Two point charges ($+10.0 \mu \mathrm{C}$ and $10.0 \mu \mathrm{C}$) are located 8.00 cm apart.
a) Find the electric potential energy when a point charge of $-4.2 \mu C$ is placed at point A.
$U_{E}=\frac{k q_{1} q_{2}}{r_{12}}$

$U_{A}=k\left(\frac{q_{A} q_{+}}{r_{A+}}+\frac{q_{A} q_{-}}{r_{A-}}+\frac{q_{q_{1}} q_{-}}{r_{+-}}\right)$
$U_{A}=8.99 \times 10^{9}\left(\frac{\left(-4.2 \times 10^{-6}\right)\left(10 \times 10^{-6}\right)}{0.4}+\frac{\left(-4.2 \times 10^{-6}\right)\left(-10 \times 10^{-6}\right)}{0.85}+\frac{\left(10 \times 10^{-6}\right)\left(-10 \times 10^{-6}\right)}{0.75}\right)$
$U_{A}=-1.70 \mathrm{~J}$
b) Find the electric potential energy when a point charge of $-4.2 \mu \mathrm{C}$ is placed $a t$ point B.
$U_{B}=k\left(\frac{q_{B} q_{+}}{r_{B+}}+\frac{q_{B} q_{-}}{r_{B-}}+\frac{q_{+} q_{-}}{r_{+-}}\right)$
$U_{B}=8.99 \times 10^{9}\left(\frac{\left(-4.2 \times 10^{-6}\right)\left(10 \times 10^{-6}\right)}{1.1}+\frac{\left(-4.2 \times 10^{-6}\right)\left(-10 \times 10^{-6}\right)}{0.35}+\frac{\left(10 \times 10^{-6}\right)\left(-10 \times 10^{-6}\right)}{0.75}\right)$
$U_{B}=-4.63 \times 10^{-1} \mathrm{~J}=-0.463 \mathrm{~J}$
c) What is the change in electric potential energy when the $-4.2 \mu \mathrm{C}$ point charge is moved from A to B ? Does it increase or decrease? Why?

$$
\Delta U_{A \rightarrow B}=U_{B}-U_{A}=-0.463 \mathrm{~J}-(-1.70 \mathrm{~J})=1.24 \mathrm{~J}
$$

The potential energy increases since the $-4.2 \mu \mathrm{C}$ charge moves closer to another negative charge and farther from the positive charge.
d) How much work is done by the electric force in moving the charge from A to B ? Is it positive or negative? Explain.

$$
\Delta U_{A \rightarrow B}=-W_{A \rightarrow B}=-1.24 \mathrm{~J}
$$

The work done by the electric force is negative because work must be done AGAINST the electric force to move the charge to a higher potential energy.
This is like gravity doing negative work on you as you climb the stairs.

e) What is the electric potential at point A?
$V=\frac{k Q}{r}$

$$
V_{A}=k\left(\frac{Q_{+}}{r_{A+}}+\frac{Q}{r_{A-}}\right)=8.99 \times 10^{9}\left(\frac{\left(10 \times 10^{-6}\right)}{0.4}+\frac{\left(-10 \times 10^{-6}\right)}{0.85}\right)
$$

$$
V_{A}=1.19 \times 10^{5} \mathrm{~V}=119 \mathrm{kV}
$$

f) What is the electric potential at point B ?

$$
\begin{aligned}
& V_{B}=k\left(\frac{Q_{+}}{r_{B+}}+\frac{Q}{r_{B-}}\right)=8.99 \times 10^{9}\left(\frac{\left(10 \times 10^{-6}\right)}{1.1}+\frac{\left(-10 \times 10^{-6}\right)}{0.35}\right) \\
& V_{B}=-1.75 \times 10^{5} \mathrm{~V}=-175 \mathrm{kV}
\end{aligned}
$$

g) What is the change in electric potential if you were to move a test charge from A to B ? Does it increase or decrease? Why?

$$
\Delta V_{A \rightarrow B}=V_{B}-V_{A}=-175 \mathrm{kV}-119 \mathrm{kV}=-294 \mathrm{kV}
$$

The potential decreases since the + test charge moves closer to a negative charge and farther from the positive charge.

