Lifelong Learning in the North Country

SOAR: The Sky in Motion

 The YearAileen A. O'Donoghue Henry Priest Professor of Physics

The Tilted Teacup Ride

* Coordinates and the Day: 9/6/22
(4) Celestial Navigation
* The Year: 9/13/22
(3) The Age of Aquarius
\star The Month and Moon Phases: 9/20/22
(3) The Harvest Moon
* The Day in All its Glory: 9/27/22 (3) The Analemma

The Tilted Teacup Ride

* Coordinates and the Day: 9/6/22 (3) Celestial Navigation
\star The Year: 9/13/22
(3) The Age of Aquarius
\& The Monith and Moon Phases: 9/20/22
(3) The Harvest Moon

As The Day in All its Glory: 9/27/22
(3) The Analemmas

Celestial Coordinates

Right Ascension

(3) RA or α
(3) From prime meridian (O^{h}) to 23h59m59s Eastward
\star Declination
(3) Dec or δ
(4) From celestial equator (0°) to poles $N \& 590^{\circ}$

Tilted Sky

* Observers see sky "tilted" due to latitude

We see ourselves "on top" of the Earth, beneath the sky.

So we see sky motions tilled

Horizon Coordinate System

View of Observers

\star Diurnal circles are parallel to CE
(3) Stars rise and set at CE's angle from horizon

Sunrise, Sunset ...

\star Everything in the sky (sun, moon, stars, etc.)
(3) Rises in the east
each day
(3) Sets in the west Measuring Circles:

$$
\begin{aligned}
360^{\circ} & =24 \mathrm{hr} \\
15^{\circ} & =1 \mathrm{hr}
\end{aligned}
$$

Each hour, the sun moves
15 degrees in the sky
$1^{\circ}=4 \mathrm{~min}$ or $15^{\prime}=1 \mathrm{~min}$
Every 4 minutes, the sun moves

$$
1^{\prime} \text { degree }=60^{\prime} \text { in the sky }
$$

Clock Time $=$ Position of Sol \star Observers move through times (sunset).

Solar Time vs. Clock Time

* Solar time varies across time zones

Solar Time vs. Clock Time

* Solar time varies across time zones

Time Zone's Solar Noon
 Clock Noon FOR ALL

Solar noonis
(Degrees) \times (4 minutes/degree) earlier than clock noon

Eastern
Observer's Solar Noon

Rising

Time
East
side
\uparrow Solar noon is
(Degrees) \times (4 minutes/degree) later than clock noon

West
side

Celestial Navigation

\star Finding Latitude \& Longitude from

 Altitude of Polaris (NCP)(3) Transit time of star

D Looked up in an ephemeris (eg. Field Guide)
to north celéstial pole

s
Observer at $20^{\circ} \mathrm{N}$

Star Transit Time

Gives position of star with respect to the sun

Clicker Question

\star What's your longitude if you see Altair transit at 1 am on September first and your watch is set for Pacific time?

On 9/1 Altair transits at 10 pm PDT
At 10 pm Altair transits TZ center at 120°

Observer sees Altair transit at 1 am PDT

$$
\begin{aligned}
& \text { Late } \Rightarrow \text { West } \\
& \text { of } T Z \text { center }
\end{aligned}
$$

Longitude difference from clock's time zone center =
(3 hours) $\times\left(15^{\circ} /\right.$ hour $)=45^{\circ}$ Wes \dagger
Observer's Longitude =
TZ center + Latitude difference $=$ $120^{\circ} \mathrm{W}+45^{\circ}=165^{\circ} \mathrm{W}$

Models of Earth

Why are globes tilted?

Earth's Orbit

Earth's Orbit

* Ellipse with Sun at one focus
(3) perihelion - closest to sun D. January 4, 2023 at 11:17 am EST

D Earth moving fastest ... Feb is short!
(3) aphelion - farthest from sun D) July 6, 2023 at 4:06 pm EDT

* N Pole toward Polaris

Aphelion
7/6/23

Other

Perihelion 1/4/23

Earth's Orbit

* Rotation Axis tilted 23.5° from \perp

The Home World

\star The Earth in space: Axis points at Polaris
(3) 360° in 365 days $\Rightarrow \sim 1^{\circ} /$ day
(4) Rotation axis tilted 23.5° from orbit axis
\Rightarrow Declination of sun varies through year
\Rightarrow subsolar latitude varies through year

Seasons

* Equinox - sun on Celestial Equator (4) Vernal (spring): $\delta=0^{\circ}, \alpha=0^{h}$

D Sun crossing equator moving north (4) Autumnal (fall): $\delta=0^{\circ}, \alpha=12 \mathrm{~h}$

D Sun crossing equator moving south

Seasons

\star Solstice - sun farthest north or south

(3) Northern Summer $\delta=+23.5^{\circ}, \alpha=6$ h
D) Sun over Tropic of Cancer ($23.5^{\circ} \mathrm{N}$)
(4) Northern Winter $\delta=-23.5^{\circ}, \alpha=18^{\mathrm{h}}$

D Sun over Tropic of Capricorn $\left(23.5^{\circ} \mathrm{S}\right)$

(a) Summer (June) Solstice

Seasons

\& Due to changing angle of sunlight (3) At low angles, sunlight spreads out D less energy falls on any piece of ground

$1.41 \mathrm{~m}^{2}$
Sun 45° from - vertical

$1.15 \mathrm{~m}^{2}$

Sun 30° from vertical
$1 \mathrm{~m}^{2}$
Sun directly overhead

Seasons

* Vary with latitude

Copyright \otimes The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Seasons

\star Equinox - sun on Celestial Equator (3) Vernal (spring) $0^{\mathrm{h}} 0^{\circ}$ () D Sun crosses CE moving north
(3) Autumnal (fall) $12^{h} 0^{\circ}$

D. Sun crosses CE moving south

* Solstice - sun farthest north or south (3) Northern Summer $6^{h}+23.5^{\circ}$

(3) Southern Summer $18^{\mathrm{h}}-23.5^{\circ}$

D Sun southernmost $\left(-23.5^{\circ}\right)$

Sun in the sky

(G) Rotate to Earth's equatorial plane
(3) Center on Earth
(3) Project sun onto sky

The Ecliptic (path of the sun)

 * View from Earth(3) Sun moves $\sim 1^{\circ} /$ day eastward across stars
(3) Sun moves north and south in declination
(4) Solstices \&

Equinoxes are positions in the sky.

This motion is through the YEAR!

Sun's path on a winter day

Sun's path on a winter day

Sun's path on a fall/spring day

Sun's path on a summer day

Sun's path on a summer day
 Summer

Declination of Sol: $+23.5^{\circ}$

Altitude of

 Celestial Equator: $90-44.6=45.4^{\circ}$
Clicker Question

At noon on the summer solstice, the sun's maximum altitude in Key West $\left(24.6^{\circ} \mathrm{N}\right)$ is

> A. 41.9°
> B. 65.4° C. 88.9°

Hint:

$$
90^{\circ}-24.6^{\circ}=65.4^{\circ}
$$

Hint: What is

 $65.4^{\circ}+23.5 ?$

Sun in the sky

\#View from Earth

(4) Sun moves $\sim 1^{\circ} /$ day eastward across stars
(3) Sun moves north and south in declination

Winter Solstice in Sagittarius Equinox in Virgo

Summer Solstice in Taurus

Stars in the sky

* Midnight view from Earth

(3) Stars opposite sun's position

D see opposite season's constellations,
γ eg. Gemini is a winter sky constellation, Scorpius summer
(3) Midnight "window" shifts 1° eastward/day

Winter Solstice in Sagittarius

Autumnal Equinox in Virgo

Summer Solstice in Taurus

Vernal Equinox in Pisces

Time

* Clock Time
(3) the position of the mean sun at TZ center
D eg. 12 pm = transit of mean sun (avg. of analemma)
(3). Mean Solar Day = 24:00:00 (hours:minisec of time)
* Solar Time
(3) the position of the sun wrt the observer eg. Noon = sun transits
(3) Solar Day varies as shown by analemma
* Sidereal Time
(3) the position of γ wrt the observer
D) eg. Oh Local Sidereal Time (LST) $=\uparrow$ transits
D) Sidereal time $=$ R.A. on the meridian
(3) Sidereal Day $=23: 56: 00$

The Sidereal Day

(3) Earth turns 360° with respect to stars D eg. Vega transit to Vega Transit
(3) $23: 56: 00$

The Sidereal Day

(3) Earth turns 360° with respect to stars D eg. Vega transit to Vega Transit (3) $23: 56: 00$

The Sidereal Day

(3) Earth turns 360° with respect to stars D) eg. Capella transit to Capella Transit
(3) $23: 56: 00$

The Sidereal Day

Sidereal Day: 360° rotation puts star back on meridian

to distant star

~1 along orbit

to sun

The Solar Day

Solar Day: 361° rotation puts sun back on meridian

 to distant star
The Sun at Noon

* Noon \Rightarrow Sun on meridian

* Sun's position varies: the Analemma

The Sun at Noon

* Noon \Rightarrow Sun on meridian

* Sun's position varies: the Analemma

Observer's Meridian (due south)

The Analemma

\star Position of true sun at clock noon
(3) Clock Noon
D) 12:00 pm in a 24:00:00 day
D) Position of Mean Sun at noon
(3) True Sun's Position
D varies due to Sun's speed along path ? varies due to elliptical path
η varies due to tilted path

Mean Sun \& True Sun

* Mean sun on meridian defines clock noon * True sun on meridian defines solar noon

Solar Noon Today (9/13/22)

\star Potsdam ($44^{\circ} 40^{\prime} \mathrm{N}, 75^{\circ} 00 \mathrm{~W}$)
(7) Standard time of solar noon $=11: 55: 51 \mathrm{am}$
(3) Daylight time of solar noon $=12: 55: 51$

* Canton ($44^{\circ} 36^{\prime}$ N, $75^{\circ} .10 \mathrm{~W}$)
(3) Standard time of solar noon $=11: 56: 31 \mathrm{am}$
(3) Daylight time of solar noon $=12: 56: 31$
(3) 40 seconds later than Potsdam
D. Earth turns 1° in 4 minutes
\Rightarrow Earth turns 15^{\prime} in 1 minute
\Rightarrow Earth turns $10^{\prime \prime}$ in 40 seconds!|
.\Rightarrow Celestial events in Canton 40 seconds later than in PotsdamII

Solar Noon Today (9/13/22)

www.spot-on-sundials.co.uk/calculator.html Print Your Solar Noon Calendar

Our latitude and longitude page will help you to find the input data you need for our unique Solar Noon Calculator
The time of solar noon depends on the Equation of Time and on the difference in longitude between your location and the standard meridian of the time zone you are in. It is slightly different for every day of the year. Our unique Solar Noon Calculator will provide you with a table showing the exact time of solar noon for your location for each day of the year. If you prefer, you can print out the values of the Equation of Time, which gives you the difference between solar time and clock time for each day of the year.
Note that our calculator requires that your latitude and longitude be in decimal format. If your co-ordinates are in Degrees, Minutes, Seconds please click here

	Example	Your Details		Comments
Location	Epsom England		this information is displayed across the top of your calendar, it is not included in any calculations	
Latitude	51.33250 N		optional - enter your latitude if you want your latitude/longitude co-ordinates to be displayed on your calendar	
Longitude	0.26722 W			required - Longitude is used in the calculations

If your area has daylight saving time in the summer, we recommend that you highlight or draw a box round the relevant time, and write "Add one hour for daylight saving time" at the foot of the relevant months.

Note: The values given by the Calculator are averages for the full leap year cycle of four years (1,461 days) and change slightly from year to year. The range of variation for the 1st day of each month is shown below:

Jan -21 secs	May -5 secs	Sept -6 secs
Feb -6 secs	June -7 secs	Oct -15 secs
Mar -9 secs	July -9 secs	Nov -1 sec
Apr -14 secs	Aug -2 secs	Dec -17 secs

Solar Noon Today (9/13/22)

Solar Noon Calendar for Potsdam, NY at 44.67N : 75.0W

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	12:03:32	12:13:32	12:12:13	12:03:44	11:57:06	11:57:57	12:04:01	12:06:23	12:00:03	11:49:35	11:43:31	11:49:06
2	12:04:00	12:13:39	12:12:01	12:03:27	11:56:59	11:58:07	12:04:12	12:06:19	11:59:38	11:49:16	11:43:30	11:49:29
3	12:04:28	12:13:46	12:11:48	12:03:09	11:56:53	11:58:17	12:04:23	12:06:14	11:59:18	11:48:57	11:43:30	11:49:53
4	12:04:55	12:13:52	12:11:35	12:02:52	11:56:48	11:58:28	12:04:34	12:06:08	11:5 3:58	11:48:38	11:43:30	11:50:17
5	12:05:22	12:13:57	12:11:22	12:02:35	11:56:43	11:58:38	12:04:45	12:06:02	11:5 8:38	11:48:20	11:43:32	11:50:42
6	12:05:48	12:14:01	12:11:04	12:02:18	11:56:38	11:58:49	12:04:55	12:05:55	11:5 $8: 18$	11:48:02	11:43:34	11:51:07
7	12:06:14	12:14:05	12:10:53	12:02:01	11:56:34	11:59:01	12:05:04	12:05:48	11:57:57	11:47:44	11:43:38	11:51:33
8	12:06:39	12:14:07	12:10:38	12:01:45	11:56:31	11:59:12	12:05:13	12:05:40	11:57:37	11:47:27	11:43:42	11:51:59
9	12:07:04	12:14:09	12:10:23	12:01: 8	11:56:29	11:5	12:020	12:05:32	11:5 7:16	11:47:11	11:43:47	11:52:26
10	12:07:29	12:14:10	$5{ }^{\circ}$	T C	42^{627}	$1105 \times$	2.01	$1 \mathrm{C}^{\prime} 1$	11:5 $6: 55$	11:46:55	11:43:53	11:52:53
11	12:07:53	12:14:11	2:05 2)	J $5 \sqrt{5} 2$	-	2:0	,	11. 834	11:46:39	11:43:59	11:53:21
12	12:08:16	12:14:10	12:09:36	12:00:42	11:56:24	12:00:00	12:05:46	12:05:03	11.56.13	11:46:24	11:44:07	11:53:48
13	42000000	12.1400	-09\%2	2.00-27	11.50.24	12.00.1	12.05:	12.05 52	11:55:51	11:46:09	11:44:15	11:54:17
14	12:09:00	12:14:07	12:09:03	12:00:12	11:56:24	12:00:26	12:06:00	12:04:41	11:55:30	11:45:55	11:44:25	11:54:45
15	12:09:22	12:14:04	12:08:46	11:59:58	11:56:25	12:00:39	12:06:06	12:04:29	11:55:09	11:45:41	11:44:35	11:55:14
	Location		Epsom England				this information is displayed across the top of your calendar, it is not included in any calculations					
Solar Noon Calendar for Canton, NY at 44.6N : 75.167W												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	12:04:12	12:14:12	12:12:53	12:04:24	11:57:46	11:58:37	12:04:41	12:07:03	12:00:43	11:50:15	11:44:11	11:49:46
2	12:04:40	12:14:19	12:12:41	12:04:07	11:57:39	11:58:47	12:04:52	12:06:59	12:0):18	11:49:56	11:44:10	11:50:09
3	12:05:08	12:14:26	12:12:28	12:03:49	11:57:33	11:58:57	12:05:03	12:06:54	11:5:58	11:49:37	11:44:10	11:50:33
4	12:05:35	12:14:32	12:12:15	12:03:32	11:57:28	11:59:08	12:05:14	12:06:48	11:5:38	11:49:18	11:44:10	11:50:57
5	12:06:02	12:14:37	12:12:02	12:03:15	11:57:23	11:59:18	12:05:25	12:06:42	11:5:18	11:49:00	11:44:12	11:51:22
6	12:06:28	12:14:41	12:11:44	12:02:58	11:57:18	11:59:29	12:05:35	12:06:35	11:5:58	11:48:42	11:44:14	11:51:47
7	12:06:54	12:14:45	12:11:33	12:02:41	11:57:14	11:59:41	12:05:44	12:06:28	11:5 :37	11:48:24	11:44:18	11:52:13
8	12:07:19	12:14:47	12:11:18	12:02:25	11:57:11	11:59:52	12:05:53	12:06:20	11:5 :17	11:48:07	11:44:22	11:52:39
9	12:07:44	12:14:49	12:11-03	12:02:08	11:57- 9	1?	12.06. 2	12:06:12	11:5:56	11:47:51	11:44:27	11:53:06
10	12:08:09	12:14:50	12 0:4?	10	1:57 7	1 -	,	$7{ }^{\prime}$	11:5 $: 35$	11:47:35	11:44:33	11:53:33
11	12:08:33	12:14:51	12: 32	1)0 0	1:57	,	$1 \rightarrow$	E $505 \sqrt{5}$	11. $\sqrt{714}$	11:47:19	11:44:39	11:54:01
12	12:08:56	12:14:50	12:10:16	12:01:22	11:57:04	12:00:40	12:06:26	12:05:43	11-56-53	11:47:04	11:44:47	11:54:28
13	12-00-10	14.40	12.10.00	12.01 .07	4+1570	隹	1206	4200 82	11:56:31	11:46:49	11:44:55	11:54:57
14	12:09:40	12:14:47	12:09:43	12:00:52	11:57:04	12:01:06	12:06:40	12:05:21	11.56.10	11:46:35	11:45:05	11:55:25
15	12:10:02	12:14:44	12:09:26	12:00:38	11:57:05	12:01:19	12:06:46	12:05:09	11:55:49	11:46:21	11:45:15	11:55:54

Apr - 14 secs	Aug -2 secs	Dec -17 secs

Doing the Math

* Mean Sun
(3) Projection of sun onto Celestial Equator D moves 360° in one year (365.242191 days)

$$
v_{\text {Mean Sun }}=\frac{360^{\circ}}{365.242191 \text { days }}=0.985647356^{\circ} / \text { day }
$$

* True Sun
(3) speed varies due to

D Sun's changing Declination
D Elliptical orbit

The Calendar

A Solar Calendars (Tropical Year $=365.2421897$ d)
(3) Attempt to keep dates aligned with seasons
(3) e.g. Vernal Equinox near March $21\left\{\begin{array}{l}\text { First Council of } \\ \text { Nicaea, } 325 \mathrm{CE}\end{array}\right.$ * Julian Calendar
(3) Instituted by Julius Caesar in 46 BCE
D) Rounded Tropical Year to 365.25 d
D. Added one day every 4 years ($\frac{1}{4}=0.25$ day/year)
Υ Added too much time!
$\uparrow 365.25-365.2421897=0.00781$ extra days/year
\uparrow After 1300 years, Vernal Equinox occurred on March 31!
mu Messed up date of Easter!!
IL Easter = first Sunday after first full moon after γ

The Calendar

* Gregorian Calendar (Year $=365.2421897 \mathrm{~d}$)
(3) Instituted by Pope Gregory XIII, 1582

D Dropped 10 days
P Thursday, Oct. 41582 followed by Friday Oct: 15
\checkmark British Empire \& American Colonies:
Wed. Sep. 2, 1752 followed by Thu. Sep. 14

The Calendar

* Gregorian Calendar (Year $=365.2421897 d)$
(3) Instituted by Pope Gregory XIII, 1582 Close!

D Dropped 10 days
P Thursday, Oct. 41582 followed by Friday Oct: 15 \checkmark British Empire \& American Colonies: Wed. Sep. 2, 1752 followed by Thu. Sep. 14
D) Century Years not divisible by 400 not leap years Υ Leap years 97 in $400\left(\frac{97}{400}=0.24219\right)$ $\uparrow 365.2425-365.24219=0.00031$ extra days $/$ year
$\uparrow 1600=$ leap year for everyone
(0.403 days in 1300 years)
$\sim 1700=$ leap year only for those on Julian Calendar (Brits)
IU British Empire had to drop 11 days, not 10! me George Washington 's Birthday

Julian: Feb. 11, 1731
Gregorian: Feb. 22, 1731

Cross Quarter Days

* Days $\frac{1}{2}$ way between solstices \& equinoxes * $1^{\text {st }}$ days of seasons on some calenders (Celt) (3) Beltane ~May 1 D $\frac{1}{2}$ way from Vernal Equinox to Summer Solstice (3) Lughnasa ~ August 2

D $\frac{1}{2}$ way from Summer Solstice to Autumnal Equinox
(3) All Hallows (Samhain) ~November 1

D $\frac{1}{2}$ way from Autumnal Equinox to Winter Solstice .
(3) Candlemas (Imbolc) ~ February 2
D) $\frac{1}{2}$ way from Winter Solstice to Vernal Equinox

If. Candlemas Day be fair and bright, If Candlemas Day be damp \& black, Winter will have another flight. It will carry cold winter away on its back.

Position of Sunrise \& Sunset

\star Azimuth of rising depends on δ

$$
A_{\text {ise }}=\cos ^{-1}\left(\frac{\sin \delta}{\cos \lambda}\right) \text { degrees }
$$

* Sunrise appears to move along horizon
(c) original calendar!
eg. Stonehenge, Machu Pichu, Woodhenge (Illinois)

Position of Sunset

12/9/9 3:40 pm EST 40 minutes before sunset

Precession

* Earth's axis wobbles over 26,000 years

RA and Dec grid wobbles with pole, ecliptic does not wobble so solstices \& equinoxes change position.
©1996-2001 Scott R. Anderson
http://www.opencourse.info/astronomy/introduction/03.motion earth//viony

Raymo's 365 Starry Nights

Precession Circle

View from the Pyramids

View from Canton, NY at 11:30 am on 9/18/19

Raymo's 365 Starry Nights

SEPTEMBER 23
 SEPTEMBER 24

Position of the winter solstice in 1000 BCE

CAPRICORNUS

Now it should

 be the Tropic of Sagittarius!
Raymo's 365 Starry Nights

Position of the Vernal
 Equinox now

Motion of the Vernal Equinox

To the

"Age of Aguarius"

When the moon is in the Seventh House And Jupiter aligns with Mars
SEPTEN Then peace will guide the planets AREE And love will steer the stars

This is the dawning of the Age of Aquarius

Harmony and understanding Sympathy and trust abouñding No more falsehoods or derisions Golden living dreams of visions Mystic crystal revelation And the mind's true liberation Aquarius! Aquarius!
"Age of Aguarius"

