TZDII Problem 16.15 part b)

The density of mass inside a nucleus is approximated by

$$\rho(r) = \frac{\rho_0}{1 + e^{r - R / t}}$$

where ρ_0, R, and t are positive constants. Sketch ρ as a function of r.

```
In[45]:= 
 rho = rho0 / (1 + Exp[(r - R) / t])

Out[45]= 
 rho0 / (1 + e^(-r / t))
```

Take some random small values in for R and t (but ρ_0 is fairly well known) since it’s only the shape of the curve matters. Then plot it.

```
In[101]:= 
 rho0 = 3 * 10^17;
 R = 4;
 t = 0.5;

In[107]:= 
 PlotA = Plot[rho, {r, 0, 10},
 TextStyle -> {FontFamily -> Helvetica, FontSize -> 12, FontColor -> RGBColor[0, 0, 0.75]},
 Ticks -> {{5, 10}, Automatic},
 PlotStyle -> {RGBColor[0, 0, 0.75]}]
```

```
In[117]:= 
 rho0 = 3 * 10^17;
 R = 3;
 t = 0.5;
```
In[120]:=
PlotB = Plot[rho, {x, 0, 10},
TextStyle -> {FontFamily -> Helvetica, FontSize -> 12, FontColor -> RGBColor[0, 0.75, 0]},
Ticks -> {{5, 10}, Automatic},
PlotStyle -> {RGBColor[0, 0.75, 0]}]

In[133]:=
rhonaught = 3 \times 10^{17};
R = 5;
t = 0.5;

In[136]:=
PlotC = Plot[rho, {x, 0, 10},
TextStyle -> {FontFamily -> Helvetica, FontSize -> 12, FontColor -> RGBColor[0.5, 0, 0]},
Ticks -> {{5, 10}, Automatic},
PlotStyle -> {RGBColor[0.5, 0, 0]}]
In[138]:=

Show[PlotA, PlotB, PlotC]