\qquad

1) A pole vaulter at the Relativistic Olympics sprints past you with a speed of 0.65 c . When he is at rest, his pole is 7.0 m long.

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}, \Delta t=\gamma \Delta t_{0}, L=\frac{L_{0}}{\gamma}
$$

a) ${ }^{2}$ What is gamma?
b) ${ }^{2}$ What length do you perceive the pole to be as he passes you, assuming his pole is parallel to his motion? (Draw the poles for him at rest and running \& label $L_{0} \& L$)

2) A spacecraft moves past a student with a relative velocity of 0.90 c . The pilot of the spacecraft works out for 30 minutes on her watch.
a) ${ }^{2}$ What is gamma?
b) ${ }^{2}$ How long does the pilot exercise according to the student? (Draw hands on Earth's clock and label $\Delta t_{0} \& \Delta t$)

3) ${ }^{2}$ Solve the Lorentz factor for $v: \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

