Graph Traces on Product Graphs

Amy Isvik, Nate Kolo, Maria Ross

Kansas State University - SUMaR REU

July 26, 2016

This work was carried out at the Kansas State University SUMaR program under support of NSF Grant # DSM-1262877 and advised by Dr. Danny Crytser.

		《曰》《卽》《言》《言》 []	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces	July 26, 2016	1 / 33

Overview

1 Directed graphs, product graphs, and their traces

2 Higher-rank graphs and their traces

③ Products of higher rank graphs and their traces

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

July 26, 2016 2 / 33

토▶ 《토▶

 $\langle \Box \rangle$

< 🗇 ▶

⊒

Directed Graphs and Traces

Definition

Let *E* be a directed graph. A function $g : E^0 \to [0, 1]$ is a graph trace if (i) For any regular vertex $v \in E^0$,

$$g(v) = \sum_{e \in E^1, r(e)=v} g(s(e)).$$

(ii) For any infinite receiver $v \in E^0$ and any finite collection of edges in $r^{-1}(v)$, we have

$$g(v) \geq \sum_{i=1}^{n} g(s(e_i)).$$

(iii)

 $\sum_{v\in E^0}g(v)=1$

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

July 26, 2016 3 / 33

Ξ

1 Q (

E

•

Examples of Directed Graph Traces

Amy Isvik, Nate Kolo, Maria Ross (SUMaR) Graph Traces	July 26, 2016 4 / 33

An extreme graph trace is a graph trace which cannot be written as a convex combination of other graph traces. That is, if g is an extreme graph trace and g = tg' + (1 - t)g'' for graph traces g', g'' and $t \in (0, 1)$, then g' = g'' = g.

Theorem [Johnson]

Let *E* be a finite directed graph with no cycles. Then there exists a bijection between the set of all sources of *E*, S_E , and the set of all extreme traces on *E*, ext(T(E)).

		<□▶ <舂▶		うべつ
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces		July 26, 2016	6 / 33

Box Product

Box Product of Directed Graphs The box (Cartesian) product of E with F is the graph $E \Box F = (E^0 \times F^0, (E^1 \times F^0) \cup (E^0 \times F^1), r_{\Box}, s_{\Box})$, where r_{\Box}, s_{\Box} are defined as follows: For all $e \in E^1$, $f \in F^1$, $u \in E^0$, $v \in F^0$: $r_{\Box}(a, v) = (r_{\Box}(a), v)$, $r_{\Box}(u, f) = (u, r_{\Box}(f))$

$$r_{\Box}(e, v) = (r_{E}(e), v)$$
 $r_{\Box}(u, f) = (u, r_{F}(f))$
 $s_{\Box}(e, v) = (s_{E}(e), v)$ $s_{\Box}(u, f) = (u, s_{F}(f))$

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

July 26, 2016 7 / 33

Box Product

This product operation does not guarantee that the product of graph traces on factor graphs is a trace on the product graph.

	1		$\mathcal{O} \mathcal{Q} \mathcal{O}$
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces	July 26, 2016	8 / 33

Tensor Product

Tensor Product of Directed Graphs The *tensor product* of *E* with *F* is the graph $E \otimes F = (E^0 \times F^0, E^1 \times F^1, r_{\otimes}, s_{\otimes})$, such that for all $(e, f) \in E^1 \times F^1$ we define: $r_{\otimes}(e, f) = (r_E(e), r_F(f))$ and $s_{\otimes}(e, f) = (s_E(e), s_F(f))$.

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

July 26, 2016 9 / 33

4)4(9

Tensor Product

The tensor product of traces on factor graphs gives a trace on the product graph. This is not necessarily the only way to find traces on the product graph.

			< □ > < @ >	< ≣ > < ≣ >	
Amy Isvik, Nate Kolo, Maria Ross	(SUMaR)	Graph Traces		July 26, 2016	10 / 33

Higher-rank graphs

Definition

A higher-rank graph, or k-graph, (Λ, d) , consists of a category Λ and a degree functor $d : \Lambda \to \mathbb{N}^k$ (i.e. $d(\lambda_1\lambda_2) = d(\lambda_1) + d(\lambda_2)$) satisfying the factorization property: for any $\lambda \in \Lambda$, if $d(\lambda) = m + n$ for $m, n \in \mathbb{N}^k$, then there exist unique $\mu, \nu \in \Lambda$ such that $\lambda = \mu\nu$ and $d(\mu) = m, d(\nu) = n$. For $n \in \mathbb{N}^k$, let Λ^n denote $d^{-1}(n) = \{\lambda \in \Lambda : d(\lambda) = n\}$.

A *k*-graph is *locally convex* if whenever a vertex receives different colored edges, the sources of these edges also receive edges of each color other than the one it sends.

Let Λ be a (locally convex, row-finite) *k*-graph, and let Λ^0 be its set of vertices. A function $g : \Lambda^0 \to [0, 1]$ is called a *higher-rank graph trace* if (i) for any vertex $v \in \Lambda^0$ and any degree $n \in \mathbb{N}^k$, we have

$$\sum_{\lambda \in v \Lambda^{\leq n}} g(s(\lambda)) = g(v);$$

(ii)

$$\sum_{
u\in\Lambda^0}g(
u)=1$$

	< □ ▶	《집》 《토》 《토》	
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces	July 26, 2016	13 / 33

		<□ > <⊡ >	▲ 토 ► ▲ 토 ► 토	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces		July 26, 2016	14 / 33

Let *E* be a finite graph with no cycles and let $v, w \in E^0$. Then, define the number of finite paths from v as $n(v) = |\{\lambda \in E^* : s(\lambda = v\}|$. Also define the number of paths between v and w as $n(v, w) = |\{\lambda \in E^* : s(\lambda) = v, r(\lambda) = w\}|$.

Theorem

If Λ is a finite locally convex *k*-graph with no cycles, then there is a one to one correspondence between sources and extreme traces defined by $S_{\Lambda} \ni v \mapsto g_v \in T(\Lambda)$ where $g_v(w) = \frac{n(v,w)}{n(v)}$.

			-
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces	July 26, 2016	15 / 33

 $\exists \mathcal{O} \land \mathcal{O}$

Amy Isvik, Nate Kolo, Maria Ross (SUMal	R) Graph Traces	July 26, 2016 16 / 33

		< □ ▶	▲□ ▶ ▲ 글 ▶ ▲ 글 ▶	E
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces		July 26, 2016	17 / 33

Amy Isvik, Nate Kolo, Maria Ross	(SUMaR)	Graph Traces	July 26, 2016	18 / 33

Product of Higher Rank Graphs

Definition

Let Λ be a *k*-graph and let Π be an ℓ -graph. The product of Λ and Π , denoted $\Lambda \times \Pi$, is simply the Cartesian product of Λ and Π , equipped with the following structure:

- (i) $d(\lambda,\pi) = (d(\lambda), d(\pi))$
- (ii) $r(\lambda, \pi) = (r(\lambda), r(\pi))$ and likewise for the source map.
- (iii) $(\lambda, \pi)(\lambda', \pi') = (\lambda\lambda', \pi\pi')$ whenever both compositions in the factor graphs are defined.

Note that with this degree map, the vertex set of $\Lambda \times \Pi$ is just $\Lambda^0 \times \Pi^0$.

Amy Isvik,	Nate Kolo,	Maria Ross	(SUMaR)
------------	------------	------------	---------

Graph Traces

■ ト イ ヨ ト ヨ ク へ (~ July 26, 2016 20 / 33

If you assign values to t_1, t_2, t_3 , and t_4 , then the graph trace values at the remaining vertices are as shown. Note that these graph traces must also satisfy the relation: $t_1 + t_2 + t_3 + t_4 = \frac{1}{4}$.

Amy Isvik, Nate Kolo, Maria Ross (SUMaF) Graph Traces	July 26, 2016 22 / 33

Proposition

Let g_{λ} be a graph trace on Λ and g_{π} be a graph trace on Π . Then $g_{\lambda}g_{\pi}(vw) = g_{\lambda}(v)g_{\pi}(w)$ is a graph trace on $\Lambda \times \Pi$.

Proposition

Let g be a graph trace on $\Lambda \times \Pi$. Then define $g_1 : \Lambda^0 \to [0, 1]$ and $g_2 : \Pi^0 \to [0, 1]$ by

$$g_1(v)=\sum_{w\in\Pi^0}g(vw)\qquad g_2(w)=\sum_{v\in\Lambda^0}g(vw).$$

Then g_1 is a graph trace on Λ and g_2 is a graph trace on Π .

	< □	그 눈 속 물 눈 속 물 눈	
Amy Isvik, Nate Kolo, Maria Ross (SUMaR)	Graph Traces	July 26, 2016	26 / 33

A graph trace g on a product higher-rank graph $\Lambda \times \Pi$ is a *product trace* if $g = g_{\Lambda}g_{\Pi}$ where g_{Λ} is a graph trace on Λ and g_{Π} is a graph trace on Π .

Extreme traces on the product graph can be understood using extreme traces on the factor graphs, as shown by these propositions.

Proposition

If g is a trace on $\Lambda \times \Pi$ and g_1 is extreme, then $g = g_1 g_2$.

Proposition

The product trace $g_{\Lambda}g_{\Pi}$ is extreme if and only if g_{Λ} and g_{Π} are extreme.

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

July 26, 2016 29 / 33

-<- ∃ ►

Ξ

MQ (P

Conjecture

Let Λ and Π be higher-rank graphs. Then every extreme trace on $\Lambda \times \Pi$ is a product trace.

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

 $\langle \Box \rangle$

July 26, 2016 30 / 33

⊒ E ► < E ► 590

The End

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

 ${\color{red} \bullet} \quad {\color{red} \bullet} \quad {\color{$

▲母 > ▲ Ξ > ▲ Ξ > ▲ Ξ < の < 0</p> July 26, 2016 31 / 33

Bibliography

- Jacob v.B. Hjelmborg. *Purely infinite and stable C*-algebras of graphs and dynamical systems*. Ergodic Theory Dynam. Systems. **21**: 1789-1808. 2001.
- Matthew Johnson. The graph traces of finite graphs and applications to tracial states of C*-algebras. New York Journal of Mathematics. 11: 649-658. 2005
- Ann Johnston and Andrew Reynolds. C*-algebras of Graph Products. REU Report. Canisius College, 2009.
- Richard Kadison and John Ringrose. Fundamentals of the Theory of Operator Algebras. American Mathematical Society. Graduate Studies in Mathematics. Vol. 1. 1997.
- David Pask and Adam Rennie. The noncommutative geometry of higher-rank graph C*-algebras I: The index theorem. J. Funct. Anal.
 233: 92-134. 2006.

Amy Isvik, Nate Kolo, Maria Ross (SUMaR)

Graph Traces

July 26, 2016 32 / 33

《曰》《卽》《臣》《臣》

Bibliography

- Isaac Namioka and R.R. Phelps. Tensor products of compact convex sets. Pac. J. Math. 31: 469-480. 1969.
- Iain Raeburn. Graph Algebras. American Mathematical Society. CMBS Lecture Notes. 2005.
- Iain Raeburn, Aidan Sims, and Trent Yeend. Higher-rank graphs and their C*-algebras. Proc. Edin. Math. Soc. 46: 99-115. 2003.
- Mark Tomforde. The ordered K₀-group of a graph C*-algebra. C.R. Math. Acad. Sci. Soc. 25: 19-25. 2003.

Amy Isvik, Nate Kolo,	Maria Ross	(SUMaR)
-----------------------	------------	---------

Graph Traces

July 26, 2016 33 / 33

▲□▶ ▲国▶ ▲国▶

≣