Graph Traces on Product Graphs

Amy Isvik, Nate Kolo, Maria Ross
Kansas State University - SUMaR REU

July 26, 2016

This work was carried out at the Kansas State University SUMaR program under support of NSF Grant \# DSM-1262877 and advised by Dr. Danny Crytser.

Overview

(1) Directed graphs, product graphs, and their traces
(2) Higher-rank graphs and their traces
(3) Products of higher rank graphs and their traces

Directed Graphs and Traces

Definition

Let E be a directed graph. A function $g: E^{0} \rightarrow[0,1]$ is a graph trace if (i) For any regular vertex $v \in E^{0}$,

$$
g(v)=\sum_{e \in E^{1}, r(e)=v} g(s(e)) .
$$

(ii) For any infinite receiver $v \in E^{0}$ and any finite collection of edges in $r^{-1}(v)$, we have

$$
g(v) \geq \sum_{i=1}^{n} g\left(s\left(e_{i}\right)\right) .
$$

(iii)

$$
\sum_{v \in E^{0}} g(v)=1
$$

Examples of Directed Graph Traces

Definition

An extreme graph trace is a graph trace which cannot be written as a convex combination of other graph traces. That is, if g is an extreme graph trace and $g=t g^{\prime}+(1-t) g^{\prime \prime}$ for graph traces $g^{\prime}, g^{\prime \prime}$ and $t \in(0,1)$, then $g^{\prime}=g^{\prime \prime}=g$.

Theorem [Johnson]

Let E be a finite directed graph with no cycles. Then there exists a bijection between the set of all sources of E, S_{E}, and the set of all extreme traces on E, ext $(T(E))$.

Box Product

Box Product of Directed Graphs

The box (Cartesian) product of E with F is the graph $E \square F=\left(E^{0} \times F^{0},\left(E^{1} \times F^{0}\right) \cup\left(E^{0} \times F^{1}\right), r_{\square}, s_{\square}\right)$, where r_{\square}, s_{\square} are defined as follows: For all $e \in E^{1}, f \in F^{1}, u \in E^{0}, v \in F^{0}$:

$$
\begin{array}{ll}
r_{\square}(e, v)=\left(r_{E}(e), v\right) & r_{\square}(u, f)=\left(u, r_{F}(f)\right) \\
s_{\square}(e, v)=\left(s_{E}(e), v\right) & s_{\square}(u, f)=\left(u, s_{F}(f)\right)
\end{array}
$$

Box Product

This product operation does not guarantee that the product of graph traces on factor graphs is a trace on the product graph.

Tensor Product

Tensor Product of Directed Graphs
The tensor product of E with F is the graph
$E \otimes F=\left(E^{0} \times F^{0}, E^{1} \times F^{1}, r_{\otimes}, s_{\otimes}\right)$, such that for all $(e, f) \in E^{1} \times F^{1}$ we define:

$$
r_{\otimes}(e, f)=\left(r_{E}(e), r_{F}(f)\right) \text { and } s_{\otimes}(e, f)=\left(s_{E}(e), s_{F}(f)\right) .
$$

Tensor Product

The tensor product of traces on factor graphs gives a trace on the product graph. This is not necessarily the only way to find traces on the product graph.

Higher-rank graphs

Definition

A higher-rank graph, or k-graph, (Λ, d), consists of a category Λ and a degree functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ (i.e. $d\left(\lambda_{1} \lambda_{2}\right)=d\left(\lambda_{1}\right)+d\left(\lambda_{2}\right)$) satisfying the factorization property: for any $\lambda \in \Lambda$, if $d(\lambda)=m+n$ for $m, n \in \mathbb{N}^{k}$, then there exist unique $\mu, \nu \in \Lambda$ such that $\lambda=\mu \nu$ and $d(\mu)=m, d(\nu)=n$. For $n \in \mathbb{N}^{k}$, let Λ^{n} denote $d^{-1}(n)=\{\lambda \in \Lambda: d(\lambda)=n\}$.

Definition

A k-graph is locally convex if whenever a vertex receives different colored edges, the sources of these edges also receive edges of each color other than the one it sends.

Locally Convex

Not Locally Convex

Definition

Let Λ be a (locally convex, row-finite) k-graph, and let Λ^{0} be its set of vertices. A function $g: \Lambda^{0} \rightarrow[0,1]$ is called a higher-rank graph trace if (i) for any vertex $v \in \Lambda^{0}$ and any degree $n \in \mathbb{N}^{k}$, we have

$$
\sum_{\lambda \in v \Lambda \leq n} g(s(\lambda))=g(v)
$$

(ii)

$$
\sum_{v \in \Lambda^{0}} g(v)=1
$$

Definition

Let E be a finite graph with no cycles and let $v, w \in E^{0}$. Then, define the number of finite paths from v as $n(v)=\mid\left\{\lambda \in E^{*}: s(\lambda=v\} \mid\right.$. Also define the number of paths between v and w as $n(v, w)=\left|\left\{\lambda \in E^{*}: s(\lambda)=v, r(\lambda)=w\right\}\right|$.

Theorem

If Λ is a finite locally convex k-graph with no cycles, then there is a one to one correspondence between sources and extreme traces defined by $S_{\Lambda} \ni v \mapsto g_{v} \in T(\Lambda)$ where $g_{v}(w)=\frac{n(v, w)}{n(v)}$.

Product of Higher Rank Graphs

Definition

Let Λ be a k-graph and let Π be an ℓ-graph. The product of Λ and Π, denoted $\Lambda \times \Pi$, is simply the Cartesian product of Λ and Π, equipped with the following structure:
(i) $d(\lambda, \pi)=(d(\lambda), d(\pi))$
(ii) $r(\lambda, \pi)=(r(\lambda), r(\pi))$ and likewise for the source map.
(iii) $(\lambda, \pi)\left(\lambda^{\prime}, \pi^{\prime}\right)=\left(\lambda \lambda^{\prime}, \pi \pi^{\prime}\right)$ whenever both compositions in the factor graphs are defined.
Note that with this degree map, the vertex set of $\Lambda \times \Pi$ is just $\Lambda^{0} \times \Pi^{0}$.

If you assign values to t_{1}, t_{2}, t_{3}, and t_{4}, then the graph trace values at the remaining vertices are as shown. Note that these graph traces must also satisfy the relation: $t_{1}+t_{2}+t_{3}+t_{4}=\frac{1}{4}$.

Proposition

Let g_{λ} be a graph trace on Λ and g_{π} be a graph trace on Π. Then $g_{\lambda} g_{\pi}(v w)=g_{\lambda}(v) g_{\pi}(w)$ is a graph trace on $\Lambda \times \Pi$.

Proposition

Let g be a graph trace on $\Lambda \times \Pi$. Then define $g_{1}: \Lambda^{0} \rightarrow[0,1]$ and $g_{2}: \Pi^{0} \rightarrow[0,1]$ by

$$
g_{1}(v)=\sum_{w \in \Pi^{0}} g(v w) \quad g_{2}(w)=\sum_{v \in \wedge^{0}} g(v w) .
$$

Then g_{1} is a graph trace on Λ and g_{2} is a graph trace on Π.

Note: $g_{1}\left(v_{1}\right)=\sum_{w \in \Pi^{0}} g\left(v_{1} w\right)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$

Definition

A graph trace g on a product higher-rank graph $\Lambda \times \Pi$ is a product trace if $g=g_{\Lambda} g_{\Pi}$ where g_{Λ} is a graph trace on Λ and g_{Π} is a graph trace on Π.

Extreme traces on the product graph can be understood using extreme traces on the factor graphs, as shown by these propositions.

Proposition

If g is a trace on $\Lambda \times \Pi$ and g_{1} is extreme, then $g=g_{1} g_{2}$.

Proposition

The product trace $g_{\Lambda} g_{\Pi}$ is extreme if and only if g_{Λ} and g_{Π} are extreme.

Conjecture

Let Λ and Π be higher-rank graphs. Then every extreme trace on $\Lambda \times \Pi$ is a product trace.

The End

Bibliography

E Jacob v.B. Hjelmborg. Purely infinite and stable C*-algebras of graphs and dynamical systems. Ergodic Theory Dynam. Systems. 21: 1789-1808. 2001.
围 Matthew Johnson. The graph traces of finite graphs and applications to tracial states of C^{*}-algebras. New York Journal of Mathematics.
11: 649-658. 2005
Ann Johnston and Andrew Reynolds. C*-algebras of Graph Products. REU Report. Canisius College, 2009.
Richard Kadison and John Ringrose. Fundamentals of the Theory of Operator Algebras. American Mathematical Society. Graduate Studies in Mathematics. Vol. 1. 1997.
David Pask and Adam Rennie. The noncommutative geometry of higher-rank graph C^{*}-algebras I: The index theorem. J. Funct. Anal. 233: 92-134. 2006.

Bibliography

- Isaac Namioka and R.R. Phelps. Tensor products of compact convex sets. Pac. J. Math. 31: 469-480. 1969.
國 lain Raeburn. Graph Algebras. American Mathematical Society. CMBS Lecture Notes. 2005.
Iain Raeburn, Aidan Sims, and Trent Yeend. Higher-rank graphs and their C^{*}-algebras. Proc. Edin. Math. Soc. 46: 99-115. 2003.
目 Mark Tomforde. The ordered K_{0}-group of a graph C^{*}-algebra. C.R. Math. Acad. Sci. Soc. 25: 19-25. 2003.

