HOMEWORK SET 18: GRAVITATIONAL FORCE & POTENTIAL Due Monday, November 29, 2021

1) 5-3 Assuming that air resistance is unimportant, derive an expression for the minimum velocity a particle must have at the surface of Earth to escape from Earth's gravitational field. Obtain a numerical value for the result. (This is called the *escape velocity*) Use energy with $(T + U)_{surface} = (T + U)_{\infty} = 0!$ You should get $v_e = 11.2 \text{ km/s} (25,000 \text{ mph})$

2) 5-16 A uniformly solid sphere of mass M and radius R is fixed a distance h above a thin infinite sheet of mass density σ (mass/area). With what force does the sphere attract the sheet?

Find the force of the plane on the sphere then take its opposite (Newton's 3^{rd} Law) as the force of the sphere on the plane. Take dm as that of a ring of radius r, width dr and length $2\pi r$ and integrate from r = 0 to ∞ .

$$F_{z,sphere \text{ on plane}} = +2\pi\sigma_s GM$$

3) 5-5 A particle falls to the Earth starting from rest at a great height. Neglect air resistance and show that the particle requires approximately 9/11 of the total time of fall to traverse the first half of the distance.

$$\frac{9}{11} \approx \frac{\left(\frac{\pi}{2} + 1\right)}{\pi}$$

Start with NSL with (dp/dt) = mv(dv/dy). After the first round you should end up with an ugly integral as shown ... with the substitution that will help you solve it (ultimately you'll find the integral of $\cos^2\theta$). It will be helpful to factor a $\sqrt{(1/y)}$ out of the denominator to leave 1 - (y/y₀) under the square root. Integrate using the appropriate limits (what is θ when y = y₀ and y = y₂). Evaluate your answer for t_{total} and t_{half} then find the ratio.

