Homework set 3: FUN WITH NSL

Due: Wednesday, September 6, 2023
Sketch each situation and an FBD for each object (just the kid in \#1, not the elevator).

1) A 60 kg child is standing on a scale in an elevator. What does the scale read when
a) the elevator is descending at a constant rate of $10 \mathrm{~m} / \mathrm{s}$?
b) the elevator is accelerating downward at $2 \mathrm{~m} / \mathrm{s}^{2}$?
c) the elevator is ascending at $10 \mathrm{~m} / \mathrm{s}$ but its speed is decreasing by $2 \mathrm{~m} / \mathrm{s}$ each second?

2) A 2 kg body rests on a smooth wedge that has an inclination of 60° and an acceleration, a, to the right such that the mass remains stationary relative to the wedge.
a) Find a.
b) What would happen if the wedge were given a greater acceleration?

Answer: a) $a=17 \mathrm{~m} / \mathrm{s}^{2}$

PRoblems from Thornton \& Marion (5TH Ed.) (TM5)

-- When TM5 gives answers, match their algebraic form!
3) 2-16 A particle is projected with an initial velocity v_{0} up a slope that makes an angle α with the horizontal. Assume frictionless motion and find the time required for the particle to return to its starting position. Find the time for $v_{0}=2.4 \mathrm{~m} / \mathrm{s}$ and $\alpha=26^{\circ}$.
4) 2-32 Two blocks of unequal mass are connected by a string over a smooth pulley. If the coefficient of kinetic friction is μ_{k}, what angle θ of the incline allows the masses to move at a constant speed? (HINT: I ENDED Up APPLYING THE QUADRATIC FORMULA TO AN EQUATION IN SIN $\theta: A_{\text {SIN }}{ }^{2} \theta+\operatorname{BSIN} \theta+C=0$)

