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What is a “large” inclusion

Let B ⊂ A be a unital C ∗-subalgebra. (1A ∈ B)

regular: span{n ∈ A : nBn∗ ∪ n∗Bn ⊂ B} = A

at most one conditional expectation P : A→ B (ucp map
equaling the identity on B);

unique pseudo-expectation ψ : A→ I (B), where I (B) is the
injective envelope of B

Often motivated by simplicity criteria and ideal structure problems
(see [Zar]).
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What is a pseudo-expectation?

Definition

Let A be a C ∗-algebra. Then an injective envelope for A consists
of an injective C ∗-algebra I (A) containing A as a C ∗-subalgebra the
only ucp map I (A)→ I (A) that restricts to the identity on A is the
identity map. (It exists and is unique up to isomorphism ([Ham79]).)

Definition ([Pit12])

A pseudo-expectation for B ⊂ A is a ucp map A→ I (B) extending
B ↪→ I (B). (Generalizes conditional expectation, always exists.)

Shown in [Pit12] that regular MASA inclusions have unique
pseudo-expectations.
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What is a groupoid

Groupoid = “category where every morphism is invertible”. So if
α, β ∈ G then αβ may or may not be defined. Can always cancel,
e.g. α−1(αβ) = β.

Important subsets:
unit space G (0): set of elements u such that u2 = u (equal to
range of α 7→ α−1α)
isotropy bundle: elements α such that α−1α = αα−1

Can add topology to make everything continuous. If α 7→ αα−1 is a
local homeomorphism G → G , call G étale. Care especially about
the interior of isotropy bundle: Int IsoG . (If G is étale this
includes the unit space.)

Example

If discrete group G y X a topological space, then G × X is a
groupoid with (h, g .x)(g , x) = (hg , x). (Call this G n X ,
transformation groupoid.)
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Groupoid C ∗-algebras

Let G be an étale locally compact Hausdorff second countable
groupoid with compact unit space. Construct reduced groupoid
C ∗-algebra C ∗

r (G ) out of convolution algebra Cc(G ) as in
construction of group C ∗-algebra.

Important inclusions related to this

C (G (0)) ⊂ C ∗
r (G ) C ∗

r (Int IsoG ) ⊂ C ∗
r (G )

Example (Graph algebras)

If E is a graph with path groupoid GE , then these correspond to the
diagonal C ∗(sλs

∗
λ) ⊂ C ∗(E ) and the abelian core ME ⊂ C ∗(E )

(Nagy-Reznikoff).
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Main questions for this work in progress:

Question

When do the inclusions C (G (0)) ⊂ C ∗
r (G ) and

C ∗
r (Int IsoG ) ⊂ C ∗

r (G ) associated to an étale groupoid G have the
various largeness properties on the first slide?.

Specifically, when does C ∗
r (Int IsoG ) ⊂ C ∗

r (G ) have the faithful
unique pseudo-expectation property?
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The inclusion C (G (0)) ⊂ C ∗r (G )

Proposition (C.)

The inclusion C (G (0)) ⊂ C ∗
r (G ). Following are equivalent:

(a) has a unique conditional expectation

(b) has a unique pseudo-expectation

(c) Int IsoG = G (0)

Proof.

Easy proof, combining results of Renault, Pitts, and Zarikian. Avoids
considering properly outer actions as in Zarikian.
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The inclusion C ∗r (Int IsoG ) ⊂ C ∗r (G )

The inclusion C ∗
r (Int IsoG ) ⊂ C ∗

r (G ) is always regular (noted by
many, including [CN]).

Proposition ([BNR+16, Prop. 4.1])

The inclusion C ∗
r (Int IsoG ) ⊂ C ∗

r (G ) has a conditional expectation if
and only if Int IsoG is closed in G . The expectation is given on
Cc(G ) by f 7→ f |Int IsoG .

This conditional expectation is unique using an argument of [Zar18]

Question

What about pseudo-expectations?

The inclusion C ∗
r (Int IsoG ) ⊂ C ∗

r (G ) is essential ([BNR+16]), leads
us to hope for unique faithful pseudo-expectation.
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Maximal abelian subalgebras and

pseudoexpectations

Theorem ([BNR+16, Thm. 4.3])

Suppose that Int IsoG is abelian. If Int IsoG is closed or if there
exists a countable discrete abelian group H and a continuous
1-cocycle c : G → H that is injective on each G x

x , then
C ∗
r (Int IsoG ) ⊂ C ∗

r (G ) is a MASA

Any essential MASA has unique faithful pseudo-expectation [Pit12],
we obtain.

Proposition (C.)

In either of the above cases, there is a unique pseudo-expectation
from C ∗

r (G )→ I (C ∗
r (Int IsoG )), which is faithful

Hope that the above is always true, not just for MASA C ∗
r (Int IsoG ).
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The End

Thank You!
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