Homework Set 11: Simple \& Damped Harmonic Motion Due Wednesday, October 11, 2023

Problems From TM5.

1) 3-2 Allow the motion of a 100 g mass attached to a spring with a force constant of $k=10^{4} \mathrm{dyne} / \mathrm{cm}$ initially displaced 3 cm from the equilibrium point and released from rest, to take place in a resisting medium. After oscillating for $10 s$, the maximum amplitude decreases to half the initial value. Calculate
a) the damping parameter β, and
b) the frequency v_{s} (compare with the undamped frequency v_{N} (these are f_{s} and f_{N}).

1 dyne $=1 \mathrm{~g}-\mathrm{cm} / \mathrm{s}^{2}=10^{-5} \mathrm{~N}$ but don't convert! Stay in cgs!
2) 3-7. A raft of uniform cross-sectional area A and of mass density ρ_{r} floats in a liquid of density ρ fluid. At equilibrium it displaces a volume V. Show that the period of small oscillations about the equilibrium position [due to buoyancy: Fbuoyancy $=$ Weight of fluid displaced $=($ mass of fluid $) g=(\rho f l u i d V) g$] is given by

3) 3-10 If the amplitude of a damped oscillator decreases to $1 / e$ of its initial value after n periods, show that the ratio of the frequency of the oscillator to that of the corresponding undamped oscillator must be approximately

$$
\frac{\omega_{S}}{\omega_{N}} \cong 1-\frac{1}{8 \pi^{2} n^{2}}
$$

(To get this expression, derive the exact expression $\frac{\omega_{S}}{\omega_{N}}=\left(1+\frac{1}{4 \pi^{2} n^{2}}\right)^{-\frac{1}{2}}$ and expand it)
4) 3-12 A simple pendulum consists of a mass m suspended from a fixed point by a weightless, extensionless rod of length r. Obtain the equation of motion and, in the approximation that $\sin \theta \approx \theta$, show that the natural frequency is $\omega_{N}=\sqrt{g / r}$ where g is the gravitational field strength. Discuss the motion in the event that the motion takes place in a viscous medium with retarding force, $F_{\text {Drag }}=2 m \sqrt{\mathrm{gr}} \dot{\theta}$.
(Find β and compare it to ω_{N} to determine which damping solution to use ... underdampd or critically damped.)

Don't neglect the FBDs! What is $F_{\text {Restore? }}$ Where is Forag?

