Homework Set 18: Gravitational Force \& Potential Due Monday, November 29, 2021

1) 5-3 Assuming that air resistance is unimportant, derive an expression for the minimum velocity a particle must have at the surface of Earth to escape from Earth's gravitational field. Obtain a numerical value for the result. (This is called the escape velocity) Use energy with $(T+U)_{\text {surface }}=(T+U)_{\infty}=0!$ You should get $\mathrm{v}_{e}=11.2 \mathrm{~km} / \mathrm{s}(25,000 \mathrm{mph})$
2) 5-16 A uniformly solid sphere of mass M and radius R is fixed a distance h above a thin infinite sheet of mass density σ (mass/area). With what force does the sphere attract the sheet?
Find the force of the plane on the sphere then take its opposite (Newton's $3^{\text {rd }}$ Law) as the force of the sphere on the plane. Take $d m$ as that of a ring of radius r, width $d r$ and length $2 \pi r$ and integrate from $r=0$ to ∞.

$$
\mathrm{F}_{z, \text { sphere on plane }}=+2 \pi \sigma_{s} G M
$$

3) 5-5 A particle falls to the Earth starting from rest at a great height. Neglect air resistance and show that the particle requires approximately $9 / 11$ of the total time of fall to traverse the first half of the distance.

$$
\frac{9}{11} \approx \frac{\left(\frac{\pi}{2}+1\right)}{\pi}
$$

Start with NSL with $(d p / d t)=m v(d v / d y)$. After the first round you should end up with an ugly integral as shown ... with the substitution that will help you solve it (ultimately you'll find the integral of $\cos ^{2} \theta$). It will be helpful to factor a $\sqrt{ }(1 / y)$ out of the denominator to leave $1-\left(y / y_{0}\right)$ under the square root. Integrate using the appropriate limits (what is θ when $y=y o$ and $y=y$?). Evaluate your answer for $t_{\text {total }}$ and thalf then find the ratio.

