

1) a) 2 When a positively charged rod is brought near a small piece of suspended (neutral) aluminum foil, the rod (attracts, repels) the foil. Explain Why.

b)² After a positively charged rod touches a small piece of suspended (neutral) aluminum foil, the rod (attracts, repels) the foil. Explain Why.

- 2)⁶ The charges shown are q_1 = 5 μ C and q_2 = -7 μ C.
- a)³ Find the magnitude of the force on q_1 due to q_2 where $k = 8.99 \times 10^{+9} \text{ Nm}^2/C^2$.
- **b)**³ find the direction of the force on q_1 due to q_2 . Give an angle. Sketch the angle and an arrow representing the force vector on the graph.

$$\mathbf{F} = \frac{\mathbf{k} \left| \mathbf{q}_{1} \right| \left| \mathbf{q}_{2} \right|}{\mathbf{r}_{12}^{2}}$$

