Homework Set 16: Fun with Lagrange

Due Monday, November 7, 2022

1) Two equal masses are constrained by the spring-and-pulley system shown. Assume a massless pulley and a frictionless surface. Let x be the extension of the spring from its relaxed length. Derive the equations of motion by Lagrangian methods. Solve for x as a function of time with the boundary conditions $x(t=0)=\dot{x}(t=0)=0$. Lagrange's Equations will give you a $D E$, $\ddot{x}+\frac{k}{2 m} x=\frac{9}{2}$ for which you should guess a solution $x=A+B \cos \left(\omega_{N} \dagger\right)$.

Problems From TM5

2) 7-2 Work out Example 7.6 showing all the steps, in particular those leading to Equations 7.36 and 7.41 . Explain why the sign of the acceleration a cannot affect the frequency ω. Give an argument why the signs of a^{2} and g^{2} in the solution of ω^{2} in Equation 7.42 are the same.
Write down every step in taking the derivatives of the Lagrangian ... no short-cuts or you'll miss something! Be careful about the difference between partial and full derivatives! There's a triangle lurking in $\tan \left(\theta_{e}\right)=(-a / g)$ and it does not mean that $\sin \left(\theta_{e}\right)=(-a)$... draw the triangle to find $\sin \left(\theta_{e}\right)$ and $\cos \left(\theta_{e}\right)$!
3) 7-3 A sphere of radius ρ is constrained to roll without slipping on the lower half of the inner surface of a hollow cylinder of inside radius R. Here, θ is the angle between the vertical and the position of the center of mass of the small sphere and ϕ is the angle through which the small sphere has rolled. Determine the Lagrangian function, the equation of constraint and show that Lagrange's equations of motion, for the coordinates shown, are

$$
\begin{aligned}
& -(R-\rho) m g \sin \theta-m(R-\rho)^{2} \ddot{\theta}+\lambda(R-\rho)=0 \\
& -\frac{2}{5} m \rho^{2} \ddot{\phi}-\lambda \rho=0,
\end{aligned}
$$

where

$$
\lambda=-\frac{2}{5} m(R-\rho) \ddot{\theta}=-\frac{2}{5} m \rho \ddot{\phi}
$$

Also show that the frequency of small oscillations is

$$
\omega=\sqrt{\frac{5 g}{7(R-\rho)}} .
$$

The energies are due to the height of the CM of the sphere and its translational ($\frac{1}{2} m v^{2}$) and rotational ($\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \mathrm{I} \dot{\phi}^{2}$) motions. The rolling constraint is that the distance moved by the center of mass is equal to the arc length it rolls along the sphere: $S_{c m}=r_{\text {spheredsphere }}$. Describe Scm in terms of θ and $R-\rho$ and use Lagrange's equations with undetermined multipliers (TM5 Equation 7.65). For the last step, recognize that the small oscillations of the $C M$ are expressed by $\omega=\dot{\theta}$. To find it, use the result of Lagrange's equation in θ with the θ expression for λ substituted and get it in the form of $\ddot{\theta}+\omega_{N}^{2} \theta=0$.

A lever and a place to stand, Old Main, Clarkson University, Main St., Potsdam, NY

