Essential Physics Knowledge … a work in progress!

Basics

 $s = r\theta$ s $v = \frac{ds}{dt}$ $a = \frac{dv}{dt}$ r θ

- derivatives give v, ω , a, α and their relationships.

Trigonometry:
$$
\sin^2\theta + \cos^2\theta = 1
$$
, $\sin(90 - \theta) = \cos\theta$ (Unit Circle)

Notation:
$$
\dot{y} = \frac{dy}{dt}
$$
 and $y'(x) = \frac{dy}{dx}$

Wavelength and Wave Number: $k = \frac{2\pi}{\lambda}$

Magnitude of a complex number: $|z| = z^*z$ where z^* is the complex conjugate of z $\left| e^{i\phi} \right| = 1$

Vector dot product multiplies parallel components $\vec{\mathfrak{a}}\cdot \vec{\mathsf{b}}= \mathsf{ab}\cos\theta$ (scaler product)

Vector cross product multiplies perpendicular components $|\vec{a} \times \vec{b}| = ab \sin \theta$, dir. by RHR (vector product)

Momentum

Momentum: $\vec{p} = m\vec{v}$ De Broglie: $p = \frac{h}{\lambda} = \hbar k$ λ

Angular Momentum: $\vec{L} = \vec{r} \times \vec{p} = rpsin(\theta)$

- For r perpendicular to p (circular motion) $L = rp = r(mv) = mr(r\omega) = mr^2\omega \rightarrow I\omega$

Energy

Work: W = (force)(distance in direction of force), $W_{\rm max} = \int_0^{2\pi}$ 1 ² 2 1 1 s s, to s $W_{s_1 \text{ to } s_2} = \int_{s_1}^{s_2} \vec{F} \cdot d\vec{s}$

Kinetic Energy: $T = \frac{1}{2}mv^2 = \frac{p^2}{2}$ $\frac{r}{2m}$

Potential Energy: U_{s1 to s2} = -W_{s1 to s2} for conservative forces (W independent of path)

$$
U_{s_1 \text{ to } s_2} = -\int_{s_1}^{s_2} \vec{F}_{\text{conservative}} \cdot d\vec{s} \implies \vec{F} = -\nabla U
$$

$$
U_{\hat{\sigma}} = \frac{GMm}{r} = mgh, \quad U_{\text{spring}} = \frac{1}{2}kx^2, \quad U_{\hat{\epsilon}} = \frac{kQq}{r} = \frac{Qq}{4\pi\epsilon_0 r}
$$

Mechanical Energy: E = T + U

STUFF EVERY PHYSICIST SHOULD

Work-Energy Theorem:

First form: $W_{total} = \Delta T$ Second form: $W_{\text{non-conservative}} = \Delta T + \Delta U$ or $T_{\text{init}} + U_{\text{init}} - W_{\text{NC}} = T_{\text{final}} + U_{\text{final}}$

Mechanics

Newton's Laws

- 1. Stuff coasts (it takes a force to change velocity magnitude or direction)
- 2. $\sum \vec{F}_{\text{External}} = m\vec{a}$ or $\Sigma \vec{\tau}_{\text{External}} = \vec{I} \vec{\alpha}$

 \Rightarrow apply to each body in each coordinate direction using FBDs

- In static equilibrium the sums of the forces and torques are zero
- 3. Stuff pushes back (forces act on two bodies equally in opposite directions)
	- a normal force acts on *both bodies* in opposite directions
	- a frictional force acts on *both surfaces* in opposite directions

Forces

$$
F_{\text{gravity}} = \frac{GMm}{r^2}, \text{Weight} = F_{\text{Earth's Surface}} = m \left(\frac{GM_{\text{Earth}}}{R_{\text{Earth}}^2} \right) = mg
$$

For two charges: $F_{\text{E}} = \frac{12}{\pi^2} = \frac{124}{4\pi\epsilon r^2}$ 0 $\frac{\mathsf{KQq}}{\mathsf{r}^2} = \frac{\mathsf{Qq}}{4\pi\epsilon_0\mathsf{r}^2}$, Force on a charge in a uniform field: F_{E Field} = qE

 F_{Spring} = -kx (opposes displacement from equilibrium)

Friction

Static (surfaces not moving) $f_s \leq \mu_s N$ Kinetic (surfaces in relative motion) $f_k = \mu_k N$

Normal Force: A reactive force between surfaces that resists deformation

Tension: A reactive force of a string that redirects force (no stretching or compression)

Kinematics (only when \vec{a}_0 = constant)

$$
v(t) = v_0 + a_0 t
$$

\n
$$
x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
x = x_0 + \left(\frac{v + v_0}{2}\right)t
$$

\n
$$
v^2 = v_0^2 + \left(\frac{v + v_0}{2}\right)t
$$

\n
$$
v^2 = v_0^2 + \left(\frac{v + v_0}{2}\right)t
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n
$$
v^2 = v_0^2 + 2a_0 (x - x_0)
$$

\n

For circular motion, $s = r\theta$, $v = r\omega$, $a = r\alpha$

$$
\omega(\mathbf{t}) = \omega_0 + \alpha_0 \mathbf{t} \qquad \text{no } \theta
$$

\n
$$
\theta(\mathbf{t}) = \theta_0 + \omega_0 \mathbf{t} + \frac{1}{2} \alpha_0 \mathbf{t}^2 \qquad \text{no } \omega
$$

\n
$$
\omega^2 = \omega_0^2 + 2\alpha_0 (\theta - \theta_0) \qquad \text{no } \mathbf{t}
$$

\n
$$
\theta = \theta_0 + \left(\frac{\omega + \omega_0}{2}\right) \mathbf{t} \qquad \text{no } \alpha
$$

Drag: Velocity-Dependent Forces F_{Drag} = -bvⁿ

NSL has two useful forms:
$$
\Sigma \vec{F}_{Ext} = \frac{d\vec{p}}{dt} = m \frac{d\vec{v}}{dt} = mv \frac{d\vec{v}}{dx}
$$

Equilibrium and Stability:

 Equilibrium points are extrema in the potential energy function with stability determined by the concavity (value of the 2nd derivative)

$$
\left.\frac{dU(x)}{dx}\right|_{x=x_0}=0 \quad \text{and} \quad \left.\frac{d^2U(x)}{dx^2}\right|_{x=x_0}>0\text{, so, so } 0.02, 0.02
$$

Stable equilibrium: concave up, $U''(x) \ge 0$, slope is increasing Neutral equilibrium: flat, $U''(x) = 0$, slope remains zero for some span of x Unstable equilibrium: concave down, U″(x) < 0, slope is decreasing