Essential inclusions

Danny Crytser (with Gabriel Nagy)

GPOTS 2017 - TCU

May 28, 2017

《曰》 《聞》 《臣》 《臣》 三臣

 $E = (E^{0}, E^{1}, r, s) \text{ directed graph. } C^{*}(E) = C^{*}(\{s_{e}, p_{v}\}) \text{ such that}$ (i) p_{v} mutually orth. projections; (ii) $s_{e}^{*}s_{e} = p_{s(e)}$; (iii) if $F \subset r^{-1}(v)$ finite, then $\sum_{e \in F} s_{e}s_{e}^{*} \leq p_{v}$; (iv) if $r^{-1}(v)$ is finite and nonempty, then $p_{v} = \sum_{e:r(e)=v} s_{e}s_{e}^{*}$ Moreover $C^{*}(E)$ maps *-homomorphically onto any other C^{*} -algebra generated by such a family.

Question

Let $A = C^*(E)$ be the graph C^* -algebra of E and let $\pi : A \to B$ be a *-homomorphism. What is an easy criterion for determining if π is injective?

An obvious necessary condition (assuming that one has already shown that $p_v \neq 0$ for all $v \in E^0$) is that $\pi(p_v) \neq 0$ for all v. Most answers to the above question try to impose conditions that make this condition sufficient as well.

Theorem (Kumjian, Pask, Raeburn, Fowler, etc.)

If every cycle of E has an entrance, then a repn $\pi : C^*(E) \to B$ is faithful if and only if $\pi(p_v) \neq 0$ for all $v \in E^0$.

What if Condition (L) is not satisfied? (For a path $\lambda = e_1 \dots e_n \in E^*$, let $s_{\lambda} = s_{e_1} \dots s_{e_n}$ be the associated partial isometry.)

Theorem (Szymanski, Nagy-Reznikoff)

Let E be a graph and let $\pi : C^*(E) \to B$ be a *-homomorphism. Then π is faithful if and only if both (a) $\pi(p_v) \neq 0$ for all $v \in E^0$, and (b) the spectrum of $\pi(s_\lambda)$ contains \mathbb{T} for each entryless cycle λ

イロト イポト イヨト イヨト

Definition

If *E* is a directed graph, then $M(E) \subset C^*(E)$ is the *C**-subalgebra generated by $\{s_\alpha s_\alpha^* : \alpha \in E^*\} \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ entryless cycle }\}$, called the *abelian core*

Theorem ([7])

If E is a directed graph and $\pi : C^*(E) \to B$ is a *-homomorphism, then π is faithful if and only if $\pi|_{M(E)}$ is faithful.

A generalization of this for k-graphs by Brown-Nagy-Reznikoff exists as well, with the abelian core replaced by the *cycline subalgebra*.

イロト イポト イヨト イヨト

If G is an étale (+ locally compact, 2nd countable, Hausdorff) groupoid, the vector space $C_c(G)$ is a *-algebra with

$$f * g(\gamma) = \sum_{lphaeta = \gamma} f(lpha) g(eta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}$$

Give $C_c(G)$ the reduced norm $|| \cdot ||_r$, coming from the pre- $C_c(G^{(0)})$ structure given by $E : C_c(G) \to C_c(G^{(0)})$, and complete to obtain $C_r^*(G)$. We get an inclusion $C_0(G^{(0)}) \subset C_r^*(G)$. We can ask: given a representation $\pi : C_r^*(G) \to B$, what conditions are necessary + sufficient to ensure that π is isometric? An étale groupoid is *topologically free* if the set of units u such that $G_u^u = r^{-1}(u) \cap s^{-1}(u) = \{u\}$ forms a dense subset of $G^{(0)}$.

Theorem ([3])

Let G be a second countable, Hausdorff, étale topologically free groupoid. Then a *-homomorphism $\pi : C_r^*(G) \to B$ is isometric if and only if the restriction to $C_0(G^{(0)})$ is isometric.

This generalizes an existing result of Archbold-Spielberg for crossed products $C(X) \rtimes G$, with C(X) playing the role of $C_0(G^{(0)})$.

The isotropy bundle of G is $\{\gamma \in G : r(\gamma) = s(\gamma)\} \subset G$. The interior of the isotropy bundle is an étale groupoid and there is a natural inclusion $C^*($ IntIso $G) \subset C^*(G)$ and for the reduced algebras as well.

Theorem ([5])

Suppose that G is a locally compact Hausdorff étale groupoid. Let π be a representation of $C_r^*(G)$. Then π is isometric if and only if the restriction to $C_r^*(Intlso G)$ is isometric.

Definition

A C^* -subalgebra $0 \subsetneq B \subset A$ is called *essential* whenever a repn $\pi : A \to B(H)$ is injective on B, it follows that π is injective on all of A. Equivalently, B is essential if, whenever J is a closed two-sided ideal of A such that $J \cap B = \{0\}$, it follows that $J = \{0\}$.

The previous results show that the abelian core M(E) is an essential C^* -subalgebra of $A = C^*(E)$, and that $C^*_r(Intlso G)$ is essential in $C^*_r(G)$.

Many of the proofs of the previous results have a common element: they depend upon the existence of a *set of states on the subalgebra* which have *unique extensions to the larger algebra*. The following general uniqueness result from [5] captures some of this

Theorem

Let A be a C*-algebra, $M \subset A$ a C*-subalgebra, and S a collection of states on M such that

(a) each $\phi \in S$ has unique extension to $\tilde{\phi} \in S(A)$, and (b) the direct sum $\bigoplus_{\phi \in S} \pi_{\tilde{\phi}}$ of the GNS repns is faithful on A Then a representation ρ of A is injective if and only if $\rho|_{M}$ is injective. [That is, M is essential.] The set of points with unique extension is dense and $\oplus \pi_{\tilde{\phi}}$ is faithful, which is to say ker $\oplus \pi_{\tilde{\phi}} \subset \{0\}$. Idea: set aside faithfulness of repns, replace with controlling size of joint GNS kernel.

Definition

Suppose that we have a (nonempty) $C \subset S(B/B \cap J) \subset S(B)$ such that ker $\bigoplus_{\tilde{\phi}} \pi_{\phi} \subset J$ for any choice of extensions $(\tilde{\phi})_{\phi \in C}$. Then we call C a J-uniqueness cell for B.

Note: you can expand a *J*-uniqueness cell to include more states and it will remain a *J*-uniqueness cell.

Definition

Let $B \subset A$ be an inclusion and let $J \subset A$ be an ideal. We say that J is *B*-dominant if for all ideals $K \subset A$, the $K \cap B \subset J$ implies $K \subset J$.

Proposition (C.-Nagy)

Let J be an ideal of A and let $B \subset A$. Then there is a J-uniqueness cell for B if and only if J is B-dominant.

Suppose that C is a *J*-uniqueness cell for *B*. Let $K \subset A$ be an ideal such that $K \cap B \subset J$. Let $\pi : A \to A/K$. Notice that there is a well-defined map $\mathcal{E} : \pi(B) \to B/J$, and $\sigma \circ \mathcal{E}$ is a state on $\pi(B)$. Take an extension of this state η_{σ} to $\pi(A)$, and finally set $\phi_{\sigma} = \eta_{\sigma} \circ \pi$. Note that $\phi_{\sigma}(b) = \eta_{\sigma}(\pi(b)) = \sigma \circ \mathcal{E} \circ \pi(b) = \sigma(b)$, so $(\phi_{\sigma})_{\sigma \in \Sigma}$ is a set of extensions. The joint kernel must equal *J*, but the joint kernel contains $K = \ker \pi$, so $K \subset J$. This proves that *J* is *B*-dominant. Now suppose that J is B-dominant. Let $\Sigma = S(B/B \cap J) \subset S(B)$. Let $(\phi_{\sigma})_{\sigma \in \Sigma}$ be a set of extensions to all of A. For each ϕ_{σ} , let π_{σ} be the associated GNS repn of A, and let K be the joint GNS kernel. Let $b \in B \cap K$. It must be the case that $b \in J$, because otherwise some state in $S(B/B \cap J)$ would be nonzero on b. Thus $B \cap K \subset J$, and then B-dominance of J shows that $K \subset J$. This shows that Σ is a J-uniqueness cell.

Corollary

Let $B \subset A$; then B is essential iff 0 is B-dominant iff there is a set of states on B any extension of which to A is joint GNS-faithful.

We can strengthen this:

Corollary

Let $D \subset M \subset A$ (D non-deg.) and $D \subset Z(A)$. For $\omega \in P(D)$ let $M_{\omega} = M/M \cdot \ker \omega$. Assume that (1) there is some $\Omega_0 \subset P(D)$ with only joint GNS faithful lifts, and; (2) M_{ω} is simple for all $\omega \in \Omega_0$. Then D is essential in M.

Groupoid C^* -algebras

If G is a 2CLCHÉ groupoid, set $A = C_r^*(G)$, H = Intlso G, $M = C_r^*(H) \subset A$, $D = C_0(G^{(0)})$. There is a faithful expectation $E : A \to D$. In [5] it is shown that M is essential in A.

Corollary

Let W be the set of units u such that H_u is C^* -simple. If W is dense, then $C_r^*(G)$ is simple. In particular, if G is minimal and there is a unit u with C^* -simple isotropy, then $C_r^*(G)$ is simple.

Compare with Ozawa (see also [4], [6], [1]):

Theorem

If G is a discrete group acting minimally on some compact X, and if there is a point $x \in X$ with C^{*}-simple isotropy group G_x , then $C(X) \rtimes_r G$ is simple.

ヘロア ヘヨア ヘヨア ヘ

Bibliography

- R. J. Archbold and J. Spielberg. Topologically free actions and ideals in discrete C^* -dynamical systems. Proc. Edinburgh Math. Soc. (2) **37** (1994), 119-124
- R. J. Archbold. *Extensions of states of C*-algebras*. J. London Math. Soc. **21** (1980) 43-50
- J. Brown, L. O. Clark, C. Farthing, and A. Sims. *Simplicity of algebras associated to étale groupoids*. Semigroupd Forum. 2014. **88**. 433-452.
- E. Breuillard, M. Kalantar, M. Kennedy, and N. Ozawa. *C*-simplicity and the unique trace property for discrete groups*. arXiv:1410.2518. 2014
- J. H. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. Williams. *Cartan subalgebras of the C*-algebras of Hausdorff étale groupoids*. Integr. Equ. Oper. Theory (2016) 85: 109.
- S. Kawamura and J. Tomiyama. *Properties of topological dynamical systems and corresponding C*-algebras.* Tokyo J. Math. **13** (1990), 251257.
 - G. Nagy and S. Reznikoff. *Abelian core of graph algebras*. J. London Math. Soc. **3** (2012), 889-908
 - N. Ozawa. Lecture on the Furstenberg boundary and C*-simplicity

イロト イポト イヨト イヨト

Thank you!

1

(日)