Simplicity of reduced groupoid C^* -algebras

Danny Crytser¹ and Gabriel Nagy²

¹St. Lawrence University

²Kansas State University

GPOTS 2018

Danny Crytser and Gabriel Nagy (St. Lawrer Simplicity of reduced groupoid C*-algebras

GPOTS 2018 1 / 19

Simple C*-algebras

Question

When is the (full or reduced) C^* -algebra of an étale groupoid simple?

All this comes from recent arXiv submission [4]

Danny Crytser and Gabriel Nagy (St. Lawrer Simplicity of reduced groupoid C^* -algebras

Sample of known simplicity results

(i) If (A, G, α) is a minimal and topologically free C*-dynamical system, then A ⋊_r G simple [1]

Sample of known simplicity results

- (i) If (A, G, α) is a minimal and topologically free C*-dynamical system, then A ⋊_r G simple [1]
- (ii) Full groupoid C^* -algebra $C^*(G)$ is simple if and only if G is minimal and topologically free and $C^*(G) = C^*_r(G)$ [2]

Sample of known simplicity results

- (i) If (A, G, α) is a minimal and topologically free C*-dynamical system, then A ⋊_r G simple [1]
- (ii) Full groupoid C^* -algebra $C^*(G)$ is simple if and only if G is minimal and topologically free and $C^*(G) = C^*_r(G)$ [2]
- (iii) If G is a discrete group then $C_r^*(G)$ is simple if and only if G acts freely on its Furstenberg boundary [5]

Sample of known simplicity results

- (i) If (A, G, α) is a minimal and topologically free C*-dynamical system, then A ⋊_r G simple [1]
- (ii) Full groupoid C^* -algebra $C^*(G)$ is simple if and only if G is minimal and topologically free and $C^*(G) = C^*_r(G)$ [2]
- (iii) If G is a discrete group then $C_r^*(G)$ is simple if and only if G acts freely on its Furstenberg boundary [5]
- (iv) If (G, X) minimal discrete dynamical system and G_x is C^* -simple for some $x \in X$, then $C(X) \rtimes_r G$ is simple [6]

くほと くほと くほと

Sample of known simplicity results

- (i) If (A, G, α) is a minimal and topologically free C*-dynamical system, then A ⋊_r G simple [1]
- (ii) Full groupoid C^* -algebra $C^*(G)$ is simple if and only if G is minimal and topologically free and $C^*(G) = C^*_r(G)$ [2]
- (iii) If G is a discrete group then $C_r^*(G)$ is simple if and only if G acts freely on its Furstenberg boundary [5]
- (iv) If (G, X) minimal discrete dynamical system and G_x is C^* -simple for some $x \in X$, then $C(X) \rtimes_r G$ is simple [6]

Long-term goal: to place as many of these as possible under one roof, and to extend/sharpen them if possible

- 4 週 ト - 4 三 ト - 4 三 ト

Different flavors of inclusions $B \subset A$ of C^* -algebras:

(日) (同) (三) (三)

Different flavors of inclusions $B \subset A$ of C^* -algebras:

(i) $B \subset A$ is non-degenerate if B contains an approx. unit for A;

- ∢ ∃ ▶

Different flavors of inclusions $B \subset A$ of C^* -algebras:

- (i) $B \subset A$ is *non-degenerate* if B contains an approx. unit for A;
- (ii) $B \subset A$ is *essential* if any nonzero ideal $J \trianglelefteq A$ must have $J \cap B \neq 0$

Different flavors of inclusions $B \subset A$ of C^* -algebras:

- (i) $B \subset A$ is *non-degenerate* if B contains an approx. unit for A;
- (ii) $B \subset A$ is *essential* if any nonzero ideal $J \trianglelefteq A$ must have $J \cap B \neq 0$
- (iii) $B \subset A$ is regular if the normalizer $N_A(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}$ has dense span in A.

Different flavors of inclusions $B \subset A$ of C^* -algebras:

- (i) $B \subset A$ is *non-degenerate* if B contains an approx. unit for A;
- (ii) $B \subset A$ is *essential* if any nonzero ideal $J \trianglelefteq A$ must have $J \cap B \neq 0$
- (iii) $B \subset A$ is *regular* if the normalizer $N_A(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}$ has dense span in A.

Example

If (G, X) is a discrete dynamical system then $C_0(X) \subset C_0(X) \rtimes_r G$ is always non-degenerate and regular; it is essential if the action is topologically free (the converse is not true).

→ 3 → 4 3

Definition

An ideal $J \triangleleft B \subset A$ is *invariant* if $N_A(B) \subset N_A(J)$;

Definition

An ideal $J \triangleleft B \subset A$ is *invariant* if $N_A(B) \subset N_A(J)$; the inclusion $B \subset A$ is *minimal* if there are no non-trivial invariant ideals in B.

Definition

An ideal $J \triangleleft B \subset A$ is *invariant* if $N_A(B) \subset N_A(J)$; the inclusion $B \subset A$ is *minimal* if there are no non-trivial invariant ideals in B.

Proposition (C., Nagy)

Let $B \subset A$ be non-degenerate and regular. Then the following conditions are equivalent:

(i) A is simple;

(ii) $B \subset A$ is essential and minimal

Definition

An ideal $J \triangleleft B \subset A$ is *invariant* if $N_A(B) \subset N_A(J)$; the inclusion $B \subset A$ is *minimal* if there are no non-trivial invariant ideals in B.

Proposition (C., Nagy)

Let $B \subset A$ be non-degenerate and regular. Then the following conditions are equivalent:

(i) A is simple;

(ii) $B \subset A$ is essential and minimal

Proof.

Only tricky bit is showing "A simple" \implies " $B \subset A$ minimal": if $J \subset B$ a non-trivial proper invariant ideal then can show that $L = \overline{\text{span}}\{a_1ba_2 : a_i \in A, b \in J\}$ is a non-trivial proper ideal of A.

Groupoid preliminaries

Definition

A groupoid is a set G along with a set $G^{(2)} \subset G \times G$ of composable pairs, a composition $G^{(2)} \rightarrow G$ which is associative, and an inverse operation $G \rightarrow G$ which appropriately cancels composition.

Groupoid preliminaries

Definition

A groupoid is a set G along with a set $G^{(2)} \subset G \times G$ of composable pairs, a composition $G^{(2)} \rightarrow G$ which is associative, and an inverse operation $G \rightarrow G$ which appropriately cancels composition.

$$G^{(2)} \ni (\alpha, \beta) \mapsto \alpha \beta \in G$$

$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

$$\alpha^{-1}(\alpha\beta) = \beta = (\beta\gamma)\gamma^{-1}$$

Groupoid preliminaries

Definition

A groupoid is a set G along with a set $G^{(2)} \subset G \times G$ of composable pairs, a composition $G^{(2)} \rightarrow G$ which is associative, and an inverse operation $G \rightarrow G$ which appropriately cancels composition.

$$G^{(2)} \ni (\alpha, \beta) \mapsto \alpha \beta \in G$$

$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

$$\alpha^{-1}(\alpha\beta) = \beta = (\beta\gamma)\gamma^{-1}$$

Each (α, α^{-1}) is composable and elements of the form $\alpha \alpha^{-1}$ are *units*, forming unit space $G^{(0)}$.

Units; isotropy

Definition

The map $r: G \to G$ given by $r(\alpha) = \alpha \alpha^{-1}$ maps onto $G^{(0)}$ and is called the *range map*; the corresponding $s: G \to G$ given by $s(\alpha) = \alpha^{-1}\alpha$ is called the *source map*.

Units; isotropy

Definition

The map $r: G \to G$ given by $r(\alpha) = \alpha \alpha^{-1}$ maps onto $G^{(0)}$ and is called the *range map*; the corresponding $s: G \to G$ given by $s(\alpha) = \alpha^{-1}\alpha$ is called the *source map*.

Definition

Let $u \in G^{(0)}$;

$$G_u^u = G(u) := \{\gamma \in G : r(\gamma) = u = s(\gamma)\}$$

is the *isotropy subgroup at u*. Set $Iso(G) := \bigcup_u G(u)$.

Definition

A *topological groupoid* is a groupoid endowed with a topology that makes the composition and inverse maps continuous.

Definition

A topological groupoid is a groupoid endowed with a topology that makes the composition and inverse maps continuous. A groupoid is *étale* if the map r above is a local homeomorphism. (Equivalent to existence of bisections.)

Definition

A topological groupoid is a groupoid endowed with a topology that makes the composition and inverse maps continuous. A groupoid is *étale* if the map r above is a local homeomorphism. (Equivalent to existence of bisections.)

(Assume all locally compact, second countable, Hausdorff, and étale.)

Definition

A topological groupoid is a groupoid endowed with a topology that makes the composition and inverse maps continuous. A groupoid is *étale* if the map r above is a local homeomorphism. (Equivalent to existence of bisections.)

(Assume all locally compact, second countable, Hausdorff, and étale.)

Definition

Let Int Iso(G) be the interior of $Iso(G) \subset G$

*-algebras

If G is étale then for $u \in G^{(0)}$, $r^{-1}(u) = \{\alpha \in G : \alpha \alpha^{-1} = u\}$ and the source fiber $s^{-1}(u)$ are discrete.

- 4 同 6 4 日 6 4 日 6

*-algebras

If G is étale then for $u \in G^{(0)}$, $r^{-1}(u) = \{\alpha \in G : \alpha \alpha^{-1} = u\}$ and the source fiber $s^{-1}(u)$ are discrete.

Definition

Let G be an étale The *-algebra structure on $C_c(G)$ is defined by

$$(f * g)(\alpha) = \sum_{\alpha = \beta \delta} f(\beta)g(\delta) \qquad f, g \in C_c(G)$$

$$f^*(\alpha) = \overline{f(\alpha^{-1})}$$

Danny Crytser and Gabriel Nagy (St. Lawrer Simplicity of reduced groupoid C^* -algebras

GPOTS 2018 9 / 19

*-algebras

If G is étale then for $u \in G^{(0)}$, $r^{-1}(u) = \{\alpha \in G : \alpha \alpha^{-1} = u\}$ and the source fiber $s^{-1}(u)$ are discrete.

Definition

Let G be an étale The *-algebra structure on $C_c(G)$ is defined by

$$(f * g)(\alpha) = \sum_{\alpha = \beta \delta} f(\beta)g(\delta) \qquad f, g \in C_c(G)$$

$$f^*(\alpha) = \overline{f(\alpha^{-1})}$$

Two distinguished C^* -norms: $|| \cdot ||$ (full), $|| \cdot ||_r$ (reduced). Complete $C_c(G)$ to get to $C^*(G)$ and $C^*_r(G)$.

Groupoid Inclusions

Two important inclusions

$$C_0(G^{(0)}) \subset C_r^*(\mathsf{Int} \mathsf{ Iso} G) \subset C_r^*(G)$$

where $C_0(G^{(0)})$ is abelian and $C_r^*(\text{Int Iso } G)$ is the reduced C^* -algebra of the étale group bundle Int Iso G.

GPOTS 2018

10 / 19

Groupoid Inclusions

Two important inclusions

$$C_0(G^{(0)}) \subset C_r^*(\mathsf{Int} \mathsf{ Iso} G) \subset C_r^*(G)$$

where $C_0(G^{(0)})$ is abelian and $C_r^*(\text{Int Iso } G)$ is the reduced C^* -algebra of the étale group bundle Int Iso G.

The pure states on $C_0(G^{(0)})$ are the evaluations ev_u for $u \in G^{(0)}$, which have natural (not typically unique) extension to $C_r^*(G)$ via extending the bounded map $C_c(G) \ni f \mapsto f(u)$.

One of the main results of "Cartan subalgebras in C^* -algebras of Hausdorff étale groupoids" (BNRSW, 2016) is the following (omitting the full norm bit):

Theorem ([3, Thm. 3.1])

Let G be a locally compact Hausdorff groupoid.

One of the main results of "Cartan subalgebras in C^* -algebras of Hausdorff étale groupoids" (BNRSW, 2016) is the following (omitting the full norm bit):

Theorem ([3, Thm. 3.1])

Let G be a locally compact Hausdorff groupoid.

(i) $C_r^*(\operatorname{Int} \operatorname{Iso}(G)) \hookrightarrow C_r^*(G)$ via an injective *-homomorphism ι_r extending the inclusion of $C_c(\operatorname{Int} \operatorname{Iso}(G))$;

One of the main results of "Cartan subalgebras in C^* -algebras of Hausdorff étale groupoids" (BNRSW, 2016) is the following (omitting the full norm bit):

Theorem ([3, Thm. 3.1])

Let G be a locally compact Hausdorff groupoid.

- (i) $C_r^*(\operatorname{Int} \operatorname{Iso}(G)) \hookrightarrow C_r^*(G)$ via an injective *-homomorphism ι_r extending the inclusion of $C_c(\operatorname{Int} \operatorname{Iso}(G))$;
- (ii) Letting $M_r = \iota_r(C_r^*(\operatorname{Int} \operatorname{Iso}(G)))$; then $M_r \subset C_r^*(G)$ is essential.

One of the main results of "Cartan subalgebras in C^* -algebras of Hausdorff étale groupoids" (BNRSW, 2016) is the following (omitting the full norm bit):

Theorem ([3, Thm. 3.1])

Let G be a locally compact Hausdorff groupoid.

- (i) $C_r^*(\operatorname{Int} \operatorname{Iso}(G)) \hookrightarrow C_r^*(G)$ via an injective *-homomorphism ι_r extending the inclusion of $C_c(\operatorname{Int} \operatorname{Iso}(G))$;
- (ii) Letting $M_r = \iota_r(C_r^*(\operatorname{Int} \operatorname{Iso}(G)))$; then $M_r \subset C_r^*(G)$ is essential.

One of the main results of "Cartan subalgebras in C^* -algebras of Hausdorff étale groupoids" (BNRSW, 2016) is the following (omitting the full norm bit):

Theorem ([3, Thm. 3.1])

Let G be a locally compact Hausdorff groupoid.

- (i) $C_r^*(\operatorname{Int} \operatorname{Iso}(G)) \hookrightarrow C_r^*(G)$ via an injective *-homomorphism ι_r extending the inclusion of $C_c(\operatorname{Int} \operatorname{Iso}(G))$;
- (ii) Letting $M_r = \iota_r(C_r^*(\operatorname{Int} \operatorname{Iso}(G)))$; then $M_r \subset C_r^*(G)$ is essential.

Question

For which étale groupoids G is $C_0(G^{(0)}) \subset C_r^*(G)$ essential?

A simplicity criterion for groupoid C^* -algebras

For a groupoid G, let $\mathfrak{N}(G) = \{n \in C_c(G) : \operatorname{supp}(n) \subset \operatorname{bisection}\} \subset N_{C_r^*(\operatorname{Int} \operatorname{Iso} G)}(C_r^*(G))$

A simplicity criterion for groupoid C^* -algebras

For a groupoid G, let $\mathfrak{N}(G) = \{n \in C_c(G) : \operatorname{supp}(n) \subset \operatorname{bisection}\} \subset N_{C_r^*(\operatorname{Int} \operatorname{Iso} G)}(C_r^*(G))$

Proposition

If G is a groupoid, then $C_r^*(G)$ is simple if and only if the inclusion $C_r^*(\operatorname{Int} \operatorname{Iso} G) \subset C_r^*(G)$ is minimal. Equivalently, if there are no nontrivial ideals $J \triangleleft C_r^*(\operatorname{Int} \operatorname{Iso} G)$ that are invariant under the action of $\mathfrak{N}(G)$.

Let $C_0(Q) \subset A$ be a central non-degen. inclusion with a conditional expectation $\mathbb{E} : A \to C_0(Q)$. Let $q \in Q$.

Let $C_0(Q) \subset A$ be a central non-degen. inclusion with a conditional expectation $\mathbb{E} : A \to C_0(Q)$. Let $q \in Q$.

(i) Define J_q to be the ideal generated by $C_0(Q \setminus \{q\})$ in A, and let $p_q^{\text{unif}}(a) = ||a + J_q||$ for $a \in A$; $Q_{\text{simple}}^{\text{unif}}$ is set of points where A/J_q is simple.

Let $C_0(Q) \subset A$ be a central non-degen. inclusion with a conditional expectation $\mathbb{E} : A \to C_0(Q)$. Let $q \in Q$.

- (i) Define J_q to be the ideal generated by C₀(Q \ {q}) in A, and let p^{unif}_q(a) = ||a + J_q|| for a ∈ A; Q^{unif}_{simple} is set of points where A/J_q is simple.
 (ii) S at n^E(c) = |au a^E(c)|
- (ii) Set $p_q^{\mathbb{E}}(a) = |\operatorname{ev}_q \circ \mathbb{E}(a)|$

Let $C_0(Q) \subset A$ be a central non-degen. inclusion with a conditional expectation $\mathbb{E} : A \to C_0(Q)$. Let $q \in Q$.

- (i) Define J_q to be the ideal generated by C₀(Q \ {q}) in A, and let p_q^{unif}(a) = ||a + J_q|| for a ∈ A; Q_{simple}^{unif} is set of points where A/J_q is simple.
- (ii) Set $p_q^{\mathbb{E}}(a) = |\operatorname{ev}_q \circ \mathbb{E}(a)|$

(iii) Set Q_{r-cont} be the set of points where these two seminorms agree

Let $C_0(Q) \subset A$ be a central non-degen. inclusion with a conditional expectation $\mathbb{E} : A \to C_0(Q)$. Let $q \in Q$.

- (i) Define J_q to be the ideal generated by $C_0(Q \setminus \{q\})$ in A, and let $p_q^{\text{unif}}(a) = ||a + J_q||$ for $a \in A$; $Q_{\text{simple}}^{\text{unif}}$ is set of points where A/J_q is simple.
- (ii) Set $p_q^{\mathbb{E}}(a) = |\operatorname{ev}_q \circ \mathbb{E}(a)|$

(iii) Set Q_{r-cont} be the set of points where these two seminorms agree

Theorem (C., Nagy)

If Q_{simple}^{unif} is dense in Q, and the expectation \mathbb{E} is essentially faithful, then $C_0(Q) \subset A$ is essential.

Let $C_0(Q) \subset A$ be a central non-degen. inclusion with a conditional expectation $\mathbb{E} : A \to C_0(Q)$. Let $q \in Q$.

- (i) Define J_q to be the ideal generated by $C_0(Q \setminus \{q\})$ in A, and let $p_q^{\text{unif}}(a) = ||a + J_q||$ for $a \in A$; $Q_{\text{simple}}^{\text{unif}}$ is set of points where A/J_q is simple.
- (ii) Set $p_q^{\mathbb{E}}(a) = |\operatorname{ev}_q \circ \mathbb{E}(a)|$
- (iii) Set Q_{r-cont} be the set of points where these two seminorms agree

Theorem (C., Nagy)

If Q_{simple}^{unif} is dense in Q, and the expectation \mathbb{E} is essentially faithful, then $C_0(Q) \subset A$ is essential.

13 / 19

Theorem (C., Nagy)

If $C_0(Q) \subset A$ as above with A separable, and if \mathbb{E} is essentially faithful, then Q_{r-cont} is dense G_{δ} . Danny Crytser and Gabriel Nagy (St. Lawre Simplicity of reduced groupoid C*-algebras GPOTS 2018

Simplicity for groupoid C^* -algebras

Theorem (C., Nagy)

Assume that there is a unit $u_0 \in G_{r-cont}^{(0)}$ such that $Int Iso(G)_{u_0}$ is C^* -simple. Then the following are equivalent: (i) G is minimal; (ii) $C_r^*(G)$ is simple

Simplicity for groupoid C^* -algebras

Theorem (C., Nagy)

Assume that there is a unit $u_0 \in G_{r-cont}^{(0)}$ such that $Int Iso(G)_{u_0}$ is C^* -simple. Then the following are equivalent: (i) G is minimal; (ii) $C_r^*(G)$ is simple

Proof.

That (ii) implies (i) is standard; suppose that (i) is true. Just need to show $C_r^*(\text{Int Iso}(G)) \subset C_r^*(G)$ is minimal.

Proof.

-The orbit $r(Gu_0)$ is dense in $G^{(0)}$

Danny Crytser and Gabriel Nagy (St. Lawret Simplicity of reduced groupoid C^* -algebras

æ **GPOTS 2018** 15 / 19

-

• • • • • • • • • • • •

Proof.

-The orbit $r(Gu_0)$ is dense in $G^{(0)}$ -Any $u \in r(Gu_0)$ has isomorphic stabilizer

Proof.

- -The orbit $r(Gu_0)$ is dense in $G^{(0)}$
- -Any $u \in r(Gu_0)$ has isomorphic stabilizer
- -Can show that each of these belongs to $G_{r-cont}^{(0)}$; thus $G_{r-cont}^{(0)}$ is dense

Proof.

- -The orbit $r(Gu_0)$ is dense in $G^{(0)}$
- -Any $u \in r(Gu_0)$ has isomorphic stabilizer
- -Can show that each of these belongs to $G_{r-cont}^{(0)}$; thus $G_{r-cont}^{(0)}$ is dense -There is a faithful expectation $\mathbb{E} : C_r^*(\text{Int Iso}(G)) \to C_0(G^{(0)})$

Proof.

-The orbit $r(Gu_0)$ is dense in $G^{(0)}$

-Any $u \in r(Gu_0)$ has isomorphic stabilizer

-Can show that each of these belongs to $G_{r-cont}^{(0)}$; thus $G_{r-cont}^{(0)}$ is dense -There is a faithful expectation $\mathbb{E} : C_r^*(\text{Int Iso}(G)) \to C_0(G^{(0)})$

-Thus $C_0(G^{(0)}) \subset C_r^*(\text{Int Iso}(G))$ is essential

Proof.

- -The orbit $r(Gu_0)$ is dense in $G^{(0)}$
- -Any $u \in r(Gu_0)$ has isomorphic stabilizer
- -Can show that each of these belongs to $G_{r-cont}^{(0)}$; thus $G_{r-cont}^{(0)}$ is dense -There is a faithful expectation $\mathbb{E} : C_r^*(\operatorname{Int} \operatorname{Iso}(G)) \to C_0(G^{(0)})$
- -Thus $C_0(G^{(0)}) \subset C^*_r(\operatorname{Int} \operatorname{Iso}(G))$ is essential
- -Any ideal in $C_r^*(G)$ has nontrivial intersection with $C_r^*(\text{Int Iso}(G))$, hence with $C_0(G^{(0)})$.

Proof.

- -The orbit $r(Gu_0)$ is dense in $G^{(0)}$
- -Any $u \in r(Gu_0)$ has isomorphic stabilizer
- -Can show that each of these belongs to $G_{r-cont}^{(0)}$; thus $G_{r-cont}^{(0)}$ is dense -There is a faithful expectation $\mathbb{E} : C_r^*(\operatorname{Int} \operatorname{Iso}(G)) \to C_0(G^{(0)})$
- -Thus $C_0(G^{(0)}) \subset C_r^*(\operatorname{Int} \operatorname{Iso}(G))$ is essential
- -Any ideal in $C_r^*(G)$ has nontrivial intersection with $C_r^*(\text{Int Iso}(G))$, hence with $C_0(G^{(0)})$.
- -Minimality finishes it.

Group crossed products

You can show that in the case of a group G acting on a space Q, the associated transformation groupoid $G \times Q$ has $Q_{r-cont} = Q$.

Group crossed products

You can show that in the case of a group G acting on a space Q, the associated transformation groupoid $G \times Q$ has $Q_{r-cont} = Q$.

Theorem (C., Nagy)

Let G be a discrete group acting minimally on a locally compact space Q. If there is $q \in Q$ such that the interior stabilizer G_q° is C^{*}-simple, then $C_0(Q) \rtimes_r G$ is simple.

Group crossed products

You can show that in the case of a group G acting on a space Q, the associated transformation groupoid $G \times Q$ has $Q_{r-cont} = Q$.

Theorem (C., Nagy)

Let G be a discrete group acting minimally on a locally compact space Q. If there is $q \in Q$ such that the interior stabilizer G_q° is C^{*}-simple, then $C_0(Q) \rtimes_r G$ is simple.

(This sharpens a result of Ozawa that required G_q to be C^{*}-simple.)

GPOTS 2018

16 / 19

The End

Thank You!

Danny Crytser and Gabriel Nagy (St. Lawrer Simplicity of reduced groupoid C^* -algebras

GPOTS 2018 17 / 19

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Bibliography I

R.J. Archbold and J. Spielberg.

Topologically free actions and ideals in discrete C^* -dynamical systems.

Proc. Edin. Math. Soc., 37:119–124, 1993.

J. Brown, L.O. Clark, C. Farthing, and A. Sims. Simplicity of algebras associated to étale groupoids. *Semigroup Forum*, 88:433–452, April 2014.

J. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. Williams. Cartan subalgebras in *C**-algebras of Hausdorff étale Groupoids. *Integral Equations and Operator Theory*, 85:109–126, 2016.

Bibliography II

- D. Crytser and G. Nagy. Simplicity criteria for groupoid C*-algebras. preprint, arXiv:1805.11173.
- M. Kalantar and M. Kennedy.
 Boundaries of reduced C*-algebras of discrete groups.
 Journal f[´]ur die reine und angewandte Mathematik, 2017, 2014.

N. Ozawa.

Lecture on the Furstenburg boundary and C*-simplicity. http://www.kurims.kyoto-u.ac.jp/~narutaka/notes/ yokou2014.pdf, December 2014.