\qquad

1) ${ }^{6}$ In a Young's double slit diffraction experiment, Yellow light of a wavelength 560 nm is incident on a double slit with a slit separation of $25 \mu \mathrm{~m}$. A screen of width 30 cm is placed a distance of 2.0 m from the slit. How many diffraction orders do you see? How many bright spots? HINT: find the maximum diffraction angle that can be viewed on the screen.

$m=\frac{d \sin \theta}{\lambda}=\frac{25 \times 10^{-6} \mathrm{~m} \sin (4.3)}{560 \times 10^{-9} \mathrm{~m}}=3.3$
since m must be an integer, $m=3$

Number of bright spots $=2 m+1=7$
$2^{2} .{ }^{237} \mathrm{~Np}(Z=93)$ alpha decays. Which of the following is the daughter product?
a) ${ }_{89}^{237} \mathrm{AC}$
b) ${ }_{91}^{235} \mathrm{~Pa}$

$$
\begin{aligned}
& { }_{z}^{A} P \rightarrow{ }_{Z-2}^{A-4} D+{ }_{2}^{4} \alpha \\
& { }_{237}^{237} N p \rightarrow{ }^{237-4} D+{ }_{2}^{4} \alpha \\
& { }_{93}^{237} N p \rightarrow{ }_{91}^{233} P a+{ }_{2}^{4} \alpha
\end{aligned}
$$

c) ${ }^{237} \mathrm{U}$
d) ${ }_{91}^{233} \mathrm{~Pa}$
e) ${ }_{89}^{233} \mathrm{AC}$
3^{2}. ${ }^{225} \mathrm{Ra}(Z=88)$ decays via beta minus. Which of the following is the daughter product?
a) ${ }_{89}^{226} \mathrm{AC}$
b) ${ }_{87}^{225} \mathrm{Fr}$

$$
\begin{aligned}
& { }_{{ }_{Z}^{A}} P \rightarrow{ }_{Z+1}^{A} D+{ }_{-1}^{0} e+\bar{v} \\
& { }_{225} R a \rightarrow{ }_{825}^{225} D+{ }_{-1}^{0} e+\bar{v} \\
& { }^{825} R a \rightarrow{ }_{88}^{225} A C+{ }_{-1}^{0} e+\bar{v} \\
& { }_{88}^{28} R
\end{aligned}
$$

d) ${ }_{86}^{221} R n$
e) ${ }_{87}^{224} \mathrm{Fr}$

