TRex 9.17) In Alfecca ($\alpha \mathrm{CBr}$), 1 H atoms are in the $\mathrm{n}=2$ state for every 10 million in the ground state. Assume M-B Statistics are valid to find the temperature.

$$
\begin{array}{ccll}
\mathrm{k}= & 8.62 \mathrm{E}-05 \mathrm{eV} / \mathrm{K} & & \\
\mathrm{~N}=1: & \mathrm{g}\left(\mathrm{E}_{1}\right)=2 & \mathrm{E}_{1}=-13.6 & \mathrm{eV} \\
\mathrm{~N}=2: & \mathrm{g}\left(\mathrm{E}_{2}\right)=8 & \mathrm{E}_{2}=-3.4 & \mathrm{eV}
\end{array}
$$

The Equation to use (the approximation of the integral) is:

$$
\begin{aligned}
& \frac{n\left(E_{2}\right)}{n\left(E_{1}\right)}=\frac{g\left(E_{2}\right)}{g\left(E_{1}\right)} e^{\beta(E 1-E 2)} \\
& T=\frac{E_{1}-E_{2}}{k} / \ln \left(\frac{n\left(E_{2}\right)}{n\left(E_{1}\right)} \quad g\left(E_{1}\right) \quad g\left(E_{2}\right) \quad\right) \\
& \mathrm{T}=\frac{-10.2}{8.62 \mathrm{E}-05} \quad / \ln \left(\frac{1}{10000000}\right) \\
& T=-1.18 \mathrm{E}+05 \quad / \ln \left(\frac{2}{80000000}\right) \\
& \mathrm{T}=-1.18 \mathrm{E}+05 \quad / \ln (2.50 \mathrm{E}-08) \\
& \mathrm{T}=-1.18 \mathrm{E}+05 \quad / \quad-17.50439 \\
& T=6,760 \quad \mathrm{~K}
\end{aligned}
$$

