Lifelong Learning in the North Country

SOAR: The Sky in Motion Life on the Tilted Teacup Ride

Celestial Coordinates and the Day

Aileen A. O'Donoghue Henry Priest Professor of Physics

In Memory

Jim Barry

SOAR Champion

The Tilted Teacup Ride

* Coordinates and the Day: 9/6/22
(4) Celestial Navigation
* The Year: 9/13/22
(3) The Age of Aquarius
\star The Month and Moon Phases: 9/20/22
(3) The Harvest Moon
* The Day in All its Glory: 9/27/22 (3) The Analemma

The Tilted Teacup Ride

* Coordinates and the Day: 9/6/22
(3) Celestial Navigation

The Year: 9/13/22
(3) The Age of Aguarius

A The Month and Moon Phases: $9 / 20 / 22$
(3) The Harvest Moon
*) The Day in All its Glory: 9/27/22
(3) The Analemimas

Where on Earth?

* Reference Points
(3) Poles
(3) Equator
(3) Prime Meridian D. Greenwich, England
* Coordinates
(3) Latitude
(3) Longitude

Where on Earth?

\& Coordinates Canton NY USA Greenwich, England (3) Latitude
D. Measured N \& S

D From Equator to Poles
D 0° to $90^{\circ} N \& S$
(3) Longitude

DMeasure E \& W
D) From Prime Meridian $\left(0^{\circ}\right)$ to 180° E \& W

Santiago, Chile Cape Town, South Africa $33^{\circ} 36^{\prime} \mathrm{S}, 70^{\circ} 40^{\prime} \mathrm{W} \quad 33^{\circ} 55^{\prime} \mathrm{S}, 18^{\circ} 22^{\prime} \mathrm{E}$

The Celestial Sphere

The view
from a small
planet on the edge of the
Orion arm of the Milky
Way galaxy

Reference Points

* Celestial Equator (3) Projection of Earth's equator
*Celestial Poles (7). Projections of Earth's poles
* Point of Aries
(3) Vernal Equinox
(3) Defines prime meridian (Celestial Greenwich)

Celestial Coordinates

 \star Right Ascension(3) RA or α
(3) From prime meridian (0^{h}) to 23h59m59s Eastward
*Declination
(3) Dec or δ
(3) From celestial equator (0°) to poles $N \& 590^{\circ}$

Celestial Coordinates

 \star Right Ascension(3) Celestial Longitude. * Declination
(3) Celestial Latitude

Vernal Equinox $\mathrm{Oh}^{\mathrm{h}} \mathrm{Om}^{\mathrm{m}} \mathrm{O}^{\mathrm{s}, 0^{\circ}} 0^{\prime} 0^{\prime \prime}$

Achernar (a Eri)

$$
\text { Lh } 37 \mathrm{~m} .50 .9 \mathrm{~s}
$$

$-57^{\circ} 14^{\prime} 12^{\prime \prime}$

Arcturus
$14^{\mathrm{h}} 15^{\mathrm{m}} 39.3^{\mathrm{s}}$, $19^{\circ} 10^{\prime} 49^{\prime \prime}$
NAP :

-

Celestial Equator

> SC
> Rigel Kentarus (a Cen)
> $14^{\text {h }} 39^{\text {m }} 34.6$ s
> $-60^{\circ} 50^{\prime} 0^{\prime \prime}$

Celestial Coordinates

\star Chet Raymo: 365 Starry Nights: October

Earth observer in North America looking up at Great Square of Pegasus (an asterism)

Degrees of Declination: Positive (N) 0° to $+90^{\circ}$ Negative (S) 0° to -90°

Observers On Earth

* See different sky depending on Latitude

Tilted Sky

* Observers see sky "tilted" due to latitude

Tilted Sky

\star Fun with your mind ...
\therefore Try to see yourself held to the bottom of

Earth by gravity looking
"down" at the sky!

Viewing the Sky

\star Observers see celestial reference points at angles related to their latitude

Sky Angles

Earth Observer's View

to observer's

Altitude \& Azimuth

\& Position of an object in the sky
(3) Azimuth = Angle from north through east (3) Altitude = Angle from horizon to object

Azimuth

\star Angle from North through East

Horizon Coordinate System

Horizon Coordinate System

Question

What's the observer's latitude? a) $70^{\circ} \mathrm{N} \quad$ (b) $20^{\circ} \mathrm{N}$

Question

What's the observer's latitude? (a) $60^{\circ} \mathrm{N} \quad$ b) $30^{\circ} \mathrm{N}$

Diurnal Circles

\star Each celestial object circles the observer each day

* Observer sees part of each circle

View of Observer

Rotate into the observer's frame of reference

View of Observers

* Diurnal circles are parallel to CE
(3) Stars rise and set at CE's angle from horizon

Star Paths

* Each travels a diurnal circle

(3) Portion of diurnal circle above horizon determines time object is "up"

All paths parallel to celestial

Question

Which observer(s) would see the star travel on the diurnal circle shown?

Question

Which observer(s) would see the star travel on the diurnal circle shown?

Time of day

* Earth Rotates Once Each Day

(3) 360° with respect to
Earth-Sun line
(4) All Earthlings
ride along
\longrightarrow To Sol

Sunrise, Sunset ...

\star Everything in the sky (sun, moon, stars, etc.)
(3) Rises in the east
(3) Sets in the west Measuring Circles:

$$
\begin{aligned}
360^{\circ} & =24 \mathrm{hr} \\
15^{\circ} & =1 \mathrm{hr}
\end{aligned}
$$

Each hour, the sun moves 15 degrees in the sky $1^{\circ}=4 \mathrm{~min}$ or $15^{\prime}=1 \mathrm{~min}$
Every 4 minutes, the sun moves

Observer's View of the Day

* Sun rises in east, moves 15° /hour from East to West transits at noon sets in west

Standard Clock Time

It's 6 pm

* Every Longitude at (sunset). fferent time

It's 9 pm.
It's 3 pm .
It's
midnight.
It's 3 am .
It's 6 am (sunrise).

Clock Time $=$ Position of Sol

 It's 6 pm (sunset).

Daylight Snvina Time

 It's 7 pm * Shifts times one hi (sunset). JSNO Explanation)It's 10 pm.

It's 1 am .

It's 4 am .

It's 7 am (sunrise).

Clock Time

Time Zones: 24, roughly

 15° apart

[^0]

North America Time Zones

Coordinated Universal Time

\star UTC (UT or Zulu)
(3) Time at Greenwich D. no Daylight saving

* Conversion
 D eg. 2 pm (14:00) EST $=19: 00$ UT
(3) EDT (Eastern Daylight Time) $=$ UTC -4 hr D eg. 2pm (14:00) EDT = 18:00 UT

Solar Time vs. Clock Time

 * Solar time varies across time zonesTime Zone's Solar Noon
Clock Noon FOR ALL

Solar Time vs. Clock Time

* Solar time varies across time zones

Time Zone's Solar Noon
Clock: Noon FOR ALL
Solar noon is
(Degrees) \times (4 minutes/degree) eanlier than clock noon.

Eastern
Observer's
Solar Noon
Time

Rising	East	Zone
side	Roin	Re

West side

Question

Portland, Maine, $70^{\circ} \mathrm{W}$ is in the Eastern Time Zone (center: $75^{\circ} \mathrm{W}$). Solar noon occurs at
(Degrees) $\times(4$ minutes $/$ degree $)=(5) \times(4)=20$ minutes early Solar noon in Portland at 11:40 am

Solar Time vs. Clock Time

 * Solar time varies across time zonesTime Zone's Solar Noon
Clock Noon FOR ALL

Solar noontis
(Degrees) \times (4 minutes/degree) eanlier than clock noon.

> Eastern Observer's Solar Noon

Question

Yuma, $A Z, 115^{\circ} \mathrm{W}$ is in the Mountain Time Zone (center: $105^{\circ} \mathrm{W}$). Solar noon occurs at

$$
\text { a) } 11: 20 \mathrm{am} ; ~ b) ~ 11: 40 \mathrm{am}, ~ c) ~ 12: 20 \mathrm{pm}, ~ d) ~ 12: 40 \mathrm{pm}
$$

$($ Degrees $) \times(4$ minutes $/$ degree $)=(10) \times(4)=40$ minutes late

Celestial Navigation

\star Finding Latitude \& Longitude from

 Altitude of Polaris (NCP)(3) Transit time of star

D Looked up in an ephemeris (eg. Field Guide)
to observer's zenith to celestial

s
Observer at $20^{\circ} \mathrm{N}$

Star Transit Time

Gives position of star with respect to the sun

Star Transit Time

Gives position of star with respect to the sun

Celestial Navigation

* Difference between observed and expected transit times gives longitude

Observer watches star transit.

Star's Transit | Clock's Time |
| :---: |
| Zone Longitude |

Clock is set to some time zone. Observed transit time disagrees with ephemeris.

Longitude difference from clock's time zone center = (Time difference) $\times\left(15^{\circ} /\right.$ hour $)$

Celestial Navigation

* Example: Transit of Deneb on August 1 Golorado Days

Observer sees Deneb transit at 11 pm EDT
Looks up transit time in FG On 8/1 Deneb transits at 1 am

Longitude difference from clock's time zone center = (2 hours) $\times\left(15^{\circ} /\right.$ hour $)=30^{\circ}$ Eas \dagger

Observer's Longitude =
TZ center - Latitude difference $=$

$$
75^{\circ} \mathrm{W}-30^{\circ}=45^{\circ} \mathrm{W}
$$

Navigation Challenge

* Try it on your own with handout
* See you next week!
\star Slides will be available at http://myslu.stlawu.edu/~aodo/SLU/SOAR/index.htm

[^0]: Photo by Marc Staves 2011

