate
∫

τ
η(x, y) in pieces. The first two terms have the primitive D(ax/b) −

D(cx/d), so their integral over τ is

D
(ax2

b

)
−D

(ax1

b

)
−D

(cx2

d

)
+ D

(cx1

d

)
by Stokes theorem. The other terms may be integrated directly; by definition∫

τ

η

(
x,

b

d

)
= Im

∫
τ

− log
∣∣∣∣ bd
∣∣∣∣ dx

x
= −θ log

∣∣∣∣ bd
∣∣∣∣ ,

where θ is the winding angle of τ about the origin, i.e. the measure of the arc τ . In the same
fashion we find that∫

τ

η

(
x− b

a
,
b

a

)
= −α log

∣∣∣∣ ba
∣∣∣∣ , and

∫
τ

η

(
x− d

c
,
d

c

)
= −γ′ log

∣∣∣∣dc
∣∣∣∣ ,

where α and γ′ are the winding angles of τ with respect to za = b
a and zc = d

c . Note that unlike
α, γ′ is not the same as the angle γ defined in the statement of the theorem.

Collecting all these results and recalling that m(P ) = m(cx− d)− 1
2π

∫
τ

η(x, y), we find

2πm(P ) = D
(cx2

d

)
−D

(cx1

d

)
−D

(ax2

b

)
+ D

(ax1

b

)
(9)

+ α log |a|+ (θ − α) log |b| − γ′ log |c|+ (θ − γ′) log |d|
+ 2πm(cx− d).

In order to complete the proof we must relate the angles α, β, γ, and δ to θ.
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Lemma 2 Let τ be an arc of the unit circle, parameterized by t 7→ eit for t ∈ [θ1, θ2] where
θ1 < θ2 and θ = θ2 − θ1 < 2π. Given any w ∈ C∗, let φ, φ′ be the winding angles of τ with
respect to w and 1/w̄. Then φ + φ′ = θ.

Proof: According to (2) the winding angle φ′ is given by

φ′ = Im
∫

τ

dz

z − 1
w̄

= Im
∫ θ2

θ1

ieit dt

eit − 1
w̄

.

In order to find a more useful expression for φ′ we observe that reflecting the entire picture over
the real axis will negate the winding angle. The new path τ̄ will be parameterized by t 7→ e−it

with t ∈ [θ1, θ2] and wind about 1
w , so

φ′ = −Im
∫ θ2

θ1

−ie−it

e−it − 1
w

dt = Im
∫ θ2

θ1

i

1− eit 1
w

dt.

Adding the expression for φ yields

φ + φ′ = Im
∫ θ2

θ1

i

1− eit 1
w

+
i

1− e−itw
dt = Im

∫ θ2

θ1

i dt = θ,

as desired. Lest the geometry be completely obscured, we mention that the proof may also be
accomplished by using two pairs of similar triangles and some casework. However, the above
approach is more efficient.

It follows from the lemma that θ−α = β, giving the desired β log |b| term in (9). To handle
γ′ we consider two cases. If |c| ≥ |d| then zc lies within the unit circle and γ′ = 2π − γ.
Furthermore, m(cx− d) = log |c| in this case. Therefore the final three terms of (9) reduce to

−(2π − γ) log |c|+ (2π − γ − θ) log |d|+ 2π log |c| = γ log |c|+ δ log |d|,

since γ + δ = 2π − θ, by the lemma. If instead |c| ≤ |d| then zc lies outside the unit circle,
so γ′ = −γ, m(cx − d) = log |d|, and the outcome is the same regardless, thereby proving our
formula for m(P ) in the intersection case.

The non-intersection case requires considerably less analysis. We will need the following
result, which essentially says that if T lies completely inside or on the unit circle |y| = 1, then a
coefficient with maximal magnitude must appear in the denominator of y = (ax− b)/(cx− d).

Lemma 3 Let a, b, c, and d be complex numbers such that d 6= 0, and let y = (ax−b)/(cx−d).
If |y| ≤ 1 for all |x| = 1 then max(|a|, |b|) ≤ max(|c|, |d|).

Proof: Choose ξ ∈ T1 so that cξ/d is a positive real number. This ensures that |cξ+d| = |c|+|d|
and |cξ − d| = ±(|c| − |d|). By hypothesis |y| ≤ 1 for x = ±ξ, meaning that |aξ + b| ≤ |cξ + d|
and |aξ − b| ≤ |cξ − d|. Now observe that

2|a| = |(aξ + b) + (aξ − b)| ≤ |(aξ + b)|+ |(aξ − b)| ≤ |cξ + d|+ |cξ − d|,

and the latter equals either 2|c| or 2|d|, so |a| ≤ max(|c|, |d|). By considering |(−aξ+b)+(aξ+b)|
instead, we deduce that |b| ≤ max(|c|, |d|) as well.

As shown in (7),

m(P ) = m(cx− d) +
1

2πi

∫
T1

log+

∣∣∣∣ax− b

cx− d

∣∣∣∣ dx

x
.
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If T lies completely inside or on the unit circle, then log+ |y| = 0 for all x ∈ T1, so the above
integral reduces to

m(P ) = m(cx− d) = max(log |c|, log |d|).

By the lemma we may now conclude that

m(P ) = max(log |a|, log |b|, log |c|, log |d|).

Conversely, if T lies on or outside the unit circle, then |(cx − d)/(ax − b)| ≤ 1 for all x ∈ T1.
The lemma now asserts that max(|c|, |d|) ≤ max(|a|, |b|). In this case log+ |y| = log |y|, so (7)
reduces to

m(P ) = m(cx− d) +
1

2πi

∫
T1

(log |ax− b| − log |cx− d|) dx

x

= m(cx− d) + m(ax− b)−m(cx− d)
= max(log |a|, log |b|)
= max(log |a|, log |b|, log |c|, log |d|)

as before. This establishes the formula in the non-intersection case, completing the proof of the
theorem.

5 Degenerate cases

We first relax the requirement that ad − bc 6= 0. If we have ad = bc then the image T of T1

under x 7→ (ax − b)/(cx − d) is the single point y = a/c. According to our original geometric
criterion, we are in the non-intersection case. Lemma 3 still applies, and we conclude that

m(P ) = max(log |a|, log |b|, log |c|, log |d|).

To apply our result when one or more of the coefficients are zero we will use the fact that
m(P ) is a continuous function of the parameters a, b, c, and d (see [Bo1]). Hence if a = 0, for
example, we need only analyze our formulae as a → 0. In the non-intersection case, it is clear
that

lim
a→0

m(P ) = max(log |b|, log |c|, log |d|).

In the intersection case, since D(0) = 0, the dilogarithm terms involving a will vanish. Further-
more, za = b/a will go to infinity, so α → 0. More precisely, α subtends an arc of the unit circle,
so |α| ≤ 2 arcsin(|ab |). But as a → 0 we know that arcsin(|ab |) ∼ |ab | and |a| log |a| → 0, so we
deduce that α log |a| → 0. Thus

lim
a→0

2πm(P ) = D
(cx2

d

)
−D

(cx1

d

)
+ β log |b|+ γ log |c|+ δ log |d|.

In summary, our formulae will still hold when a = 0 if we agree to ignore any term involving a.
Recall that D(z) vanishes at infinity as well, so the same convention about ignoring terms will
apply when any of b, c, or d are zero. Finally, note that difficulties such as interpreting D( 0

0 )
will not arise, since if a = b = 0 or c = d = 0 then ad− bc = 0, giving the non-intersection case.
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6 Real coefficients

When a, b, c, and d are real there is a single cyclic quadrilateral with sides of length |a|, |b|,
|c|, and |d| which encapsulates all the angles, lengths, and ratios involved in the expression for
m(cxy − dy − ax + b). This geometric formulation is the natural generalization of Maillot’s
elegant result for m(ax + by + c) in [Ma]. However, in our case the Mahler measure does not
depend solely on the norms of the coefficients, hence our restriction to real values.

We first explain how a value of the Bloch-Wigner dilogarithm may be associated to an
oriented triangle. Let z1, z2, and z3 be distinct points in the complex plane. We define the
“dilogarithm of triangle z1z2z3” as

D(z1z2z3) = D

(
z1 − z2

z3 − z2

)
.

Although the notation D(z1z2z3) could also be construed as the dilogarithm of the product
of z1, z2, and z3, it will be clear from the context which meaning is intended. The identities
D(z) = D( 1

1−z ) = D( z−1
z ) imply that D(z2z3z1) and D(z3z1z2) also share the same value.

Furthermore, it is clear that the ratio above depends only on the shape of the triangle, not
its size. Thus D can be viewed as a function on equivalence classes of similar triangles under
orientation-preserving similarity transformations. Furthermore, D(z3z2z1) = −D(z1z2z3) since
D( 1

z ) = −D(z), so reversing the orientation of a triangle negates its dilogarithm. Note that if
the vertices are oriented positively (in counterclockwise order) then (z1 − z2)/(z3 − z2) will lie
in the upper half plane, so D(z1z2z3) will be positive. Lastly, D(z1z2z3) = 0 if and only if the
triangle is degenerate, i.e. z1, z2, and z3 are collinear.

With this interpretation of the dilogarithm we can state Maillot’s result in the following
form:

Theorem 4 (Maillot) Given a, b, c ∈ C, suppose that |a|, |b|, and |c| are the lengths of the
sides of a non-degenerate triangle. Label the triangle ABC, oriented positively, with angles α′,
β′, and γ′ opposite the sides of length |a|, |b|, and |c|, respectively. In this case

πm(ax + by + c) = D(ABC) + α′ log |a|+ β′ log |b|+ γ′ log |c|. (10)

When |a|, |b|, and |c| do not satisfy the triangle inequalities,

m(ax + by + c) = max(log |a|, log |b|, log |c|).

To extend this result to our situation, we will need to consider the dilogarithm of an oriented
cyclic quadrilateral. If z1, z2, z3, and z4 are the vertices of a cyclic quadrilateral then we define

D(z1z2z3z4) = D(z1z2z3) + D(z1z3z4).

The next lemma shows that this value depends only on the order in which the vertices are
visited, not on which vertex we choose to label z1.

Lemma 5 Let z1, z2, z3, and z4 lie on a single circle in the complex plane. Then we have

D(z1z2z3)−D(z2z3z4) + D(z3z4z1)−D(z4z1z2) = 0. (11)

Proof: Since the zi lie on a circle their cross-ratio is a real number λ. If we set w1 = z1 − z2,
w2 = z3−z4, w3 = z1−z4, and w4 = z3−z2 then this fact may be expressed as w1w2/w3w4 = λ,
while the assertion becomes

D

(
w1

w4

)
−D

(
w4

w2

)
+ D

(
w2

w3

)
−D

(
w3

w1

)
= 0.
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Figure 2: Positive orientation for cyclic quadrilaterals.

We claim that in the periodic sequence

1− λ,
w2

w3
,

w4
w2

w4
w2
− 1

,
w3
w1

w3
w1
− 1

,
w1

w4
, 1− λ,

w2

w3
, . . .

any three consecutive terms aj−1, aj , and aj+1 satisfy aj−1aj+1 = 1 − aj . This follows easily
from the definition of λ and the observation that w1 + w2 = w3 + w4. Hence this sequence gives
rise to a five term relation

D(1− λ) + D

(
w2

w3

)
+ D

(
w4
w2

w4
w2
− 1

)
+ D

(
w3
w1

w3
w1
− 1

)
+ D

(
w1

w4

)
= 0.

The desired equation now follows from the identity D( z
z−1 ) = −D(z) and the fact that D

vanishes at real numbers.
As before, the dilogarithm remains constant under an orientation-preserving similarity trans-

formation applied to the vertices, and reversing the orientation clearly negates the dilogarithm.
Therefore we may use the sign of D(z1z2z3z4) to define the positive orientation of a cyclic
quadrilateral. (If the dilogarithm is zero then the quadrilateral is degenerate; this occurs if
the vertices are collinear or, for the non-convex case, if opposite sides are congruent.) When
z1z2z3z4 is convex this approach agrees with the usual convention that listing vertices in coun-
terclockwise order gives the positive orientation. If z1z2z3z4 is cyclic and non-convex, and thus
self-intersecting, there is still a simple geometric method for establishing the positive orienta-
tion. There will be a unique edge of minimal length; label it z1z2 so that the minor arc from
z1 to z2 is traced out in a clockwise direction, then continue labeling the remaining vertices in
order along the edges, as shown in Fig. 2.

We now associate an angle measure in (−π
2 , π) to each directed side of the quadrilateral,

namely half the measure of the arc obtained by moving along the circle in a counterclockwise
sense from the initial point to the terminal point of the side. Note that such an angle measure
may exceed π

2 , as for side z1z2 of the convex example in Fig. 2. The single exception occurs with
the shortest side of a non-convex cyclic quadrilateral, in which we agree to trace out the circle
in a clockwise direction and take the resulting angle to be negative. With these conventions the
sum of the four angles is always π.

Finally, we remark that the dilogarithm of a positively oriented, convex, cyclic quadrilateral
depends only on its side lengths. This follows from observing that D(z1z2z3z4) is not affected
by reflecting point z2 across the perpendicular bisector of z1z3, and noting that such reflections
produce all congruence classes of cyclic quadrilaterals with given side lengths. This argument
is just as applicable in the non-convex case, implying the same conclusion.

The preceding discussion allows us to present the generalization to Maillot’s formula in a
unified manner.
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Theorem 6 Let P (x, y) = axy + bx + cy + d for a, b, c, d ∈ R∗. Suppose that there exists a
non-degenerate convex (resp. non-convex) cyclic quadrilateral with sides of length |a|, |b|, |c|,
and |d| when abcd < 0 (resp. abcd > 0). Let ABCD be such a quadrilateral, oriented positively,
and let α′, β′, γ′, and δ′ be the angles associated to these sides as described above. Then

πm(P ) = D(ABCD) + α′ log |a|+ β′ log |b|+ γ′ log |c|+ δ′ log |d|. (12)

Otherwise, in the non-quadrilateral case we have

m(P ) = max(log |a|, log |b|, log |c|, log |d|).

Proof: The position of the points za = b/a and zc = d/c relative to the origin gives rise
naturally to the convex and non-convex cases. First suppose that these points lie on opposite
sides of the origin, so that abcd < 0. We claim that the intersection case applies if and only if
|a|, |b|, |c|, and |d| are the lengths of the sides of a non-degenerate convex cyclic quadrilateral;
that is, if and only if the greatest length is strictly less than the sum of the other three lengths.
Since the coefficients are real the image circle T will be symmetric about the real axis, so we
may check for intersection of T with T1 simply by examining y = (ax− b)/(cx− d) at x = ±1.
There will be no intersection precisely when |y| ≥ 1 for x± 1, or when |y| ≤ 1 for x = ±1.

To see that no intersection implies no quadrilateral, suppose that |y| ≤ 1 for x = ±1, meaning
|a− b| ≤ |c− d| and |a + b| ≤ |c + d|. Without loss of generality, suppose |c| ≥ |d| and for sake
of argument take c > 0. Then the two inequalities become c ≥ |a − b| + d and c ≥ |a + b| − d.
Either one or all three of a, b, and d are negative; considering the various possibilities shows
that one of these two inequalities is equivalent to |c| ≥ |a|+ |b|+ |d|, meaning no quadrilateral
exists. The argument for c < 0 is similar, as is the case |y| ≥ 1 if we focus on a instead of
c. The converse is also straight-forward. If no quadrilateral exists, then an inequality such as
|a| ≥ |b|+ |c|+ |d| holds. But this implies that

|c− d| ≤ |c|+ |d| ≤ |a| − |b| ≤ |a− b|,

so |y| ≥ 1 when x = 1. In the same manner we find |c+d| ≤ |a+b|, so |y| ≥ 1 at x = −1 as well,
which means we have the non-intersection case. The same reasoning applies when |b|, |c|, or |d|
is the largest. Therefore when za and zc are on opposite sides of the origin, the intersection case
is synonomous with the non-degenerate, convex, cyclic quadrilateral case.

In the intersection case a convex cyclic quadrilateral with sides of length |a|, |b|, |c|, and
|d| can be built using the points 0 (the origin), za, zc, and x2. First dilate triangle za0x2 by
a factor of |a| to obtain a triangle with side lengths |a|, |b|, and |ax2 − b|. Similarly, dilating
triangle zc0x2 by a factor of |c| yields a triangle with sides of length |c|, |d|, and |cx2 − d|. But
x2 was defined by requiring that |y| = 1 when x = x2, thus |ax2− b| = |cx2− d|. Hence we may
rotate and translate the latter triangle until the sides of equal length coincide. Since za and
zc lie on either side of the origin, the resulting figure will be a convex quadrilateral which we
label ABCD, in counterclockwise order. Because ∠za0x2 and ∠zc0x2 are clearly supplementary,
ABCD is a cyclic quadrilateral. An example of this construction for y = (3x − 1)/(2x + 5) is
shown in Fig. 3.

When the coefficients of P (x, y) are real, x1 and x2 will be conjugates, so (4) reduces to

πm(P ) = D
(cx2

d

)
−D

(ax2

b

)
+ (13)

+
1
2
(α log |a|+ β log |b|+ γ log |c|+ δ log |d|).

We claim that when za > 0 and zc < 0, arc τ passes through x = −1 on the unit circle as
in Fig. (3), placing x2 in the lower half plane. Suppose otherwise; then |y| < 1 at x = −1,
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Figure 3: Construction of cyclic quadrilateral ABCD.

hence |a + b| < |c + d|. Since a and b have the same sign while c and d have opposite signs, we
conclude that |a|+ |b| < ±(|c| − |d|), leading to a non-quadrilateral inequality, a contradiction.
In the same manner we find that if za < 0 and zc > 0 then τ passes through x = 1 and x2 is in
the upper half plane. Either way, triangle x20za is oriented negatively, while triangle x20zc is
oriented positively. Therefore

D(ABCD) = D(x20zc)−D(x20za) = D
(cx2

d

)
−D

(ax2

b

)
,

matching the first two terms of (13).
We will next demonstrate that the angles occuring in (13) correspond to the appropriate arc

lengths on the circumcircle of ABCD. By the foregoing discussion on the relative positions of za,
zc, x1, and x2, and recalling the definition of angles α, β, γ, and δ, we see that these angles must
all be positive. Clearly m∠x2za0 = 1

2α and m∠x2zc0 = 1
2γ. The similarity 4x20zz ∼ 4zb0x2

shows that m∠zax20 = 1
2β. By the same reasoning we have m∠zcx20 = 1

2δ. But these angles
are inscribed in a circle, so we know that m∠x2za0 = α′, and similarly for the remaining angles.
Hence equations (12) and (13) agree.

The analysis of m(P ) when za and zc lie on the same side of the origin follows the above
reasoning closely, so we will be content to provide an outline of the argument. In this case
abcd > 0, and the intersection case becomes synonomous with the non-degenerate, non-convex,
cyclic quadrilateral case. We can construct a quadrilateral using triangles x20za and x20zc in the
same manner as before; due to the location of za and zc it is guaranteed to be non-degenerate,
self-intersecting, and cyclic. Triangle x20zc will be negatively oriented exactly when either |c|
or |d| is the smallest side length, so labeling the quadrilateral in the positive sense will always
result in

D(ABCD) = D(x20zc)−D(x20za) = D
(cx2

d

)
−D

(ax2

b

)
,

as before. Finally, elementary angle chasing reveals that the angles match in the manner desired.
This completes the proof of the theorem.

7 Operations fixing m(P )

Returning now to the general setting with arbitrary complex coefficients, let us investigate
operations on these coefficients which leave the Mahler measure unchanged. For example, since
m(P (x−1, y−1)) = m(P (x, y)), we see that conjugating every coefficient fixes m(P ). It is also
clear that the value of m(P ) is not affected by negating any two coefficients. Furthermore,
permutations such as (a, b, c, d) 7→ (c, a, d, b) or (a, b, c, d) 7→ (b, a, d, c) do not affect the value
of m(P ); this follows from the definition of Mahler measure and straight-forward changes of
variables. However, there is another such operation which depends on the particular type of
polynomial P we have been considering.
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Proposition 7 For a, b, c, d ∈ C not all zero, let P (x, y) = cxy − dy − ax + b. Then m(P ) is
invariant under the map (a, b, c, d) 7→ (b̄, ā, c, d).

Proof: The assertion is clear in the non-intersection case, which we now take to include
ad− bc = 0. For the intersection case, we first assume that all coefficients are non-zero. When
|x| = 1 we have

|b̄x− ā| = |bx̄− a| = |ax− b|,

so the set of x ∈ T1 for which |y| ≥ 1 does not change when we substitute (a, b) 7→ (b̄, ā) in
P (x, y). In particular, the values of x1 and x2 remain the same. Since za and zb change places
under this operation, the angles α and β are also interchanged. Of course, zc, zd, γ, and δ
remain fixed. Therefore the contribution from the angle terms in (4) is constant. We need only
verify that

−D
(ax2

b

)
+ D

(ax1

b

)
= −D

(
b̄x2

ā

)
+ D

(
b̄x1

ā

)
. (14)

But using properties of D(z) we find that

D

(
b̄x2

ā

)
= −D

(
bx̄2

a

)
= D

(
a

bx̄2

)
= D

(ax2

b

)
,

which implies (14). By continuity we may now conclude that m(P ) does not change under the
given operation for any a, b, c, d ∈ C not all zero.

For a given 4-tuple (a, b, c, d) we refer to the positions occupied by a and d as the “outer
spots,” and the other two as the “inner spots.” Let S be the set of all 4-tuples obtained from
(a, b, c, d) by performing any combination of the following operations:

• an arbitrary permutation of the elements, provided we conjugate any element moving from
an inner spot to an outer spot, or vice-versa,

• the negation of an even number of elements, or

• conjugation of all four elements.

Corollary 8 For a, b, c, d ∈ C not all zero, let P (x, y) = cxy − dy − ax + b. Then m(P ) is
invariant under the map (a, b, c, d) 7→ s for any s ∈ S.

Proof: The set S consists of exactly those 4-tuples which may obtained from (a, b, c, d) by
successively applying the operations discussed above.

We remark that some of these operations imply fairly complicated identities in light of (4).
For example, the transposition (a, c) 7→ (c̄, ā) will preserve m(P ) according to the corollary. One
can show that the angle terms in the formula still match up, although in a much less trivial
manner than before. The corresponding equality among the dilogarithm terms is an eight-term
relation in four variables, which in fact follows from a difference of two of the five-term relations
mentioned in (1).

8 Extension to three variables

For this application we will need an alternate formulation of Theorem 1 more suitable for
computations. When |a| ≤ |b| and |c| ≤ |d|, so that points za and zc are on or outside the unit
circle, it is possible to obtain a simpler expression for m(P ). As we have just seen, this ordering
is always possible, by replacing a and b by b̄ and ā if need be.
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Corollary 9 Let P (x, y) = cxy−dy−ax+ b for a, b, c, d ∈ C∗ such that ad− bc 6= 0, |a| ≤ |b|,
and |c| ≤ |d|. In the intersection case, let τ be the path on the unit circle |x| = 1 for which
|y| ≥ 1. Denote the endpoints of τ by x1 and x2 in counterclockwise order, and let θ be the
measure of arc τ . Then

2πm(P ) = Im
[
Li2

(cx2

d

)
− Li2

(cx1

d

)
− Li2

(ax2

b

)
+ Li2

(ax1

b

)]
(15)

+θ log |b|+ (2π − θ) log |d|.

Proof: Since D(z) = Im(Li2(z)) + log |z| arg(1 − z), the origin of the terms involving Li2 is
clear. We must now account for the angles, i.e. show that

log
∣∣∣a
b

∣∣∣ (arg
(
1− ax1

b

)
− arg

(
1− ax2

b

))
+ α log |a|+ β log |b| (16)

reduces to θ log |b|, and similarly for the terms involving c or d. Recall that α was defined as the
winding angle of τ about za, which is equivalent to the measure of the directed angle x1zax2

with value in (−π, π) because za lies outside the unit circle. The transformation z 7→ 1− z/za

preserves directed angle measure, so we obtain the same angle using the points 1−x1/za, 0, and
1 − x2/za (in that order) instead. But the two non-zero points lie in the half-plane Re(z) > 0
since |za| ≥ 1 and za 6= x1, za 6= x2. Therefore

α = arg
(

1− x2

za

)
− arg

(
1− x1

za

)
gives the correct expression for α, with value in (−π, π). It follows that (16) may be written as

−α(log |a| − log |b|) + α log |a|+ β log |b|.

Since α + β = θ by Lemma 2, we obtain θ log |b| as desired. In the same manner, the terms
involving c or d reduce to (2π − θ) log |d|.

This alternate formula will enable us to determine m(P ) for a family of four-term polynomials
in three variables. We will initially write Pz(x, y) rather than P (x, y, z) to underscore our
treatment of z as a parameter. To avoid unnecessary algebra, we will also assume that the
coefficients are real, which will not result in any loss of generality.

Proposition 10 Let P (x, y, z) = rxy + y − rxz + 1 with 0 ≤ r ≤ 1. Then

m(P ) =
2
π2

(Li3(r)− Li3(−r)). (17)

Proof: Here y = (rzx − 1)/(rx + 1), where we write z = eit for t ∈ (−π, π). (We have
neglected z = −1, which is permissible since we will be integrating with respect to z. In fact,
m(P−1(x, y)) = 0 by (3).) To find x for which |x| = |y| = 1 and Pz(x, y) = 0 we equate
yȳ = 1 and use x̄ = x−1 as before to obtain a quadratic equation in x, whose roots are
x = ±i|z + 1|/(z + 1). Because t ∈ (−π, π) and −1 ∈ τ we have x1 = ie−it/2 and x2 = −ie−it/2.
Note that θ = π since the roots are diametrically opposed for any z. Because r ≤ 1, (15) applies,
so we may write

2πm(Pz(x, y)) = Im
[
Li2(rie−it/2)− Li2(−rie−it/2)− Li2(−rieit/2) +

+ Li2(rieit/2)
]
.
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Since the arguments of Li2 are conjugates, this expression simplifies to

m(Pz(x, y)) =
1
π

Im
[
Li2(rieit/2) + Li2(rie−it/2)

]
.

According to the definition of Mahler measure,

m(P (x, y, z)) =
1

2πi

∫
T1

m(Pz(x, y))
dz

z

=
1

2π2
Im
∫ π

−π

Li2(rieit/2) + Li2(rie−it/2) dt.

Since the series for Li2(rieit/2) is absolutely convergent, we may integrate term by term to find
that ∫ π

−π

Li2(rieit/2) dt =
∞∑

k=1

∫ π

−π

(ri)k eikt/2

k2
dt

=

( ∞∑
k=1

(ri)k 2eikt/2

ik3

)∣∣∣∣∣
π

−π

= −2i Li3(rieit/2)
∣∣∣π
−π

= 2i(Li3(r)− Li3(−r)).

Integrating the second Li2 term yields the same result, from which (17) follows immediately.
We note that the result may also be written

m(rxy + y − rxz + 1) =
4
π2

∑
k odd

rk

k3
. (18)

Using operations which preserve Mahler measure, such as those mentioned at the head of
Section 2, one can transform rxy + y − rxz + 1 into rx + ry + z + 1. Observe that m(λP ) =
log |λ|+ m(P ), and that substitutions such as x 7→ ξx for ξ ∈ T1 do not affect Mahler measure.
Therefore we are led to the following symmetrical formula, which we state without formal proof.

Corollary 11 Given a, b ∈ C∗ with |a| ≤ |b|, let r = |a|/|b|. Then

m(ax + ay + bz + b) = log |b|+ 2
π2

(Li3(r)− Li3(−r)).

Letting a = b = 1 we recover Smyth’s well-known result that

m(x + y + z + 1) =
7

2π2
ζ(3).
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