- 1. A proton is moving due north in a uniform magnetic field that is pointing 60° west of south. $F = qvB\sin\theta$ and $q = 1.6 \times 10^{-19}C$
 - a. Draw the magnetic field vector on the coordinate system below, and label all the directions on the coordinate system.
 - b. Draw the velocity vector on the same coordinate system.
 - c. What is the angle between v and B?
 - d. Draw the Force vector on the same coordinate system, and write down a description of the direction.
 - e. Find the magnitude of the Force vector if B = 1.6 T and v = 3×10^6 m/s

- 2. An electron is moving northward, 30° down from the horizontal in a uniform magnetic field that is pointing due west.
 - a. Draw the velocity vector on the coordinate system below, and label all the directions on the coordinate system.
 - b. Draw the magnetic field vector on the same coordinate system.
 - c. What is the angle between v and B?
 - d. Draw the Force vector on the same coordinate system, and write down a description of the direction.

- 3. A proton is moving west with a speed of 2.0×10^5 m/s in a 1.2 T uniform magnetic field. It experiences an upward magnetic force of 3.2×10^{-14} N.
 - a. Sketch the velocity on a coordinate system so that the force is aimed in (or out) of the page.
 - b. Calculate the angle between the velocity and the magnetic field.
 - c. Sketch the magnetic field on the graph (you should have two possible directions for B, sketch them both.

- 4. After being accelerated through a potential difference of 6.5kV, a doubly charged Oxygen atom O_2^{-2} (m₀ = 2.65 x 10⁻²⁶ kg) moves in a circle of radius 22 cm.

