TZDII Problem 8.43

What is the probability that a 1s electron in hydrogen will be found outside the Bohr radius?

Write out the wave function for a 1s electron:

$$\begin{array}{ll} & \text{In[1]:=} & \text{R1s[r]} := \frac{1}{\sqrt{\pi * a_B^3}} * \text{Exp} \Big[\frac{-r}{a_B} \Big] \\ & \text{R1s[r]} \\ & \text{R1s[r]} ^2 \end{array}$$

Out[2]=
$$\frac{e^{-\frac{1}{a_B}}}{\sqrt{\pi} \sqrt{a_B^3}}$$

Out[3]=
$$\frac{e^{-\frac{2r}{a_B}}}{\pi a_B^3}$$

Write out the wave function for a 1s electron:

In[6]:= ProbDens1s[r_] :=
$$4 * \pi * r^2 * R1s[r]^2$$

ProbDens1s[r]

Out[7]=
$$\frac{4 e^{-\frac{2 r}{a_B}} r^2}{a_B^3}$$

To find the probability of finding it outside a_B , integrate from a_B to infinity:

ln[8]:= Integrate[ProbDens1s[r], {r, a_B , ∞ }]

$$\text{Out}[8] = \left[\begin{array}{cc} \frac{5}{e^2} & \text{if } \text{Re}\left[\,a_B\,\right] \, > \, 0 \end{array} \right]$$

So the probability is $(5/e)^2$, or

In[9]:=
$$N[5/e^2]$$

Out[9]= 0.676676

This means that the electron has a 68% chance of being outside the Bohr orbit and a 32% chance of being inside it ... yeah, there's a long tail on the wave function, so this makes sense. Plotting the probability density shows that the area under the cure outside of a_R is greater than that within a_R .

In[16]:= Export["TZDII_Pr08-43.pdf", SelectedNotebook[]]

Out[#]= TZDII_Pr08-43.pdf