Mid Cretaceous orbitolinid (Foraminiferida) record from the islands of Cres and Lošinj (Croatia) and its regional stratigraphic correlation

A. Husinec¹, I. Velić, L. Fuček, I. Vlahović, D. Matiće, N. Oštric and T. Korbar

Institute of Geology, Sachsova 2, PO Box 268, HR-10000 Zagreb, Croatia

Revised manuscript accepted 23 December 1999

The mid Cretaceous shallow-water limestones on the islands of Cres and Lošinj contain abundant and diversified orbitolinid foraminifera. A biostratigraphy, based on the orbitolinid taxa and their chronostratigraphic interpretation, is proposed for the Aptian, Albian and Cenomanian deposits in the area investigated. Four orbitolinid biozones have been recognized: (1) Palorbitolina lenticularis Taxon-Range Zone in the Lower Aptian; (2) Orbitolina (Mesorbitolina) texana Assemblage Zone in the Lower Albian, the body of strata being characterized by a distinctive assemblage of Orbitolina (Mesorbitolina) texana, O. (M.) subconcava, O. (M.) parva and O. (M.) pervia; (3) 'Valdanchella' dercourti Taxon-Range Zone in the basal Upper Albian; and (4) Orbitolina (Conicorbitolina) conica Abundance Zone in the Lower–Middle Cenomanian, a body of strata in which the abundance of the species Orbitolina (Conicorbitolina) conica is significantly greater than is usual in the adjacent parts of the section, regardless of either association or range. The established biozones on the islands of Cres and Lošinj are correlated with orbitolinid biozonations and orbitolinid stratigraphic distributions in the adjacent areas, with emphasis on the Karst Dinarides.

KEY WORDS: mid Cretaceous (Aptian, Albian, Cenomanian); biostratigraphy; orbitolinids; Foraminiferida; Dinarides; Croatia.

1. Introduction

The islands of Cres and Lošinj are situated in the northern Adriatic area (Figure 1). Cretaceous deposits on these islands range in age from early Neocomian to Senonian. They were deposited in a predominantly shallow subtidal environment that was flooded by short-lived pelagic episodes in the Late Cretaceous (Fuček et al., 1995).

During work on the geological map of the Republic of Croatia (1:50 000 scale) the mid Cretaceous shallow-water limestones on the islands of Cres and Lošinj have been found to contain a rather rich foraminiferal association in which orbitolinid forms are especially abundant and diverse. A biostratigraphy, based exclusively on orbitolinid taxa and their chronostratigraphic position, is proposed for the mid Cretaceous deposits on these islands. The biozones are correlated with corresponding zones already established for the Karst Dinarides.

2. Material

Field investigations of the orbitolinid bearing strata revealed both lateral and vertical facies and thickness variability in the study area. Hence, the stratigraphic distribution of the orbitolinids has required detailed examination of four sections in geographically separated localities, namely Dragožetići (CDB), Petrovski dolac (CPD) and Baldarin (CB) on the island of Cres and Punta (LP) on the island of Lošinj (Figure 1). Additional data were obtained from three other sections on Cres, namely Dragožetići (CDC), Križice (CK) and Punta Križa (PK).

3. Biostratigraphic description and interpretation

3.1. Palorbitolina lenticularis Taxon-Range Zone

The sediments underlying the first orbitolinid zone comprize well-bedded alternations of Barremian mudstones and peloid wackestones/packstones with rare benthonic foraminifera and calcareous algae (Figure...
2). They were deposited in a shallow subtidal environment of variable water-energy. Owing to synsedimentary tectonics they were brecciated and intermittently exposed to subaerial weathering. Although microfossils are not very frequent, numerous species have been determined within these strata. The most important are the calcareous algae (Dasycladales) Salpingoporella muehlbergii and S. melitae, both of which are index fossils for the Barremian in the Dinarides (for authors of these and all other taxa referred to, see Appendix), and Clypeina solkani, which ranges in age from Hauterivian to mid-Late Barremian (Sokac, 1996).

The total thickness of these deposits (including transitional Hauterivian–Barremian strata) is 130 m. They are overlain by an alternation of yellowish mudstone, wackestone and Bacinella oncoid floatstone, which is the typical lithology of the oldest orbitolinid-bearing strata throughout the Dinarides.

The Palorbitolina lenticularis Taxon-Range Zone is the body of strata representing the determined range of stratigraphic occurrence of the species Palorbitolina lenticularis in the area investigated. These strata correspond to the horizon which is in the wider area of the Karst Dinarides known as Lower Orbitolina Beds, as defined by Velić & Sokač (1976). Palorbitolina beds are known from all over Tethys (Vilas et al., 1995) where they are commonly used for mapping purposes, as in the study area.

The observed strata exhibit both vertical and lateral facies variations and thicknesses ranging from 25 to 46 m. They were studied in detail at two localities (Figures 3, 4). The principal feature is the abundance of Palorbitolina (subfamily Orbitolininaceae). On the north of the island of Cres it occurs together with the alga Bacinella irregularis. The association of these two taxa is very common in Lower Aptian deposits in the northwest of the Adriatic carbonate platform (Istria), while Bacinella gradually becomes more infrequent southwards, as observed in the southern part of the island of Cres and on Lošinj.

The most obvious evidence for the intensive facies differentiation during the early Aptian is the sequence of strata on Lošinj (Figure 4). Unlike the situation in the north, the zone is here characterized by the presence of massive Palorbitolina wackestone–floatstone, interbedded every 5–10 cm with 2–10-cm-thick Palorbitolina rudstone-tempestites characterized by hummocky and/or swaley cross-stratification (Figure 5).

According to the lithological characteristics of the strata belonging to the Palorbitolina lenticularis Taxon-Range Zone, it can be concluded that during the early Aptian the north of the area investigated was dominated by a protected, low-energy subtidal environment. In the south this lagoon deposition was strongly affected and modified by storm events. Sedimentation of mudstone and wackestone took place during fair weather, while the tempestites were deposited during storms. The massive occurrence of Palorbitolina lenticularis is also of importance for interpreting depositional environment. Although reflecting a wide range of environments, it is especially abundant in muddy settings, where it tends to be dominant (Vilas et al., 1995).

A very rich microfossil association (Figures 6, 7) characterizes the Palorbitolina lenticularis Taxon-Range Zone. It includes several index foraminifera and many other microfossils (mainly foraminifera) of wider chronostratigraphic range. In addition to Palorbitolina lenticularis, these include, in order of their appearance in sections: Bacinella irregularis, Praeorbitolina cornyi, Paleodictyococcus sp., Sabaudia minuta, Vercorsella scarselai, V. laurentii, Neotrocholina friburgensis, N. aptiensis, Praeorbitolina vienandisi, Orbitolina (Mesorbitolina) lotzei, Pfenderina globosa, Voloshinoides murgensis, Debarina hahounerensis, Praechrysalidina infracretacea, Sabaudia braciensis, Nezzazatinella sp.
and Salpingoporella dinarica. The stratigraphic range of the dominant Palorbitolina lenticularis on the Adriatic carbonate platform is Upper Barremian to basal Upper Aptian (Arnaud-Vanneau et al., 1991). However, horizontal prolocular diameters in megaslpheric tests of Palorbitolina lenticularis found in the area investigated are 0.21–0.36 mm, which according to Gušić (1981) could indicate a late Early Aptian age for the population investigated. Additionally, the occurrence of Praeorbitolina cornyi and P. wienandi, which are index fossils for the early Aptian (Schroeder, 1964), is very important. Other index fossils for the early Aptian of the Dinarides are Orbitolina (Mesorbitolina) lotzei (Velić & Sokač, 1983) and Sabaudia briacensis (Arnaud-Vanneau et al., 1991).

It is concluded that the strata on the islands of Cres and Lošinj were deposited during the early Aptian in predominantly low-energy lagoonal environments, which, in the southern part of the area investigated, were strongly influenced by storm events.

3.2. Orbitolina (Mesorbitolina) texana Assemblage Zone

The early–late Aptian transition, following the last occurrence of Palorbitolina lenticularis, corresponds to a major biologic crisis recorded particularly for calcareous algae, benthonic foraminifera and rudists on numerous peri-mediterranean carbonate platforms (Masse, 1989). Thus, the absence of orbitolinids in the Upper Aptian of the islands of Cres and Lošinj might be a result of the regionally well-known emergence, which was of variable duration near the Aptian–Albian transition throughout the Dinarides (e.g., Velić et al., 1989; Gušić & Jelaska, 1993). In the area investigated, this is indicated by breccia that is the product of the interaction of the relative sea-level fall (Haq et al., 1987) and local tectonics (Velić et al., 1989).

The most prominent species of late Aptian age is the alga Salpingoporella dinarica. Nevertheless, in the Karst Dinarides beds of the O. (Mesorbitolina) parva Zone (late Aptian) and O. (Mesorbitolina) parva & O. (Mesorbitolina) texana Zone (latest Aptian and earliest Albian) continuously overlie Palorbitolina beds (Velić, 1988).

The Orbitolina (Mesorbitolina) texana Assemblage Zone comprises strata that contain a distinctive assemblage of the following taxa: Orbitolina (Mesorbitolina) texana, O. (M.) subconcava, O. (M.) parva and O. (M.) pervia (Figures 2, 3, 8).

Owing to a transgressive event and increased water-energy, the base of the Albian is indicated by incomplete coarsening and shallowing-upwards sequences with tempestites. These 80–90-cm-thick cycles, which form the lower part of the zone, consist of the following members, from the bottom to the top: peloid-miliolid wackestone-packstone, fine-grained peloid-packstone, and peloid-foraminiferal packstone–grainstone. Repetition of small-scale shallowing-upward units during transgressive events is rather common in carbonate formations, demonstrating the periodic flooding of platforms (Tucker & Wright, 1992). These cycles are very well developed and frequent in Jurassic and Cretaceous peritidal limestones of the Adriatic carbonate platform (Tišlar et al., 1991). Common coarsening-upwards sequences are the consequence of increased water-energy resulting in the formation of grainstones and infrequent tempestite breccia horizons composed of clasts derived from the neighbouring areas, including reworked black pebbles which are typical for well-emerged limestones (Strasser & Davaud, 1983). The uppermost part of the zone is characterized by an alternation of Mesorbitolina rudstone and peloid-foraminiferal grainstone of tempestite origin. The total thickness of beds belonging to the Orbitolina (Mesorbitolina) texana Assemblage Zone is 36 m, and in contrast to the limestones of the older Palorbitolina lenticularis Taxon–Range Zone they exhibit neither lateral nor vertical variations in thickness and facies.

The Albian sequence of strata in the area investigated is marked by the first occurrence of Pseudummoloculina heimi, a taxon that appears at this level throughout the region (Hottinger et al., 1989). The most abundant taxon in the Mesorbitolina association is O. (M.) texana, which, according to Velić (1988), has its maximum abundance in the Lower Albian. Additionally, O. (M.) subconcava is considered by the same author to be the index fossil for the Lower Albian in the Karst Dinarides. The first and the last mass occurrences of the association delineate the boundaries of the Zone. The uppermost part of the zone is characterized by the presence of Archaealveolina richeli, a species that is often found with Salpingoporella dinarica, and which ranges into the lowermost Albian (De Castro, 1980).

In addition to the species mentioned above, this zone includes the following taxa, in order of first appearances up-section: Cuneolina pavonia, Verocerella scarselai, V. arenata, V. laurentii, Sabaudia sp., Debarina hahounensis, Sabaudia minuta, S. auruncensis, Paracoskinolina sp., Praechrysalidina infracratae, Nazzatiniella sp., Mayncina bulgarica, Sabaudia capitata, Cuneolina parva, ?Charentia cuneillieri, ?Daxia sp., Homicyclemmina sigali and Pseudocyclusmina sp.

In conclusion, the body of strata established as the Orbitolina (Mesorbitolina) texana Assemblage Zone reflect deposition during the early Albian in a
moderate to high water-energy, shallow, subtidal environment that periodically emerged above sea level.

3.3. ‘Valdanchella’ dercourtii Taxon-Range Zone

Overlying the Orbitolina (Mesorbitolina) texana Assemblage Zone are the youngest early Cretaceous deposits on the island of Cres. They are represented by an early–late Albian subtidal alternation of mudstone and miliolid wackestone–packstone. Within these shallow-water deposits only incomplete coarsening and shallowing-upwards cycles, composed of mudstones overlain by packstones/grainstones, are identified. These cycles are the result of aggradation and lateral progradation of facies belts in a shallow platform realm.

The ‘Valdanchella’ dercourtii Taxon-Range Zone is the body of strata delineated by the stratigraphic range of the nominate species in the study area. The associated microfossil assemblage is rather sparse (Figure 8; see also Figure 3), both in terms of number of taxa and number of individuals, which is a common tendency in the Dinarides (Velić & Sokač, 1978). In order of their appearance up-section it consists of: Salpingoporella turgida, Pseudonummoloculina heimi, Vercorsella scarselai, Cuneolina pavonia and Mayncina bulgarica. Primitive ‘Valdanchella’ dercourtii is the only orbitolinid. The thickness of strata attributable to the zone is only 30 cm, its boundaries being indicated by the first and the last occurrences of the taxon. In common with other members of the subfamily Dictyoconinae, the occurrence of ‘V.’ dercourtii is linked to very shallow environments (Masse, 1976; Arnaud-Vanneau, 1979, 1980).

Both mud and grain-supported subtidal limestones of this biozone contain the alga Salpingoporella turgida, which in association with the other species mentioned is very frequent in deposits of earliest late Albian age in the Karst Dinarides (e.g., Velić & Sokač 1979, 1983; Velić et al. 1979, 1989; Velić, 1988).

3.4. Orbitolina (Conicorbitolina) conica Abundance Zone

The underlying deposits consist of dolomitized laminated limestones and an irregular alternation of massive, late-diagenetic dolomites and recrystallized limestones that are devoid of fossils. As a result, they can be dated only on the basis of superpositional relations as latest Albian–early-mid Cenomanian.

The Orbitolina (Conicorbitolina) conica Abundance Zone is the body of strata in which the abundance of the species Orbitolina (Conicorbitolina) conica is significantly greater than is usual in adjacent parts of the section, regardless of either association or range. Deposition in a shallow-water environment with variable water-energy is indicated by the bioclastic-peloid-skeletal packstones–grainstones with numerous fragments of rudists and rare bioclasts of other molluscs, hydrozoans and bryozoans. Shallow-water bioclastic material was transported during storms and deposited in deeper water characterized by pelagic sedimentation.

Major facies differentiation took place during the Cenomanian, similar to that of the neighbouring area of Istria (Vlahović et al., 1994; Tišlar et al. 1995, 1998). Hence, the strata were examined at two localities, each representing typical environments. In the Petrovski dolac (PD) area, situated in the central part of Cres, the strata belonging to the Orbitolina (Conicorbitolina) conica Abundance Zone are located at the base (lowermost 4.30 m) of an almost 250-m-thick sequence of calcisphere-rich limestones indicating pelagic sedimentation. The bioclastic material is

![Figure 2. Schematic geological column of the study area (modified from Puček et al., 1995) with stratigraphic distribution of the orbitolinid taxa.](image-url)
not autochthonous, but transported from shallower environments. The following microfossils have been determined, in order of their appearance up-section (Figure 9A):

- Orbitolina lenticularis
- Neotrocholina intubernia
- Yokoshinoides murgenensis
- Pseudonanomus nitidus
- S. auruncensis
- Orbitolina (Mesorbitolina) texana
- O. (M) subconcavare
- C. parva
- Archaeoceratula reicheli
- P. parva
- Calcitubulina intermedia
- Neolitoceras sp.
- Nodosaria sp.

This association of foraminifera (both benthonic and planktonic) and calcisphaerulids at the Petrovski dolac locality (Figure 10) implies a Vraconian–middle Cenomanian age. However, according to the regional stratigraphy of the Karst Dinarides (e.g., Velč & Vlahović, 1994) an early-middle Cenomanian age seems more probable.

Figure 3. Stratigraphic distribution of index microfossils in the orbitolina-bearing intervals of the Dragožetić (CDB) section (Upper Barremian–Upper Albian).

Figure 4. Stratigraphic distribution of Lower Aptian index microfossils in the Punta (LP) section.
At the Baldarin locality (CB), situated in the vicinity of the southern cape of Cres (see Figure 1), the strata are represented by porcellaneous, recrystallized limestones with smaller or larger fragments of rudists. The biozone is here characterized by an abundance of foraminifera, especially orbitolinids (Figure 9B). The boundaries of the zone, encompassing 13.60 m of section, are biohorizons of significant change in abundance of Orbitolina (Conicorbitolina) conica. In addition to this species this zone yields the following taxa in order of their appearance up-section: Broeckina (Pastrikella) balcanica, Nezzazata gyra, N. simplex, N. conica, Cuneolina pavonia, C. parva, Peneroplis turonicus, Biplanata peneropliformis, Trochospira avnimelchii, Nummulolina regularis, Pseudonummoloculina heimi, Pseudorhapydionina dubia, Pseudolituonella reicheli, Merlingina cretacea, Spiroloculina sp., Scandonea phoenissa, Scandonea sp., Nezzazatella picardi and Chrysalidina gradata. Different Cenomanian rudists have also been recorded, namely Ichthyosarcolites poljaki, I. bicarinatus, I. tricarinatus, Schiosia carinatoformis, Orthophytechus striatus, Durania sp., Sawagasia sp. and numerous radiolitid forms, as well as rather rare fragments of molluscs that are probably referable to Chondrodonta.

The determined microfossil association of benthonic foraminifera at the Baldarin locality (Figure 10) corresponds to the late Middle Cenomanian biozone CEN-4 in the neighbouring Istrian peninsula (Velić & Vlahović, 1994), although in Istria contemporaneous deposits contain no orbitolinids. By contrast, orbitolinids are very abundant in the study area, especially Orbitolina (Conicorbitolina) conica, which is the index fossil for the early-middle Cenomanian (Schroeder & Neumann, 1985). The Orbitolina (Conicorbitolina) conica Abundance Zone is overlain by a similar microfossil association lacking orbitolinids, but containing the species Vidalina radoicicae, which is the index fossil for the late Cenomanian (Cherchi & Schroeder, 1985). Therefore, it may be concluded that the zone at the Baldarin locality is of late Middle Cenomanian age.

4. Regional correlation with emphasis on Karst Dinarides

Orbitolinids have been found at numerous localities in the Karst Dinarides. They are often very abundant,
Figure 6. *Palorbitolina lenticularis* Taxon-Range Zone, early Aptian. 1, 2, *Palorbitolina* tempestite with more axial sections through megalospheric embryonic apparatuses, Krížice (CK) section, × 32. 3, 4, *Praeorbitolina cormyi*; axial section through megalospheric embryonic apparatus, Krížice (CK), × 54. 5, 6, *Praeorbitolina wienandsi*; axial section through megalospheric embryonic apparatus, Punta (LP) (5, × 54; 6, × 135). 7, *Orbitolina (Mesorbitolina) lotzei*; axial section through megalospheric embryonic apparatus, Punta (LP), × 135. 8, *Paleodictyoconus* sp; subaxial section, Krížice (CK), × 54.
Figure 7. *Palorbitolina lenticularis* Taxon-Range Zone, early Aptian. 1, *Palorbitolina* wackestone deposited in a low-energy, lagoonal-type environment, Punta (LP) section, × 8. 2, *Palorbitolina* grainstone–tempestite, Krizice (CK), × 8. 3, 4, *Voloshinoides margensis*; oblique section, Punta (LP), × 54. 5, 6, *Pfenderina globosa*; oblique section, Punta (LP), × 54.
Figure 8. Orbitolina (Mesorbitolina) texana Assemblage Zone, early Albian (Photographs 1–9). 1, Orbitolina (Mesorbitolina) parva; axial section through megalospheric embryonic apparatus, Dragozetić (CDC) section, × 54. 2–4, Orbitolina (Mesorbitolina) texana; axial section through megalospheric embryonic apparatus, Dragozetić (CDB), × 42. 5, Orbitolina (Mesorbitolina) pervia; axial section through megalospheric embryonic apparatus, Dragozetić (CDB), × 42. 6, Orbitolina (Mesorbitolina) subconcava; axial section through megalospheric embryonic apparatus, Dragozetić (CDB), × 42. 7, 8, Archaealveolina reicheli; subaxial section, Dragozetić (CDB), × 42. 9, Mesorbitolina-Archaenalveolina grainstone–tempestite, Dragozetić (CDB), × 9. ‘Valdanchella’ dercouri Taxon-Range Zone, late Albian. 10, skeletal-peloid packstone–grainstone with various sections of ‘Valdanchella’ dercouri and Salpingoporella turgida, Dragozetić (CDB), × 9.
Table A

<table>
<thead>
<tr>
<th>SAMPLES (CPD)</th>
<th>LITHOLOGY AND DEPOSITIONAL ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pithonella ovalis</td>
</tr>
<tr>
<td></td>
<td>P. sphaerica</td>
</tr>
<tr>
<td></td>
<td>P. innominata</td>
</tr>
<tr>
<td></td>
<td>Bonetocardielia conoidea</td>
</tr>
<tr>
<td></td>
<td>Favusella washtensis</td>
</tr>
<tr>
<td></td>
<td>Hedbergella planispira</td>
</tr>
<tr>
<td></td>
<td>Rotalipora sp.</td>
</tr>
<tr>
<td></td>
<td>Heterohelix sp.</td>
</tr>
<tr>
<td></td>
<td>Nodosaria sp.</td>
</tr>
<tr>
<td></td>
<td>Orbitolina (Concorbitolina) gr. corbarca-conica</td>
</tr>
<tr>
<td></td>
<td>Orbitolina (O.) gr. sofni-concava</td>
</tr>
<tr>
<td></td>
<td>Thaumatoporella parvovesiculifera</td>
</tr>
<tr>
<td></td>
<td>Pseudonummulocula heimi</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>SAMPLES (CB)</th>
<th>LITHOLOGY AND DEPOSITIONAL ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pithonella ovalis</td>
</tr>
<tr>
<td></td>
<td>P. sphaerica</td>
</tr>
<tr>
<td></td>
<td>P. innominata</td>
</tr>
<tr>
<td></td>
<td>Bonetocardielia conoidea</td>
</tr>
<tr>
<td></td>
<td>Favusella washtensis</td>
</tr>
<tr>
<td></td>
<td>Hedbergella planispira</td>
</tr>
<tr>
<td></td>
<td>Rotalipora sp.</td>
</tr>
<tr>
<td></td>
<td>Hedbergella sp.</td>
</tr>
<tr>
<td></td>
<td>Biplanata peneropilformis</td>
</tr>
<tr>
<td></td>
<td>Broeckina (P.) balcanica</td>
</tr>
<tr>
<td></td>
<td>Nezzazata gyra</td>
</tr>
<tr>
<td></td>
<td>N. simplis</td>
</tr>
<tr>
<td></td>
<td>N. conica</td>
</tr>
<tr>
<td></td>
<td>Cuneolina pavonia/pavva</td>
</tr>
<tr>
<td></td>
<td>Orbitolina (Concorbitolina) sp.</td>
</tr>
<tr>
<td></td>
<td>O. (C.) conica</td>
</tr>
<tr>
<td></td>
<td>O. (Orbitolina) sp.</td>
</tr>
<tr>
<td></td>
<td>Peneroplis turonicus</td>
</tr>
<tr>
<td></td>
<td>Trochospora avnimelechi</td>
</tr>
<tr>
<td></td>
<td>Nummulocula regularis</td>
</tr>
<tr>
<td></td>
<td>Pseudonummulocula heimi</td>
</tr>
<tr>
<td></td>
<td>Merlingina creatacea</td>
</tr>
<tr>
<td></td>
<td>Pseudofusulina reichii</td>
</tr>
<tr>
<td></td>
<td>Spiroloculina creatacea</td>
</tr>
<tr>
<td></td>
<td>Pseudorhapydonina dubia</td>
</tr>
<tr>
<td></td>
<td>Scandonea cf. phoenissa</td>
</tr>
<tr>
<td></td>
<td>Chrysalidina gradata</td>
</tr>
<tr>
<td></td>
<td>Nezzazatina picardi</td>
</tr>
</tbody>
</table>

Figure 9. A, stratigraphic distribution of microfossils in the lower part of the Petrovski dolac (CPD) section. B, stratigraphic distribution of microfossils in the upper part of the Baldarin (CB) section.
Figure 10. Orbitolina (Conicorbitolina) conica Abundance Zone, early and middle Cenomanian. 1. Orbitolina (Orbitolina) gr. seffini-concava; axial section through megalospheric embryonic apparatus, Petrovski dolac (CPD) section, × 135. 2. Orbitolina (Conicorbitolina) gr. corbarica-conica; axial section through megalospheric embryonic apparatus, Petrovski dolac (CPD), × 135. 3–8. Orbitolina (Conicorbitolina) conica; axial section through megalospheric embryonic apparatus, Petrovski dolac (CPD), × 42. 9. Favusella washtensis and Hedbergella planispira; oblique section, Petrovski dolac (CPD), × 135. 10. Calcisphaerulid wackestone–packstone with orbitolinids, Petrovski dolac (CPD), × 16. 11. Bioclastic-peloid-skeletal grainstone with orbitolinids, Punta Križa (PK), × 8.
sometimes forming the bulk of a deposit. Typical examples are the regions of Istria and Mt. Velika Kapela in Croatia, where biozonations have been established on the basis of orbitolinid taxa and their stratigraphic distribution (Figure 11). Velić (1988) proposed a biostratigraphic zonation for the entire area of the Karst Dinarides. The biozones established herein for the islands of Cres and Lošinj correspond to the orbitolinid biozonations and orbitolinid stratigraphic distributions of the adjacent areas:

The *Palorbitolina lenticularis* Taxon-Range Zone corresponds to the biozones already established in Croatian regions of Istria (Velić *et al.*, 1995) and Mt. Velika Kapela (Velić, 1977; Velić & Sokač, 1978), which yield an assemblage of *Palorbitolina* and *Praeorbitolina* that may be regarded as indicating an early Aptian age. The genus *Palorbitolina* is recorded from Tethyan carbonate platforms of late Barremian age, but when in association with the genus *Praeorbitolina* it indicates early–earliest Late Aptian (Pantoja-Alor *et al.*, 1994).

The *Orbitolina* (Mesorbitolina) *texana* Assemblage Zone corresponds to the Cenozone *Orbitolina* (Mesorbitolina) ex gr. *texana* known from Mt. Velika Kapela (Velić, 1977; Velić & Sokač, 1978). By contrast to the Dinaric area where the chronostratigraphic range of this taxon is considered to be latest Aptian–early Albian, in the other parts of Tethys its range varies considerably. In the Apennines (e.g., Chiocchini & Mancinelli, 1977; Cherchi *et al.*, 1978; Cherchi, 1979), Atlas Mountains (e.g., Schroeder *et al.*, 1974; Masse, 1984) and in the Middle East (e.g., Simmons & Hart, 1987; Pratt & Smewing, 1993) it is typical for the late Aptian, whereas in the Hellenides (e.g., Decrouez & Moullade, 1974), Pyrenees (e.g., Peybernès, 1976; Bilotte *et al.*, 1978) and on the Iberian Peninsula (e.g., Garcia *et al.*, 1993) it is characteristic for the late Alb. These deviations reflect ecological changes that occurred during the late Aptian and Albian in the broad Tethyan realm.

The ‘*Valdanchella* discors’ Taxon-Range Zone corresponds to the biozones of the same name established for deposits of late Albian age in the adjacent areas of Istria (Velić *et al.*, 1995) and Mt. Velika Kapela (Velić, 1977; Velić & Sokač, 1978). In other parts of Tethys this taxon also occurs in younger, early Cenomanian successions, as in the Apennines (e.g., Chiocchini *et al.*, 1984) and the Hellenides (e.g., Decrouez & Moullade, 1974).

The *Orbitolina* (Conicorbitolina) *conica* Abundance Zone corresponds to the CEN-3a Biozone of the Middle Cenomanian of Istria (Velić & Vlahović, 1994), which is characterized by containing *Chrysalidina gradata* in association with orbitolinids, and to the *Orbitolina* (Conicorbitolina) culvillieri-conica Zone, which is known from the Lower Cenomanian of the Dinarides (Velić, 1988). It also corresponds to the *Orbitolina* (Conicorbitolina) *conica* Biozone, which is known from Vraconian–Middle Cenomanian of the Pyrenees (e.g., Bilotte, 1978; Bilotte *et al.*, 1978), and the *Orbitolina* cf. *conica* Zone, known from the Middle Cenomanian of the Atlas Mountains (Schroeder *et al.*, 1974).

5. Conclusions

A rich foraminiferal, especially orbitolinid, association has been determined within Aptian, Albian and Cenomanian limestone deposits on the islands of Cres and Lošinj. Four biostratigraphic zones have been established based on the orbitolinid taxa and their stratigraphic distribution.

The *Palorbitolina lenticularis* Taxon-Range Zone encompasses strata representing the determined stratigraphic range of the named species. The strata reflect deposition during the early Aptian in predominantly low-energy lagoonal-type environments that were strongly influenced by storm events on the southern part of the island of Cres. Besides *P. lenticularis*, the following orbitolinids have been identified: *Praeorbitolina cornyi*, *P. wienandsi*, *Orbitolina* (Mesorbitolina) *lotzei* and *Paleodictyoconus* sp.

Strata referable to the *Orbitolina* (Mesorbitolina) *texana* Assemblage Zone are characterized by yielding a distinctive assemblage of the following taxa: *Orbitolina* (Mesorbitolina) *texana*, *O. (M.) subconcava*, *O. (M.) parva* and *O. (M.) pervia*. Deposition in a moderate to high water-energy, shallow subtidal environment that periodically emerged above sea level is indicated. Coarsening and shallowing-upwards cycles are the result of transgression and an increase in water-energy during the early Alb.

The overlying ‘*Valdanchella* discors’ Taxon-Range Zone encompasses both mud and grain-supported subtidal limestones that contain the alga *Salpingoparella turgida* which, in association with ‘*V.* discors’, indicates the earliest late Alb.

The *Orbitolina* (Conicorbitolina) *conica* Abundance Zone encompasses strata in which the abundance of the named taxon is markedly greater than is usual in adjacent parts of the succession in the study area. *O. (Conicorbitolina)* *gr. corbarica-conica* and *O. (Orbitolina)* *gr. sefini-concava* also occur. Deposition in a shallow-water environment of varying water-energy during the early-middle Cenomanian is indicated. During storms, bioclastic material was transported from shallow to deep-water environments that were dominated by pelagic sedimentation.
Figure 11. Mid Cretaceous orbitolinid biozonations in the Karst Dinarides.
Acknowledgements
This research was carried out during the preparation of project No. 0181-0101: Geological Map of the Republic of Croatia (scale 1:50 000), sponsored by the Ministry of Science and Technology of the Republic of Croatia. We are indebted to the Institute of Geology, Zagreb, for material support. We thank Dr B. Sokac for his determinations of calcareous algae. Boško Korolija is acknowledged for identifying the rudists. We also thank Prof. Dr J. Tišlar who participated in analysing the data. The manuscript greatly benefited from the constructive comments of Prof. Dr D. J. Batten, Dr J. P. Masse and an anonymous reviewer, to whom we are grateful.

References
Cherchi, A. & Schroeder, R. 1985. Valadina radoicii n. sp. and Pseudorhapydionina (?)- angiospermus n. sp. (Foram.) from the Upper Cenomanian of Anglona region (NW Sardinia). Bollettino della Società Paleontologica Italiana 24, 185–188.
Sokac, B. 1996. Taxonomic review of some Barremian and Aptian calcareous algae (Dasyycladales) from the Dinaric and Adriatic karst regions of Croatia. Geologia Croatica 49, 1–79.
Appendix

List of species mentioned in the text with author attributions and dates.

Benthonic foraminifera

Archaealveolina reicheli (De Castro, 1966)
Biplanata peneropliformis Hamaoui & Saint-Marc, 1970
Brociniina (Parakilikella) balanciana Cherchi, Radoičić & Schroeder, 1976
Charentita cwiilleri Neumann, 1965
Chrysalidina gradata D’Orbigny, 1839
Cuneolina parva Henson, 1948
Cuneolina pavonia D’Orbigny, 1846
Daxia sp.
Debarina hahounerensis Fourcade, Raout & Villa, 1972
Hemicyclamina sigali Maync, 1953
Mayncinca bulgarica Laug, Peybernès & Rey, 1980
Merlingina cretacea Hamou et Saint-Marc, 1970
Neotrocholina aptensis (Jocveca, 1962)
Neotrocholina frburburgensis Guillaume & Reichel, 1957
Nezzazata comica (Smout, 1956)
Nezzazata gyra (Smout, 1956)
Nezzazata simplex Omar, 1956
Nezzazatellina picarda (Henson, 1948)
Nezzasatellina sp.

Nodosaria sp.
Nummoloculinaris regularis Philippson, 1887
Orbitolina (Conorbitolina) conica (D’Archiac, 1837)
Orbitolina (Conorbitolina) gr. carbarica Schroeder, 1985-conica (D’Archiac, 1837)
*Orbitolina (Mesorbitolina) lotezii Schroeder, 1964
Orbitolina (Mesorbitolina) parva Douglas, 1960
Orbitolina (Mesorbitolina) perva Douglas, 1960
Orbitolina (Mesorbitolina) subconica Leymerie, 1878
Orbitolina (Mesorbitolina) texana (Roemer, 1849)
Orbitolina (Orbitolina) gr. sefft* Henson, 1948-concava (Lamarck, 1816)
Paloidioconus sp.
Palorbitolina lenticularis (Blumenbach, 1805)
Peneroplus turomicus Said & Kenawy, 1957
Paracosincolina sp.
Pleridena globosa Fourny, 1968
Pleuromesolabia infraconica Luporto-Sinni, 1979
Praeorbitolina cornyi Schroder, 1964
Praeorbitolina triansandi Schroder, 1964
Pseudocyclusina sp.
Pseudolabiodaella reicheli Marie, 1952
Pseudomumuloculina heimi (Bonn, 1956)

Pseudorhapydina dubia (De Castro, 1965)
Sabaudia auruncensis (Chiochini & Di Napoli Alliata, 1966)
Sabaudia braconensis Arnaud-Vanneau, 1980
*Sabaudia capitata Arnaud-Vanneau, 1980
Sabaudia minuta (Höfler,1965)
Sabaudia sp.
Scandonea phoenissa Saint-Marc, 1974
Scandonea sp.
Spiralcolina sp.
Trochospira avimelechi Hamou et Saint-Marc, 1970
‘Yaldanchella’ decorci Decrouez & Moullade, 1974
Verocellina arenata Arnaud-Vanneau, 1980
Verocellina laurentii (Sartoni & Crescenti, 1962)
Verocellina xerces (De Castro, 1963)
Vidalina radoicicai Cherchi & Schroeder, 1985
Voloshinoides murgensis Luperto-Sinni & Masse, 1993
Planktonic foraminifera
Bonetocardiella conoidea (Bonet, 1956)
Favusella washitensis (Carvey, 1926)
Hedbergella planispira (Tappan, 1940)
Hedbergella sp.
Heterohelix sp.
Rotalipora sp.

Algae
Bacinella irregularis Radoičić, 1959
Clypeina solkani Conrad & Radoičić, 1972
Salpingoporella dinarica Radoičić, 1959
Salpingoporella melitae Radoičić, 1967
Salpingoporella muhilibergi (Lorenz, 1902)
Salpingoporella turgida (Radoičić, 1964)

Calcisphaerulids
Pithonella innominata (Bonet, 1956)
Pithonella ovata (Kaufmann, 1865)
Pithonella sphaerica (Kaufmann, 1865)

Bivalves
Chama sp.
Chondrodonta sp.
Durania sp.
Ichthyosarcolites bicarinatus (Gemellaro, 1865)
Ichthyosarcolites poljakii Polšak, 1964
Ichthyosarcolites tricarinatus Parona, 1921
Orthophtychus striatus Futterer, 1892
Sauvagesia sp.
Schiosia carinateformis Polšak, 1967