Homework Set 2: Projectiles

Due Monday, September 5, 2022

1) If a projectile is fired from the origin of the coordinate system with an initial velocity v_{o} and in a direction making an angle α with the horizontal, show that the time required for the projectile to cross a line passing through the origin and making an angle $\beta<\alpha$ with the horizontal is

$$
\mathrm{t}_{0}=\frac{2 \mathrm{v}_{0}}{9}(\sin \alpha-\cos \alpha \tan \beta)
$$

2) A projectile is fired with a velocity v_{0} such that it passes through two points both a distance h above the horizontal. Show that if the gun is adjusted for maximum range (derive what the angle is!), the separation of the points is

$$
d=\frac{v_{0}}{g} \sqrt{v_{0}^{2}-4 g h}
$$

3) Two balls are thrown with equal speeds from the top of a cliff of height h. One is thrown at an angle α above the horizontal. The other is thrown at an angle β below the horizontal. Show that each strikes the ground with the same speed and find the speed in terms of h and the intial speed vo.
Remember, final speed is total speed, $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$, not just v_{y} !

