REVIEW FOR EXAM 3: THE SOLAR SYSTEM

MAJOR TOPICS:

- I. The Celestial Sphere -- appearance and motions in the sky
 - Constellations
 - Coordinate Systems (horizon, RA & Dec, etc.)
 - Daily motion
 - Annual motion of the Sun & Stars
 - Positions of the planets (sky & orbits)
 - Motion and phases of the moon

II. Stars

- The nature of light and structure of matter
- The properties of the stars
- Stellar evolution

III. Solar System

- Worlds
- Planetary processes
- Earth as a planet

I. THE CELESTIAL SPHERE (YOU CAN'T FORGET STUFF!)

- A. Constellations: FIELD GUIDE Ch. 4
- B. Coordinate systems: <u>FIELD GUIDE</u> Ch. 15
 - > horizon horizon, zenith, nadir, meridian, etc.
 - > celestial RA, Dec, NCP, SCP, Celestial Equator
- C. Motions in the sky
 - > daily & annual motion <u>Cycles</u> pp. 1-10
 - > motion and phases of the moon Cycles pp. 11-19
 - motion and positions of the planets planetary longitudes, elongations, times of rising, transit, and setting (Planets Worksheet)


Know how to find elongation (Fast and West)

Review all the worksheets All the Calculations!

Review your notes from the videos!

II. STARS

- A. The Sun <u>FIELD GUIDE</u> Ch. 14 $E=mc^2$
- B. Spectroscopy
 - > The nature of light, inverse square law, electromagnetic spectrum
 - > types of spectra and their sources (continuum, emission line, absorption line)
 - > Spectral Classes: O B A F G K M
- C. Star Properties (how do we measure or calculate ... any needed equations will be given)
 - > temperature, distance, size, flux and luminosity
- D. HR diagram FIELD GUIDE Appendix 3
- E. Stellar evolution FIELD GUIDE Ch. 5 (p. 144-167)
 - > Star Birth (e.g. Great Nebula in Orion, Eagle Nebula: Pillars of Creation, Trifid Nebula)
 - > Main Sequence Stars
 - > Red Giant Stage (e.g. Betelgeuse, Antares, Aldebaran)
 - > Star Death (e.g. Planetary Nebulae, SN Remnants, WDs, NSs & pulsars, BHs)
- F. Stellar Power: Nuclear Fusion (Power From Fusion Worksheet)

III. THE SOLAR SYSTEM

- worlds (expect images ... study the power points and your Field Guide Ch. 8 - 14)

Be able to describe the basic nature (rocky, icy, gas, atmosphere, craters, volcanoes, etc.) of the Planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune

Moons: Io, Europa, Ganymede, Callisto, Titan, Enceladus, Mimas, Miranda, Triton, and Luna. Also know where to find (as in, the world) the largest impact crater, largest volcano, and largest mountain. What is each world made of? What characterizes each?

- arrangement, size, and formation of the solar system

Handy Websites: http://photojournal.jpl.nasa.gov/

http://solarviews.com/

The Astronomical Unit (AU)

1 AU = mean Earth-Sun distance

= 150,000,000 km (150 million km)

= 93,000,000 mi (\approx 100 million miles is close enough)

NAME	SYMBOL	SIZE	DISTANCE FROM SOL	LENGTH OF DAY	LENGTH OF YEAR
MERCURY	ğ	0.4 R⊕	0.4 AU	60 d⊕	1 /4 y ⊕
V ENUS	우	0.95 R⊕	0.7 AU	243 d⊕ (R)	0.6 y⊕
EARTH	\oplus	1.0 R⊕	1.0 AU	1d⊕	1 y⊕
Mars	♂	0.5 R⊕	1.5 AU	1.03 d⊕	2 y⊕
ASTEROIDS		0.1 R⊕	3 AU		5 y ⊕
JUPITER	24	11 R⊕	5 <i>A</i> U	10 h⊕	12 y_{\oplus} (\approx one constellation of the zodiac per year)
SATURN	Ъ	9.5 R⊕	10 AU	10.25 h⊕	30 y⊕
Uranus	Щ	4.1 R⊕	20 AU	17 h⊕ (R)	85 y⊕
NEPTUNE	Ψ	3.9 R⊕	30 AU	16 h⊕	165 y⊕

- Earth as a planet

-- interior

(https://pubs.usgs.gov/gip/dynamic/dynamic.html, www.livescience.com/topics/earth-s-interior/) interior layers: names, composition, phase (solid, liquid, plastic)

be able to explain the driving force of plate tectonics & source of the magnetic field

-- surface

geology:

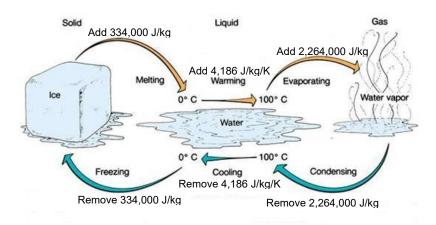
cratering (Barringer, Chicxulub, Manicouagan http://www.solarviews.com/eng/tercrate.htm) volcanism (http://volcano.oregonstate.edu/)

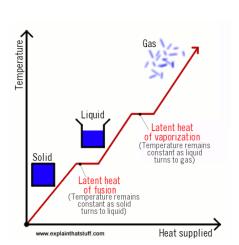
types of volcanos: shield, cinder cone, composite & examples of each plate tectonics & the motion of the continents

(http://www.ucmp.berkeley.edu/geology/tectonics.html)

-- oceans:

importance of water in the evolution of the atmosphere & life Heat Capacity:


Energy required to raise (or lower) the temperature of a substance Latent heat:


Heat released or absorbed when something (water) changes state released: gas to liquid (condensation), liquid to solid (freezing) absorbed: solid to liquid (melting) or liquid to gas (evaporating)

Heat transfer

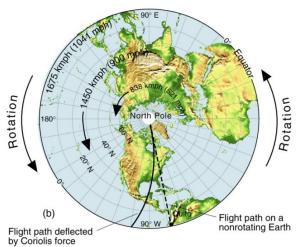
Conduction: Hot stuff heats neighbors (inefficient!)

Convection: Hot stuff moves Radiation: Heat, itself moves

-- atmosphere

composition

primarily N_2 (78%), O_2 (21%), Ar (1%), CO_2 (0.037%)


differs from Mars, Venus (How? Why?)


evolution of composition

oceans absorbed CO2, locked it into rocks ... what happened on Mars?

Plant & animal life generated and maintains O_2 composition, evolution, circulation forces on air

pressure gradient force (air moves from high to low pressure) coriolis force (acts only on moving objects)

global circulation

PARTLY DRIVEN BY SUNLIGHT HEATING SURFACE AIR AT SUBSOLAR LATITUDE

1. Air rises at ITCZ

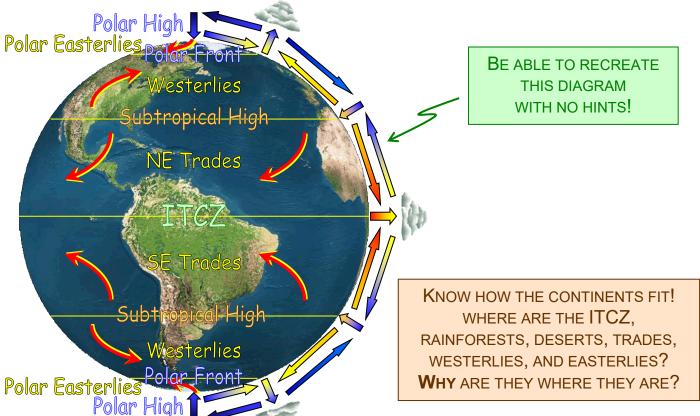
Rising Air = Low Pressure

Cools -- moisture condenses -- precipitation

Spreads north and south aloft and continues cooling

2. Air sinks at about 30° N and S (Subtropical High)
Sinking Air = High Pressure
Dry since it lost moisture when rising

Spreads north and south, coriolis deflection creates Trade Winds & Westerlies


PARTLY DRIVEN BY VERY COLD AIR SINKING AT POLES

Air Sinks at Poles (Polar High)
 Moves southward (northward) & deflects right (left) along surface
 Polar Easterlies

4. Convergence Zone at 60° N and S (Polar Front) Rising Air = Low Pressure Cools -- moisture condenses -- precipitation Spreads north and south aloft and continues cooling

Greenhouse Effect

Sunlight absorbed by ground heats it. Ground radiates IR that's absorbed by atmosphere

