CQ 20.5,20, $P_{R} 20.11,219,23,27,33,70,79,88,22.12,19,24$
5. A metal plate is attached to the end of a rod and positioned so that it can swing into and out of a perpendicular magnetic field pointing out of the plane of the paper as shown. In position 1 , the plate is just swinging into

- • $\overrightarrow{\mathbf{B}}$ - the field; in position 2 , the plate is swinging out of the field. Does an induced eddy current circulate clockwise or counterclockwise in the metal plate when it is in (a) position 1 and (b) position 2? (c) Will the induced eddy currents act as a braking force to stop the penduhum motion? Explain.
a) Position I
- OuTward \vec{B} increasing
\Rightarrow I CREATES INWARD \vec{B} \Rightarrow Clockwise I
\Rightarrow SAME MAGNETIC POLE

$$
\Rightarrow \text { PLATE REPELLED }
$$

\Rightarrow Force Against Morton
b) Position 2

- Outwater \vec{B} decizetsing
\Rightarrow I CREATES OUTWARD \vec{B}
\Rightarrow Counterclockwise current
\Rightarrow Opposite maneetio pole
\Rightarrow Plate trracted so it's pilled Back Toward veerck
\Rightarrow induced I's \& B's ACT IS A BRAKE!

20. High-voltage power lines run along the edge of a farmer's field. Describe how the farmer might be able to steal electric power without making any electrical consection to the power line. (Yes, it works. Yes, it has been done. Yes, it is illegal.)

SInCE US Power is AC, THE MAGNETIC FIELD IS constantly changing in BOTt MAGNITUDE NND direction.
\Rightarrow A LOOP OF WIRE UNDER THE WIRES WOULD EXPERIENCE a changing magnetic flux and a current would BE INDUCED, EFFECTIVELY STEALING ELECTRICITY!
$\$ 11$. A square loop of wire of side 2.3 cm and electrical resistrance 79Ω is near a long straight wire that carries a current of 6.8 A in the direction indicated. The long wire and loop both lie in the plane of the page. The left side of the loop is 9.0 cm from the wire. (a) If the loop is at rest, what is the induced emf in the loop? What are the magnitude and direction of the induced current in the loop? What are the magnitude and direction of the magnetic force on the loop? (b) Repeat if the loop is moving to the right at a constant speed of $45 \mathrm{~cm} / \mathrm{s}$. (c) In (b), find the electric power dissipated in the loop and show that it is equal to the rate at which an external force, pulling the loop to keep its speed constant, does work.
a) For no Motion $E=0$ Flux is not changing.
b) Fore \vec{v} vo Tito RiGht'

\Rightarrow NO L N TOP \& BOTOM (INDUCE emf Across wiz)
\Rightarrow I IN LEFT AND RIGHT

Aw Co $20 \& 22$
20.11 Continued
b) Emf'S ON LEET AND RIGHT IN SAME DIRECTION BUT UNEQUAL BECAUSE \vec{F} is STRONGER CLOSER TO THE WIRE

$$
\begin{aligned}
& B=\frac{\mu_{0} I}{2 \pi r} \Rightarrow B_{L}=\frac{\mu_{0} I}{2 \pi r_{L}} \text { Ans } B_{R}=\frac{\mu_{0} I}{2 \pi r_{k}} \quad \frac{I^{+}}{T \varepsilon_{L}} I_{-} \frac{I^{+}}{T_{R}} \varepsilon_{R} \\
& \text { TDNCED emf's ARE }
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{L}=v L B_{L} \& \varepsilon_{R}=v L B_{R} \rightarrow \varepsilon_{\text {TorR }}=\varepsilon_{L}-\varepsilon_{R} \\
& \varepsilon_{\text {Tor }}=v L\left(B_{L}-B_{R}\right)=\frac{v L \mu_{0} I}{2 \pi}\left(\frac{1}{r_{L}}-\frac{1}{r_{R}}\right) \\
& \varepsilon_{\text {Tor }}=\frac{(0.45)(0.023)\left(4 \pi \times 10^{-7}\right)(6.8)}{2}\left(\frac{1}{0.09}-\frac{1}{0.113}\right) \\
& \varepsilon_{\text {Tor }}=\left(1.41 \times 10^{-8}\right)(2.26)=3.18 \times 10^{-8} \mathrm{~V}=31.8 \mathrm{nV}=\varepsilon_{\text {Tor }}
\end{aligned}
$$

Fins Current From OHm's Lan $V=I R$

$$
I=\frac{\varepsilon_{\text {cor }}}{R}=\frac{3.18 \times 10^{-8}}{79}=4.03 \times 10^{-10} A=40.3 p A=I
$$

- I is CLOCKWISE SINCO $\varepsilon_{L}>\varepsilon_{B}$

MaGNETIC FORCE ON LEFT \& RIGHT OPPOSITE \& UNEQual

$$
\begin{aligned}
& \times \prod_{I}^{\times} \xrightarrow[\rightarrow]{\rightarrow} F_{L}=I L B_{L}=I L\left(\frac{\mu_{0} I_{\text {wirE }}}{2 \pi r_{L}}\right), \quad F_{R}=I L\left(\frac{\mu_{0} I_{\text {wiRE }}}{2 \pi r_{R}}\right) \\
& {\stackrel{F_{L}}{x}}_{\Psi_{x}} \|_{\times} \vec{F}_{\text {Tor }}=F_{L} \cdot F_{R}=\frac{I L \mu_{0} I_{\text {wire }}}{2 \pi}\left(\frac{1}{r_{L}}-\frac{1}{r_{R}}\right) \\
& F_{\text {Totn2 }}=\left(4.03 \times 10^{-10}\right)(0.023)\left(2 \times 10^{-7}\right)(6.8)\left(\frac{1}{0.09}-\frac{1}{0.113}\right) \\
& \vec{F}_{\text {rorih }}=2.85 \times 10^{-17} \mathrm{~N} \text { TO uTE LEET (sONARS THE WIRE) }
\end{aligned}
$$

c) Dissipated Power: $P=I^{2} R=\left(4.03 \times 10^{-10}\right)^{2}(79)$

$$
P=1.28 \times 10^{-17} \mathrm{~W}
$$

Rate of Work: $P_{w}=\frac{\omega}{\Delta t}=\frac{F \Delta x}{\Delta t}=F v$, QuA

$$
\begin{aligned}
& P_{w}=\left(2.85 \times 10^{-17}\right)(0.45) \\
& P_{w}=1.28 \times 10^{-17} \mathrm{~W}
\end{aligned}
$$

How CH 20822
21. A circular conducting coil with radius 3.40 cm is placed in a uniform magnetic field of 0.880 T with the plane of the coil perpendicular to the magnetic field. The coil is rotated 180° about the axis in 0.222 s . (a) What is the average induced emf in the coil during this rotation? (b) If/the/coil/is made of copper with a diameter of 9.900 mm , what is the average current that flows through the coil during the rotation?
a) Flux flips direction

$$
\begin{aligned}
\varepsilon & =-\frac{\Delta \Phi}{\Delta t}=-\frac{B A-(-B A)}{\Delta t} \\
\varepsilon & =\frac{2 B A}{\Delta t}=\frac{2(0.880)(0.034)^{2} \pi}{0.222} \\
\varepsilon & =0.0288 \mathrm{~V}=28.8 \mathrm{mV}
\end{aligned}
$$

Problem 23 is on the next page
27. Two loops of wire are next to one another in the same plane. (a) If the switch S is closed, does current flow in loop 2? If so, in what direction? (b) Does the

a) WHEN SWITCH IS CLOSE \rightarrow \Rightarrow I BEGINS TO FLOW CLOCKWISE N LOO か I $\Rightarrow \vec{B}$ BUILDUP

- Inward inside loot
- Outward outside loop
\Rightarrow LOOP 2 SEES INCREASING $\stackrel{\rightharpoonup}{B}$ OUTWARD (INSIDE LOOP)
\Rightarrow I in Loon 2 CREATES \vec{B} INWARD \Rightarrow I FLOWS CLOCKWISE 10 LOON 2 WHILE \vec{B}, INCREASES
b) I flows fur a Brief Momenta in Loop 2 CONn WHILE B, is EAANGANG
C) AS in PROBCEM H THE FORCES ON TIE L QR SIDES ARE OPPOSITE \& UNEQUAL WITH
 $F_{\text {LEFT }}>F_{\text {RIGHT }}$ BECAUSE ITS IN A STRONGER FIELD

$$
\Rightarrow F_{-T H T} \text { IS TO THF RIGHT (AWAY FROM LOOP 1) }
$$

d) Forces Res Equal \& Opposite! So Loon 2 's current CREATES B_{2} THAT EXERTS A FORCE ON LOOP 1 BUT IT IS DIRECTED TO TIT LEFT!
33. A doorbell uses a transformer to deliver an amplitude of 8.5 V when it is connected to a $170-\mathrm{V}$ amplitude line. If there are 50 turns on the secondary, (a) what is the turns ratio? (b) How many turns does the primary have?
a) $\frac{N_{2}}{N_{1}}=\frac{\varepsilon_{2}}{\varepsilon_{1}}=\frac{8.5}{170}=0.05$
b) $N_{1}=\frac{N_{2}}{\varepsilon_{2} / \varepsilon_{1}}=\frac{50}{0.05}$

$$
N_{1}=1000 \text { TURNS }
$$

Chapter 20
23. The component of the external magnetic field dong the centric axis of a 50 turncoil of radius 5.0 cm increases from O to 0.18 T in 3.6 s .
a) if $R=2.8 \Omega$, what is the magnitude of the induced cwrent in the coll?
b) What is the direction of the cwrent of the axial component of the field points away from the views?
a)

$$
\begin{aligned}
E_{m t} & =-N \frac{\Delta \Phi_{B}}{\Delta t} \\
& =-N \cdot\left(\frac{\Phi_{f}-\Phi_{I}}{\Delta t}\right) \\
& =50\left(\frac{(0.18 T-0)}{3.65}=2.5 \mathrm{~V}\right. \\
I & =V / R=2.5 \mathrm{~V} / 2.8 \Omega=0.893 \mathrm{~A}=I
\end{aligned}
$$

I is increasing
So Binsuces points opposite B_{0} applied. D_{0} the pay. Thumb aby B, fingers curl along I in a counter clocewita direction
 When the current in the solenoid is 12.0 A , the magnetic flux through the ring is 0.40 Wb . When the current increases at a rate of $240 \mathrm{~A} / \mathrm{s}$, what is the induced emf in the ring? (c) Is there a net magnetic force on the ring? If so, in what direction? (d) If the ring is cooled by immersing it in liquid nitrogen, what happens to its electrical resistance, the induced current, and the magnetic force? The change in size of the ring is negligible. (With a sufficiently strong magnetic field, the ring can be made to shoot up high into the air.)
a) For $\frac{\rightharpoonup}{B}$ shown incizeasina, I IN TIE RING WILL CREATE \vec{B} DOWNWARD

$$
\Rightarrow I \text { is CLOCKWISE }
$$

b) त्VE FLUX TIFROUGH THE RING DUE NO THE COIL IS

$$
\begin{aligned}
& \Phi=A B=A\left(\mu_{0} N I\right) \\
& \Rightarrow \mu_{0} N A=\frac{\Phi}{I}=\frac{0.4}{12}=\frac{1}{30}
\end{aligned}
$$

Tito Induced ε is due
TO CHANGING FLUX

$$
|\varepsilon|=\frac{\Delta \Phi}{\Delta t}=\frac{\Delta\left(\mu_{0} N A I\right)}{\Delta t}
$$

$$
|\varepsilon|=\mu_{0} N A \frac{\Delta I}{\Delta t}
$$

$$
\Rightarrow|\varepsilon|=\left(\frac{1}{30}\right)(240)=8.0 \mathrm{~V}=\varepsilon
$$

c) Since jibe hing creates a North pole beneath ITSELF THAT REPELS THE NORTH POLE OF THE COIL, FORCE ON TIE E RING IS UPWARD
d) COOLING TTE RING WILL REDUCER \& INCREASE I \& F \Rightarrow ITLL JUMP tigiter!
79. A TV tube requires a $20.0-\mathrm{kV}$-amplitude power supply.
(a) What is the turns ratio of the transformer that raises the 170 -V-amplitude household voltage to 20.0 kV ? (b) If the tube draws 82 W of power, find the currents in the primary and secondary windings. Assume an ideal transformer.
b)

$$
\begin{aligned}
& P=\varepsilon_{1} I_{1}=\varepsilon_{2} I_{2} \\
& I_{1}=\frac{P}{\varepsilon_{1}}=\frac{82}{170}=0.482 \mathrm{~N}=I_{1} \\
& I_{2}=\frac{P}{\varepsilon_{2}}=\frac{82}{20 \times 10^{3}}=0.0041 \mathrm{~A}=4.1 \mathrm{~mA}=I_{2}
\end{aligned}
$$

a)

$$
\begin{aligned}
& \frac{N_{2}}{N_{1}}=\frac{\varepsilon_{2}}{\varepsilon_{1}}=\frac{20 \times 10^{3}}{170} \\
& \frac{N_{2}}{N_{1}}=118
\end{aligned}
$$

AW CH 20 \& 22
88. An airplane is flying due north at $180 \mathrm{~m} / \mathrm{s}$. Earth's magnetic field has a northward component of 0.30 mT and an upward component of 0.38 mT . (a) If the wingspan (distance between the wingtips) is 46 m , what is the motional emf between the wingtips? (b) Which wingtip is positively charged?

a) ε is DUE TO $B \perp$ TO $\vec{v}=\vec{B}_{v p}: \varepsilon=v L B_{\text {Up }}$

$$
\varepsilon=(180)(46)\left(0.38 \times 10^{-3}\right)=3.15 \mathrm{~V}=\varepsilon
$$

b) THE FORCE ON $A+$ CHARGE IS OUTWARD IN TATE DIAGRAM

$$
\Rightarrow \text { EAST WING IAS A + CIAAIGE }
$$

CH 22
12. What is the wavelength of the radio waves broadcast by an FM radio station with a frequency of 90.9 MHz ?

$$
c=f \lambda \Rightarrow \lambda=\frac{c}{f}
$$

$$
\text { So } \lambda_{F M}=\frac{3 \times 10^{8}}{90.9 \times 10^{6}}=3.30 \mathrm{~m}=\lambda_{F M}
$$

19. Light of wavelength 692 nm in air passes into window glass with an index of refraction of 1.52 . (a) What is the wavelength of the light inside the glass? (b) What is the frequency of the light inside the glass?
a) $\lambda_{\text {GLASS }}=\frac{\lambda_{0}}{\eta_{G L A S S}}$

$$
\lambda_{G I A S S}=\frac{692}{1.52}=455 \mathrm{~nm}=\lambda_{G}
$$

b) THE Frequency is THE SAME w \& OUT OF GLASS

$$
f=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{692 \times 10^{-9}}=4.34 \times 10^{14} \mathrm{~Hz}
$$

24. You and a friend are sitting in the outfield bleachers of a major league baseball park, 140 m from home plate on a day when the temperature is $20^{\circ} \mathrm{C}$. Your friend is listening to the radio commentary with headphones while watching. The broadcast network has a microphone located 17 m from home plate to pick up the sound as the bat hits the ball. This sound is transferred as an EM wave a distance of $75,000 \mathrm{~km}$ by satellite from the ball park to the radio. (a) When the batter hits a hard line drive, who will hear the "crack" of the bat first, you or your friend, and what is the shortest time interval between the bat hitting the ball and one of you hearing the sound? (b) How much later does the other person hear the sound?
a) FIND FRAVEL TIME FOR SOUND

$$
\begin{aligned}
& t_{\text {SOUND }}=\frac{x_{\text {SOUND }}}{v_{\text {SOUND }}}=\frac{140}{343} \stackrel{p}{4} \\
& t_{\text {SOUND }}=0.4085
\end{aligned}
$$

FIND TRAVEL TIME TO RADIO

$$
\begin{aligned}
t_{\text {RADIO }} & =\frac{x_{M I C}}{v_{\text {SOM ND }}}+\frac{x_{E M}}{C} \\
& =\frac{17}{343}+\frac{75 \times 10^{6}}{3 \times 10^{8}} \\
t_{\text {RADIO }} & =0.300 \mathrm{~s}
\end{aligned}
$$

22. 24 CONTINUED

Since $t_{\text {SOUND }}>t_{\text {RADiO }} \Rightarrow$ Brio Listenve Hones sound First!
SHORTEST TIME IS $t_{\text {RADIO }}=0.300 \mathrm{~S}$ AFTER HIT.
b) "LIVE" SOUND ARRIVES 0.408 s AFTER THE AIT

$$
\begin{aligned}
\Rightarrow \Delta t & =t_{\text {SOUND }}-t_{\text {RADIO }} \\
\Delta t & =0.408-0.300=0.108 \mathrm{~s} \mathrm{AETER} \mathrm{RADIO}
\end{aligned}
$$

