
HOMEWORK SET 25: NUCLEAR MASSES AND ENERGIES Due Monday, April 21, 2025

PROBLEMS FROM OR AFTER TZDII1

16.31) Enlarge Fig. 16.11 to include the nuclei 12 Be and 12 O. By how much (in terms of $\triangle E$ shown in Fig. 16.11) does the energy of each isobar with $Z \neq N$ exceed the energy of 12 C?

- 16.33) a) Find the mass (in u) of the ⁴He atom in Appendix D.
- **b)** Find the mass of the ${}^4\text{He}$ nucleus to 7 figures (but ignore corrections due to the atomic electrons' binding energy ... TAKE $m_{\text{nuc}} = m_{\text{atom}} m_{\text{e-}}$).
- c) Do any of the seven figures change if you take into account the electrons' binding energy (about 80 eV total)?
- **16.37)** a) The proton separatin energy S_p (energy to remove one proton) for ¹⁹⁸Hg is 7.1 MeV. Given that the total binding energy of ¹⁹⁷Au is 1559.4 MeV, find that total binding energy of ¹⁹⁸Hg.
- **b)** Compare your answer with the answer obtained directly from the mass of 198 Hg given in Appendix D.

MAJORED IN SCIENCE DID ADVANCED RESEARCH BECAME A NUCLEAR PHYSICIST

MAJORED IN SCIENCE DID ADVANCED RESEARCH BECAME A NUCULAR PHYSICIST

¹ Taylor, Zafiratos, & Dubson, Modern Physics for Scientists and Engineers, 2nd Editon, Pearson, Prentice Hall, 2004

Phys 222: Modern Physics Spring 2025

Atomic and nuclear masses and binding energy

Atomic masses include masses of the nucleus and electrons, plus the electron binding energy

$$\begin{split} m_{\text{TZDII Appendix D}} &= m_{\text{atom}} = m_{\text{nuc}} + Z m_{\text{e}} = N m_{\text{n}} + Z m_{\text{p}} + Z m_{\text{e}} \\ \\ m_{\text{atom}} &= N m_{\text{n}} + Z \Big(m_{\text{p}} + m_{\text{e}} \Big) = N m_{\text{n}} + Z m_{\text{H}} \end{split}$$

The mass of the nucleus is reduced by the binding energy of the nucleons

$$m_{\text{nucleus}} = Zm_{\text{p}} + Nm_{\text{h}} - \frac{B}{c^2}$$
TZDII (16.17)

The binding energy, B, is thus

$$B = \left(Zm_p + Nm_n - m_{nucleus}\right)c^2$$
 TZDII (16.18)

To account for the binding energy of the electrons to the nucleus in the atom's mass, change the mass of Z protons to the mass of Z hydrogen atoms (with that binding energy included) by adding & subtracting $m_{\rm e}$,

$$B = \left(Zm_{_{\!p}} + Nm_{_{\!n}} - m_{_{\!nucleus}}\right)c^2 + Z\left(m_{_{\!e}} - m_{_{\!e}}\right)c^2$$

Rearranging,

$$B = \left(Z m_{_{\!p}} + Z m_{_{\!e}} + N m_{_{\!n}}\right) c^2 - \left(m_{_{\!nucleus}} + Z m_{_{\!e}}\right) c^2$$

Substituting Zm_H for $Z(m_p + m_e)$ includes the binding energy of the electrons so that we can write $m_{nucleus} + Zm_e$ as the mass of the atom, giving

$$B = \underbrace{\left(Zm_{H} + Nm_{n}\right)}_{\text{the parts}} c^{2} - \underbrace{\left(m_{\text{atom}}\right)}_{\text{the whole}} c^{2}$$

$$TZDII (16.19)$$