9) \(E = 0.4A \) flows around a 1cm-radius loop.
 a) What is \(\mu \)?
 b) If \(\vec{B} = 1.5T \) with \(\mu \perp \vec{B} \), what is the torque on the loop?
 c) What is \(\Delta E \) for the loop parallel and antiparallel to \(\vec{B} \)? \(\mu \), actually?

 a) For a 1cm radius loop with \(i = 0.4A \),
 \[\mu = iA = (0.4)(10^6(0.01)) = \frac{1.26 \times 10^{-4}}{5} \text{ C.m}^2 = \mu \]

 b) If \(\vec{\mu} \) is \(\perp \) to \(\vec{B} \), find \(\tau \)
 \[\vec{\tau} = \vec{\mu} \times \vec{B} = \mu B \sin \theta \text{ out of page} \]
 \[\tau = \mu B = (1.26 \times 10^{-4})(1.5) \]
 \[\tau = 1.89 \times 10^{-4} \text{ N.m} \]

 c) Find \(\Delta E \) between parallel and antiparallel.
 \(\Delta E = -\vec{\mu} \cdot \vec{B} \)
 For parallel: \(U_{\parallel} = -\mu B \cos(0) = -\mu B \)
 For antiparallel: \(U_{\perp} = -\mu B \cos(\pi) = \mu B \)
 The difference is
 \[\Delta E = U_{\perp} - U_{\parallel} = 2\mu B = 2\tau \]
 \[\Delta E = 2(1.89 \times 10^{-4}) = 3.77 \times 10^{-4} \text{ J} \]