1. A transparent film (n=1.3) is deposited on a glass lens (n=1.5) to form a nonreflective coating. What is the smallest film thickness that would minimize reflection of light with a wavelength of 500 nm in air.

To minimize reflection, we want destructive interference

$$\Delta d + \phi = (m + \frac{1}{2})\lambda_{film}$$

Both rays 1 and 2 undergo a $\lambda/2$ phase shift since they both reflect from low to high index. As a result there is no phase DIFFERENCE between the rays due to reflection so $\phi=0$

$$\Delta d' + \phi = (m + \frac{1}{2})\lambda_{film} = 2t \qquad \text{m=0 gives minimum thickness}$$
$$t = \frac{\lambda_{film}}{4} = \frac{\lambda_0}{4n_{film}} = \frac{500nm}{4(1.3)} = 0.96nm$$

2. A 910nm soap film in air has an index of refraction of n=1.46. (a) Which visible wavelengths are weakest in reflected light? B) Which visible wavelengths are strongest in reflected light? (HINT: try various values of m until you find wavelengths between 400nm and 700 nm)

 $\lambda_0 = 2tn_{film} / m = 2(910 nm)(1.46) / m = 2657 nm / m$

 λ_0 = 664 nm, 531 nm, and 443 nm

b) For constructive interference we have

$$\Delta d' + \phi = 2t + \frac{\lambda}{2} = m\lambda_{film} \qquad 2t = (m - \frac{1}{2})\lambda_{film} = (m - \frac{1}{2})\lambda_0 / n$$
$$\lambda_0 = 2tn_{film} / (m - \frac{1}{2}) = 2(910nm)(1.46) / (m - \frac{1}{2}) = 2657nm / (m - \frac{1}{2})$$

 λ_{o} = 590 nm, 483 nm, and 409 nm

m	λ ₀ (nm)	
1	2657	
2	1329	
3	886	
4	664	
5	531	L
6	443	
7	380	

m	λ_0 (nm)	
1	5314	
2	1771	
3	1063	
4	929	
5	590	7
6	483	4
7	409	J

- 3. You have a coherent light source with a wavelength of 632 nm. You send the light through a double slit with slit separation of 15μ m to a screen located 1.2m away.
 - a) if you want to see at least 7 interference maxima, how wide should your screen be?
 - b) How many maxima will you see if you change the wavelength to a blue light of 410nm? (remember m must be an integer)
 - c) If you wanted to see just 7 blue maxima, what should you change the screen width to?

$$m = \frac{d\sin\theta}{\lambda} = \frac{15 \times 10^{-6} \, m\sin(7.26)}{410 \times 10^{-9} \, m} = 4.62$$

since m must be an integer, the largest value of m is 4, so we will see 9 maxima.

C)
$$d\sin\theta = m\lambda$$

 $\theta = \sin^{-1}\frac{m\lambda}{d} = \sin^{-1}\frac{3(410\times10^{-9})m}{15\times10^{-6}m} = 4.7^{\circ}$

 $\tan \theta = \frac{y}{D}$ y = D \tan \theta = 1.2m \tan(4.7°) = 0.099m screen width = 2y= 0.198m