24 hours = 360 degrees

1 hour = ________ degrees

1 degree = ________ minutes

1 TIME ZONE = ________ DEGREES OF LONGITUDE

Starting at the Prime Meridian list the longitudes of the centers of western time zones:

<table>
<thead>
<tr>
<th>Name</th>
<th>Center Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. European</td>
<td>0° W</td>
</tr>
<tr>
<td>W. African</td>
<td>15° W</td>
</tr>
<tr>
<td>Azores</td>
<td>30° W</td>
</tr>
<tr>
<td>Brazilian</td>
<td>45° W</td>
</tr>
<tr>
<td>Atlantic</td>
<td>60° W</td>
</tr>
<tr>
<td>Eastern</td>
<td>75° W</td>
</tr>
<tr>
<td>Central</td>
<td>90° W</td>
</tr>
<tr>
<td>Mountain</td>
<td>105° W</td>
</tr>
<tr>
<td>Pacific</td>
<td>120° W</td>
</tr>
<tr>
<td>Yukon</td>
<td>135° W</td>
</tr>
<tr>
<td>Alaska-Hawaiian</td>
<td>150° W</td>
</tr>
<tr>
<td>Nome</td>
<td>165° W</td>
</tr>
</tbody>
</table>

The times of astronomical events is often given in **COORDINATED UNIVERSAL TIME (UT or UTC)**\(^1\), which is the time on the prime meridian (Greenwich, or Western European Time). The official time-keeper of the United States is the US Naval Observatory. You can use their site to convert from Universal Time to other time zones (both standard and daylight times)

\(\Rightarrow \) **Convert from Universal Time (http://tycho.usno.navy.mil/zones.html)**

local time of the following events in the fall of 2021:

Event	**UT**	**Local Time (EDT or EST)**
Harvest\(^2\) Moon | September 20 23:54 | Sept. 20 7:54 pm EDT
Autumnal Equinox | September 22 19:14 | Sept. 22 3:14 pm EST
1st Quarter Moon | October 13 3:25 | Oct. 12 11:25 pm EDT
Winter Solstice | December 21 15:53 | Dec. 21 10:53 am EST

\(^1\) Replaced Greenwich Mean Time (GMT) as the World standard for time in 1986. Also known as “Zulu Time,” it is based on atomic measurements rather than the Earth’s rotation. Greenwich Mean Time (GMT) is still the standard time zone for the Prime Meridian (Zero Longitude). Also, UTC is not the official time in any actual time zone. (www.timeanddate.com/time/gmt-utc-time.html)

\(^2\) Full moon names from Space.com (www.space.com/16830-full-moon-calendar.html). Not sanctioned by the IAU.
Clock and Solar Noon

The clock time is the local clock time. Due to the finite width of the time zones, it does not always fit the solar meaning of time.

SOLAR NOON = SUN ON OBSERVER'S MERIDIAN (TRANSIT)

On the time zone center longitude, clock noon corresponds (roughly) to solar noon. For each degree of longitude of difference between your location and the center meridian, there will be four minutes of difference between your solar noon and civil noon.

EAST OF TZ CENTER: Solar Noon before civil noon.
WEST OF TZ CENTER: Solar Noon after civil noon.

15° Thus solar noon occurs early in the eastern part of the time zone and late in the western part of the time zone. Complete the following table by calculating the difference between the city's longitude and that of the time zone center and using 1 hour = 15° and 1 min = 15'.

<table>
<thead>
<tr>
<th>City</th>
<th>Longitude</th>
<th>Difference</th>
<th>Early or Late</th>
<th>Solar Noon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City</td>
<td>Time Zone</td>
<td>Deg. & min.</td>
<td>E or W</td>
</tr>
<tr>
<td>Canton, NY</td>
<td>75°10' W</td>
<td>75° W</td>
<td>10' W</td>
<td>Late</td>
</tr>
<tr>
<td>Portland, ME</td>
<td>70°15' W</td>
<td>75° W</td>
<td>4° 45’ E</td>
<td>Early</td>
</tr>
<tr>
<td>Thunder Bay, Ontario</td>
<td>89°15' W</td>
<td>75° W</td>
<td>14° 15’ W</td>
<td>Late</td>
</tr>
<tr>
<td>Lhasa, Tibet (CCT: UTC + 8)</td>
<td>91° E</td>
<td>120° E</td>
<td>29° W</td>
<td>Late</td>
</tr>
</tbody>
</table>

Longitud is measured west to east in the eastern hemisphere! Use a globe!