Large inclusions for groupoid and *k*-graph *C**-algebras Preliminary report

Danny Crytser

St. Lawrence University

JMM 2019

Danny Crytser (St. Lawrence University) Large inclusions for groupoid and k-graph C^*

JMM 2019 1 / 12

Let $B \subset A$ be a unital C^* -subalgebra. $(1_A \in B)$

Image: A math a math

Let $B \subset A$ be a unital C^* -subalgebra. $(1_A \in B)$ • regular: $\overline{\text{span}}\{n \in A : nBn^* \cup n^*Bn \subset B\} = A$

JMM 2019 2 / 12

- Let $B \subset A$ be a unital C^* -subalgebra. $(1_A \in B)$
 - regular: $\overline{\text{span}}\{n \in A : nBn^* \cup n^*Bn \subset B\} = A$
 - at most one conditional expectation P : A → B (ucp map equaling the identity on B);

Let $B \subset A$ be a unital C^* -subalgebra. $(1_A \in B)$

- regular: $\overline{\text{span}}\{n \in A : nBn^* \cup n^*Bn \subset B\} = A$
- at most one conditional expectation P : A → B (ucp map equaling the identity on B);
- unique pseudo-expectation ψ : A → I(B), where I(B) is the injective envelope of B

Let $B \subset A$ be a unital C^* -subalgebra. $(1_A \in B)$

- regular: $\overline{\text{span}}\{n \in A : nBn^* \cup n^*Bn \subset B\} = A$
- at most one conditional expectation P : A → B (ucp map equaling the identity on B);
- unique pseudo-expectation ψ : A → I(B), where I(B) is the injective envelope of B

Often motivated by simplicity criteria and ideal structure problems (see [Zar]).

What is a pseudo-expectation?

Definition

Let A be a C*-algebra. Then an **injective envelope** for A consists of an injective C*-algebra I(A) containing A as a C*-subalgebra the only ucp map $I(A) \rightarrow I(A)$ that restricts to the identity on A is the identity map. (It exists and is unique up to isomorphism ([Ham79]).)

What is a pseudo-expectation?

Definition

Let A be a C*-algebra. Then an **injective envelope** for A consists of an injective C*-algebra I(A) containing A as a C*-subalgebra the only ucp map $I(A) \rightarrow I(A)$ that restricts to the identity on A is the identity map. (It exists and is unique up to isomorphism ([Ham79]).)

Definition ([Pit12])

A **pseudo-expectation** for $B \subset A$ is a ucp map $A \to I(B)$ extending $B \hookrightarrow I(B)$. (Generalizes conditional expectation, always exists.)

Shown in [Pit12] that regular MASA inclusions have unique pseudo-expectations.

Groupoid = "category where every morphism is invertible". So if $\alpha, \beta \in G$ then $\alpha\beta$ may or may not be defined. Can always cancel, e.g. $\alpha^{-1}(\alpha\beta) = \beta$.

Groupoid = "category where every morphism is invertible". So if $\alpha, \beta \in G$ then $\alpha\beta$ may or may not be defined. Can always cancel, e.g. $\alpha^{-1}(\alpha\beta) = \beta$. Important subsets:

unit space G⁽⁰⁾: set of elements u such that u² = u (equal to range of α → α⁻¹α)

Groupoid = "category where every morphism is invertible". So if $\alpha, \beta \in G$ then $\alpha\beta$ may or may not be defined. Can always cancel, e.g. $\alpha^{-1}(\alpha\beta) = \beta$. Important subsets:

- unit space G⁽⁰⁾: set of elements u such that u² = u (equal to range of α → α⁻¹α)
- isotropy bundle: elements α such that $\alpha^{-1}\alpha = \alpha\alpha^{-1}$

Groupoid = "category where every morphism is invertible". So if $\alpha, \beta \in G$ then $\alpha\beta$ may or may not be defined. Can always cancel, e.g. $\alpha^{-1}(\alpha\beta) = \beta$. Important subsets:

- unit space G⁽⁰⁾: set of elements u such that u² = u (equal to range of α → α⁻¹α)
- isotropy bundle: elements α such that $\alpha^{-1}\alpha = \alpha \alpha^{-1}$

Can add topology to make everything continuous. If $\alpha \mapsto \alpha \alpha^{-1}$ is a local homeomorphism $G \to G$, call G étale. Care especially about the **interior of isotropy bundle**: Int lso G. (If G is étale this includes the unit space.)

・ロト ・ 同ト ・ ヨト ・ ヨト

Groupoid = "category where every morphism is invertible". So if $\alpha, \beta \in G$ then $\alpha\beta$ may or may not be defined. Can always cancel, e.g. $\alpha^{-1}(\alpha\beta) = \beta$. Important subsets:

- unit space G⁽⁰⁾: set of elements u such that u² = u (equal to range of α → α⁻¹α)
- isotropy bundle: elements α such that $\alpha^{-1}\alpha = \alpha \alpha^{-1}$

Can add topology to make everything continuous. If $\alpha \mapsto \alpha \alpha^{-1}$ is a local homeomorphism $G \to G$, call G étale. Care especially about the **interior of isotropy bundle**: Int lso G. (If G is étale this includes the unit space.)

Example

If discrete group $G \cap X$ a topological space, then $G \times X$ is a groupoid with (h, g.x)(g, x) = (hg, x). (Call this $G \ltimes X$, transformation groupoid.)

Groupoid C*-algebras

Let G be an étale locally compact Hausdorff second countable groupoid with *compact* unit space. Construct reduced groupoid C^* -algebra $C^*_r(G)$ out of convolution algebra $C_c(G)$ as in construction of group C^* -algebra.

Groupoid C*-algebras

Let G be an étale locally compact Hausdorff second countable groupoid with *compact* unit space. Construct reduced groupoid C^* -algebra $C^*_r(G)$ out of convolution algebra $C_c(G)$ as in construction of group C^* -algebra. Important inclusions related to this

$$C(G^{(0)}) \subset C_r^*(G)$$
 $C_r^*(\operatorname{Int} \operatorname{Iso} G) \subset C_r^*(G)$

Groupoid C*-algebras

Let G be an étale locally compact Hausdorff second countable groupoid with *compact* unit space. Construct reduced groupoid C^* -algebra $C^*_r(G)$ out of convolution algebra $C_c(G)$ as in construction of group C^* -algebra. Important inclusions related to this

$$\mathcal{C}(\mathcal{G}^{(0)}) \subset \mathcal{C}^*_r(\mathcal{G}) \qquad \mathcal{C}^*_r(\operatorname{\mathsf{Int}}\operatorname{\mathsf{Iso}}\mathcal{G}) \subset \mathcal{C}^*_r(\mathcal{G})$$

Example (Graph algebras)

If *E* is a graph with path groupoid G_E , then these correspond to the diagonal $C^*(s_\lambda s_\lambda^*) \subset C^*(E)$ and the abelian core $M_E \subset C^*(E)$ (Nagy-Reznikoff).

Main questions for this work in progress:

Question

When do the inclusions $C(G^{(0)}) \subset C_r^*(G)$ and $C_r^*(Int Iso G) \subset C_r^*(G)$ associated to an étale groupoid G have the various largeness properties on the first slide?.

Specifically, when does $C_r^*(Int Iso G) \subset C_r^*(G)$ have the faithful unique pseudo-expectation property?

The inclusion $C(G^{(0)}) \subset C_r^*(G)$

Proposition (C.)

The inclusion $C(G^{(0)}) \subset C_r^*(G)$. Following are equivalent:

- (a) has a unique conditional expectation
- (b) has a unique pseudo-expectation
- (c) Int Iso $G = G^{(0)}$

Proof.

Easy proof, combining results of Renault, Pitts, and Zarikian. Avoids considering properly outer actions as in Zarikian.

The inclusion $C_r^*($ Int Iso $G) \subset C_r^*(G)$

The inclusion $C_r^*(\text{Int Iso } G) \subset C_r^*(G)$ is always regular (noted by many, including [CN]).

Proposition ([BNR⁺16, Prop. 4.1])

The inclusion $C_r^*(\text{Int Iso } G) \subset C_r^*(G)$ has a conditional expectation if and only if Int Iso G is closed in G. The expectation is given on $C_c(G)$ by $f \mapsto f|_{\text{Int Iso } G}$.

This conditional expectation is unique using an argument of [Zar18]

Question

What about pseudo-expectations?

The inclusion $C_r^*(\text{Int Iso } G) \subset C_r^*(G)$ is essential ([BNR⁺16]), leads us to hope for unique faithful pseudo-expectation.

Maximal abelian subalgebras and pseudoexpectations

Theorem ([BNR⁺16, Thm. 4.3])

Suppose that Int Iso G is abelian. If Int Iso G is closed or if there exists a countable discrete abelian group H and a continuous 1-cocycle $c : G \to H$ that is injective on each G_x^{\times} , then $C_r^*(Int Iso G) \subset C_r^*(G)$ is a MASA

Any essential MASA has unique faithful pseudo-expectation [Pit12], we obtain.

Proposition (C.)

In either of the above cases, there is a unique pseudo-expectation from $C_r^*(G) \to I(C_r^*(\operatorname{Int} \operatorname{Iso} G))$, which is faithful

Hope that the above is **always** true, not just for MASA $C_r^*($ Int Iso $G)_{\sim}$

JMM 2019

9 / 12

The End

Thank You!

Danny Crytser (St. Lawrence University) Large inclusions for groupoid and k-graph C^*

▶ ▲ 볼 ▶ 볼 ∽ ९ ୯ JMM 2019 10 / 12

<ロ> (日) (日) (日) (日) (日)

Bibliography I

- J. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. Williams. Cartan subalgebras in *C**-algebras of Hausdorff étale Groupoids. *Integral Equations and Operator Theory*, 85:109–126, 2016.
- D. Crytser and G. Nagy.
 Simplicity criteria for groupoid C*-algebras.
 J. Operator Theory.
 to appear.

M. Hamana.

Injective envelopes of C^* -algebras.

J. Math. Soc. Japan, 31(1):181–197, 1979.

• = • •

Bibliography II

D. Pitts.

Structure for regular inclusions.

J. Operator Theory, 78(2), 2012.

V. Zarikian.

Unique expectations for discrete crossed products. *Annals Func. Anal.*, to appear.

V. Zarikian.

Unique extension problems for C^* -inclusions. GPOTS, 2018.