1. A transparent film ($n=1.3$) is deposited on a glass lens $(n=1.5)$ to form a nonreflective coating. What is the smallest film thickness that would minimize reflection of light with a wavelength of 500 nm in air.
To minimize reflection, we want destructive interference

$$
\Delta d+\phi=\left(m+\frac{1}{2}\right) \lambda_{\text {film }}
$$

Both rays 1 and 2 undergo a $\lambda / 2$ phase shift since they both reflect from low to high index. As a result there is no phase DIFFERENCE between the rays due to reflection so $\phi=0$
$\Delta d+\phi=\left(m+\frac{1}{2}\right) \lambda_{\text {film }}=2 t \quad \mathrm{~m}=0$ gives minimum thickness

$$
t=\frac{\lambda_{\text {film }}}{4}=\frac{\lambda_{0}}{4 n_{\text {film }}}=\frac{500 \mathrm{~nm}}{4(1.3)}=0.96 \mathrm{~nm}
$$

2. A 910 nm soap film in air has an index of refraction of $n=1.46$. (a) Which visible wavelengths are weakest in reflected light? B) Which visible wavelengths are strongest in reflected light? (HINT: try various values of m until you find wavelengths between 400 nm and 700 nm)
a)

$$
\Delta d+\phi=\left(m+\frac{1}{2}\right) \lambda_{\text {film }}
$$

Ray 1 undergoes a $\lambda / 2$ phase shift \dagger since it reflects from low to high index. Ray 2 has no phase shift on reflection.

$$
\Delta d+\phi=\left(m+\frac{1}{2}\right) \lambda_{\text {film }}=2 t+\frac{\lambda}{2} \quad m \lambda_{\text {film }}=2 t=m \frac{\lambda_{0}}{n_{\text {film }}}
$$

$$
\lambda_{0}=2 t n_{\text {film }} / m=2(910 \mathrm{~nm})(1.46) / m=2657 \mathrm{~nm} / \mathrm{m}
$$

To minimize reflection, we want destructive interference

m	$\lambda_{0}(n m)$
1	2657
2	1329
3	886
4	664
5	531
6	443
7	380

$\lambda_{0}=664 \mathrm{~nm}, 531 \mathrm{~nm}$, and 443 nm
b) For constructive interference we have

$$
\begin{aligned}
& \Delta d+\phi=2 t+\frac{\lambda}{2}=m \lambda_{\text {film }} \quad 2 t=\left(m-\frac{1}{2}\right) \lambda_{\text {film }}=\left(m-\frac{1}{2}\right) \lambda_{0} / n \\
& \lambda_{0}=2 t n_{\text {film }} /\left(m-\frac{1}{2}\right)=2(910 \mathrm{~nm})(1.46) /\left(m-\frac{1}{2}\right)=2657 \mathrm{~nm} /\left(m-\frac{1}{2}\right) \\
& \lambda_{0}=590 \mathrm{~nm}, 483 \mathrm{~nm} \text {, and } 409 \mathrm{~nm}
\end{aligned}
$$

m	$\lambda_{0}(n m)$
1	5314
2	1771
3	1063
4	929
5	590
6	483
7	409

3. You have a coherent light source with a wavelength of 632 nm . You send the light through a double slit with slit separation of $15 \mu \mathrm{~m}$ to a screen located 1.2 m away.
a) if you want to see at least 7 interference maxima, how wide should your screen be?
b) How many maxima will you see if you change the wavelength to a blue light of 410 nm ? (remember m must be an integer)
c) If you wanted to see just 7 blue maxima, what should you change

$\tan \theta=\frac{y}{D}$
$y=D \tan \theta=1.2 m \tan \left(7.26^{\circ}\right)=0.153 m$
screen width $=2 y=0.306 \mathrm{~m}$
b) $m \lambda=d \sin \theta$

$$
m=\frac{d \sin \theta}{\lambda}=\frac{15 \times 10^{-6} \mathrm{~m} \sin (7.26)}{410 \times 10^{-9} \mathrm{~m}}=4.62
$$

since m must be an integer, the largest value of m is 4 , so we will see 9 maxima.
C) $d \sin \theta=m \lambda$

$$
\theta=\sin ^{-1} \frac{m \lambda}{d}=\sin ^{-1} \frac{3\left(410 \times 10^{-9}\right) \mathrm{m}}{15 \times 10^{-6} \mathrm{~m}}=4.7^{\circ}
$$

$\tan \theta=\frac{y}{D}$
$y=D \tan \theta=1.2 m \tan \left(4.7^{\circ}\right)=0.099 m$
screen width $=2 y=0.198 \mathrm{~m}$

