

Name _

 ⁶In a Young's double slit diffraction experiment, Yellow light of a wavelength 560nm is incident on a double slit with a slit separation of 25µm. A screen of width 30 cm is placed a distance of 2.0 m from the slit. How many diffraction orders do you see? How many bright spots? HINT: find the maximum diffraction angle that can be viewed on the screen.

Number of bright spots =2m+1=7

2². ²³⁷Np (Z=93) alpha decays. Which of the following is the daughter product? a) $\frac{237}{89}Ac$

b) ²³⁵ ₉₁ Pa	${}^{\mathcal{A}}_{Z}\mathcal{P} \rightarrow {}^{\mathcal{A}-4}_{Z-2}\mathcal{D} + {}^{4}_{2}\alpha$
c) $\frac{237}{92}U$	$^{237}_{93}Np \rightarrow ^{237-4}_{93-2}D + ^{4}_{2}\alpha$
d) 233 Pa	$^{237}_{93}$ Np $\rightarrow ^{233}_{91}$ Pa + $^4_2\alpha$
e) ²³³ ₈₉ AC	

3². ²²⁵Ra (Z=88) decays via beta minus. Which of the following is the daughter product? a) $\frac{^{226}}{^{89}}Ac$

b)
$$^{225}_{87}Fr$$

c) $^{225}_{89}Ac$
d) $^{225}_{88}Rn$
e) $^{225}_{88}Rn$
e) $^{225}_{88}Rn$
e) $^{225}_{88}Rn$
e) $^{225}_{87}Rn$
fr