Magnetic Fields and Forces with current carrying wires

Physics 104

1. A wire carrying a current of 1.5 A is pointing straight downward as shown on the right.
a) Calculate the magnitude of the magnetic field due to the wire at a point, P, 2.0 cm to the left of the wire as shown.

$$
B=\frac{\mu_{0} I}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)(1.5 \mathrm{~A})}{2 \pi(0.02 \mathrm{~m})}=1.5 \times 10^{-5} \mathrm{~T}
$$

b) What is the direction of the magnetic field vector at point P ? Show this on the diagram.

Into the page

c) If another wire with a length of 0.75 m and a current of 3.0 A is placed through point, P , pointing straight upward, what is the magnitude of the force it experiences due to wire 1?

$$
\begin{aligned}
F & =I L B \sin \theta \\
& =I L B \sin 90 \\
& =I L B \\
& =(3.0 \mathrm{~A})(0.75 \mathrm{~m})\left(1.5 \times 10^{-5} \mathrm{~T}\right) \\
& =3.38 \times 10^{-5} \mathrm{~N}
\end{aligned}
$$

$$
P\left\{\begin{array}{|c}
\underset{2}{2.0 \mathrm{~cm}} \\
\\
\\
\\
\\
\\
\\
\hline
\end{array}\right.
$$

d) What is the direction of the magnetic force on wire 2? Show this on the diagram.

e) Does wire 2 exert a force on wire 1? If so, what is the direction?

Yes, because wire 2 creates a B field that can exert a force on wire 1

Magnetic Fields and Forces with current carrying wires

Physics 104

2. Two wires are carrying a current of 3.3 A are separated by a distance of 6.0 cm . Wire 1 on the left is pointing into the page, and wire 2 on the right is pointing out of the page. A point, P, is 4.0 cm below the center of the two wires.
a) Sketch in a circle around each wire with an arrow showing the direction of B.
b) You know that the Magnetic field vector at a point, P, is perpendicular to r and points in the direction given by the loop you drew in A. Sketch in a vector originating at point P that points in the direction of $B 1$ and another in the direction of $B 2$.

c) Find the magnitude of the magnetic force due to wire 1 at point, P.

$$
\begin{aligned}
& r=\sqrt{(3.0 \mathrm{~cm})^{2}+(4.0 \mathrm{~cm})^{2}}=5.0 \mathrm{~cm} \\
& B 1=\frac{\mu_{0} I}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)(3.3 \mathrm{~A})}{2 \pi(0.05 \mathrm{~m})}=1.32 \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

d) Find the magnitude of the magnetic force due to wire 2 at point, P.

$$
B 2=B 1=\frac{\mu_{0} I}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)(3.3 \mathrm{~A})}{2 \pi(0.05 \mathrm{~m})}=1.32 \times 10^{-5} \mathrm{~T}
$$

f) Find the angle that B1 is pointing using the geometry of the wires and point

$$
\begin{aligned}
\text { P. }{ }^{\theta} & =\tan ^{-1}\left(\frac{4.0}{3.0}\right)=53.1^{\circ} \\
\phi & =90-53.1=36.9
\end{aligned}
$$

g) Find the x and y components of $B 1$ and $B 2$.

$$
\begin{aligned}
B 1_{x} & =B 1 \cos \phi=1.32 \times 10^{-5} \mathrm{~T} \cos 36.9 \\
& =1.05 \times 10^{-5} \mathrm{~T} \text { to the left and } B 2_{x} \text { is to the right } \\
B 1_{y} & =B 1 \sin \phi=1.32 \times 10^{-5} \mathrm{~T} \sin 36.9 \\
& =7.9 \times 10^{-6} \mathrm{~T} \text { down }=B 2_{y}
\end{aligned}
$$

h) Find the magnitude and direction of the B-field at point, P, due to wire 1 and
2. The x-components cancel each other so $B_{x}=0$ And the y-components add so $B_{y}=2 B 1_{y}=1.58 \times 10^{-6} \mathrm{~T}$

