Homework Set 7: Drag

Due Friday, September 22, 2023

1) A particle of mass m slides down an inclined plane under the influence of gravity. If the motion is resisted by a force $f=k m v^{2}$, show that the time required to move a distance d after starting from rest is

$$
t=\frac{\cosh ^{-1}\left(e^{k d}\right)}{\sqrt{k g \sin \theta}}
$$

where θ is the angle of inclination of the plane. HINTS: You may find the $\Sigma F=m v(d v / d x)$ form of NSL helpful. Take the derivative of $\cosh ^{-1}\left(e^{k x}\right)$ to find the necessary form of the integrand of the integral over x after you've found $v(t)$ and substituted $d x / d t$ for it. Go back and work on the "Remembering Math" homework (set 0). Also, m in the drag force is for algebraic convenience, drag does not depend on the mass of the object.
2) A gun is fired straight up. Assuming that the air drag on the bullet varies quadratically with speed, derive the equations describing how velocity varies with height (Hint: You must solve NSL for upward and downward motion separately. Label the variables as up or down and use limits (0 to t, yo,up to yup, yo,down to ydown).)

$$
\begin{gathered}
v_{\text {up }}^{2}=A e^{-2 k y_{\text {up }}}-\frac{g}{k} \text {, where } A=\frac{g+k v_{0, \text { up }}^{2}}{k} \quad \text { (upward motion) } \\
v_{\text {down }}^{2}=\frac{g}{k}-B e^{2 k y_{\text {domn }}} \text {, where } B=\left(\frac{g-k v_{0, \text { down }}^{2}}{k}\right) e^{-2 k y_{0, \text { doun }}} \quad \text { (downward motion) }
\end{gathered}
$$

in which A and B are constants of integration, g is the acceleration of gravity, k is the drag constant [FDrag $=m k v^{2}$], and m is the mass of the bullet NOTE: y is measured positive upward and m in the drag force is for algebraic convenience, drag does not depend on the mass of the object.

Use these to show that when the bullet hits the ground on its return, its speed will be

$$
v=\frac{v_{0} v_{+}}{\sqrt{v_{0}^{2}+v_{+}^{2}}}
$$

in which v_{0} is the initial upward speed and

$$
v_{\dagger}=\sqrt{\frac{g}{k}}=\text { terminal speed }
$$

HINT: Note that the final height for the upward motion, $y_{u p}=y_{\text {top, }}$ becomes yo,down for the downward motion. Find an expression for $y_{\text {top }}$ and use this to find the velocity ($v_{\text {down }}$) when the bullet returns to the ground, $y_{\text {down }}=0$

