
Graph Traces on Product Graphs

Amy Isvik, Nate Kolo, Maria Ross

Kansas State University - SUMaR REU

July 26, 2016

This work was carried out at the Kansas State University SUMaR program under support of

NSF Grant # DSM-1262877 and advised by Dr. Danny Crytser.

Amy Isvik, Nate Kolo, Maria Ross (SUMaR) Graph Traces July 26, 2016 1 / 33



Overview

1 Directed graphs, product graphs, and their traces

2 Higher-rank graphs and their traces

3 Products of higher rank graphs and their traces
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Directed Graphs and Traces

Definition

Let E be a directed graph. A function g : E 0 ! [0, 1] is a graph trace if
(i) For any regular vertex v 2 E 0,

g(v) =
X

e2E1,r(e)=v

g(s(e)).

(ii) For any infinite receiver v 2 E 0 and any finite collection of edges in
r�1(v), we have

g(v) �
nX

i=1

g(s(ei )).

(iii) X

v2E0

g(v) = 1
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Examples of Directed Graph Traces
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Definition
An extreme graph trace is a graph trace which cannot be written as a
convex combination of other graph traces. That is, if g is an extreme
graph trace and g = tg 0 + (1� t)g 00 for graph traces g 0, g 00 and t 2 (0, 1),
then g 0 = g 00 = g .
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Theorem [Johnson]

Let E be a finite directed graph with no cycles. Then there exists a
bijection between the set of all sources of E , SE , and the set of all extreme
traces on E , ext(T (E )).
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Box Product
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Box Product of Directed Graphs

The box (Cartesian) product of E with F is the graph
E⇤F = (E 0 ⇥ F 0, (E 1 ⇥ F 0) [ (E 0 ⇥ F 1), r⇤, s⇤), where r⇤, s⇤ are defined
as follows: For all e 2 E 1, f 2 F 1, u 2 E 0, v 2 F 0:

r⇤(e, v) = (rE (e), v) r⇤(u, f ) = (u, rF (f ))
s⇤(e, v) = (sE (e), v) s⇤(u, f ) = (u, sF (f ))
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Box Product
This product operation does not guarantee that the product of graph
traces on factor graphs is a trace on the product graph.
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Tensor Product
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Tensor Product of Directed Graphs

The tensor product of E with F is the graph
E ⌦ F = (E 0 ⇥ F 0,E 1 ⇥ F 1, r⌦, s⌦), such that for all (e, f ) 2 E 1 ⇥ F 1 we
define:

r⌦(e, f ) = (rE (e), rF (f )) and s⌦(e, f ) = (sE (e), sF (f )).
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Tensor Product
The tensor product of traces on factor graphs gives a trace on the product
graph. This is not necessarily the only way to find traces on the product
graph.

Amy Isvik, Nate Kolo, Maria Ross (SUMaR) Graph Traces July 26, 2016 10 / 33



Higher-rank graphs

Definition

A higher-rank graph, or k-graph,(⇤, d), consists of a category ⇤ and a
degree functor d : ⇤ ! Nk (i.e. d(�

1

�
2

) = d(�
1

) + d(�
2

)) satisfying the
factorization property: for any � 2 ⇤, if d(�) = m + n for m, n 2 Nk , then
there exist unique µ, ⌫ 2 ⇤ such that � = µ⌫ and d(µ) = m,d(⌫) = n. For
n 2 Nk , let ⇤n denote d�1(n) = {� 2 ⇤ : d(�) = n}.
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Definition
A k-graph is locally convex if whenever a vertex receives di↵erent colored
edges, the sources of these edges also receive edges of each color other
than the one it sends.
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Definition

Let ⇤ be a (locally convex, row-finite) k-graph, and let ⇤0 be its set of
vertices. A function g : ⇤0 ! [0, 1] is called a higher-rank graph trace if

(i) for any vertex v 2 ⇤0 and any degree n 2 Nk , we have

X

�2v⇤n

g(s(�)) = g(v);

(ii) X

v2⇤0

g(v) = 1

.
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Definition

Let E be a finite graph with no cycles and let v , w 2 E 0. Then, define the
number of finite paths from v as n(v) = |{� 2 E ⇤ : s(� = v}|. Also define
the number of paths between v and w as
n(v ,w) = |{� 2 E ⇤ : s(�) = v , r(�) = w}|.

Theorem
If ⇤ is a finite locally convex k-graph with no cycles, then there is a one to
one correspondence between sources and extreme traces defined by
S
⇤

3 v 7! gv 2 T (⇤) where gv (w) = n(v ,w)

n(v) .
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Product of Higher Rank Graphs

Definition
Let ⇤ be a k-graph and let ⇧ be an `-graph. The product of ⇤ and ⇧,
denoted ⇤⇥ ⇧, is simply the Cartesian product of ⇤ and ⇧, equipped with
the following structure:

(i) d(�,⇡) = (d(�), d(⇡))

(ii) r(�,⇡) = (r(�), r(⇡)) and likewise for the source map.

(iii) (�,⇡)(�0,⇡0) = (��0,⇡⇡0) whenever both compositions in the factor
graphs are defined.

Note that with this degree map, the vertex set of ⇤⇥ ⇧ is just ⇤0 ⇥ ⇧0.
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Proposition

Let g� be a graph trace on ⇤ and g⇡ be a graph trace on ⇧. Then
g�g⇡(vw) = g�(v)g⇡(w) is a graph trace on ⇤⇥ ⇧.
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Proposition

Let g be a graph trace on ⇤⇥ ⇧. Then define g
1

: ⇤0 ! [0, 1] and
g
2

: ⇧0 ! [0, 1] by

g
1

(v) =
X

w2⇧0

g(vw) g
2

(w) =
X

v2⇤0

g(vw).

Then g
1

is a graph trace on ⇤ and g
2

is a graph trace on ⇧.
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Definition
A graph trace g on a product higher-rank graph ⇤⇥⇧ is a product trace if
g = g

⇤

g
⇧

where g
⇤

is a graph trace on ⇤ and g
⇧

is a graph trace on ⇧.
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Extreme traces on the product graph can be understood using extreme
traces on the factor graphs, as shown by these propositions.

Proposition

If g is a trace on ⇤⇥ ⇧ and g
1

is extreme, then g = g
1

g
2

.

Proposition

The product trace g
⇤

g
⇧

is extreme if and only if g
⇤

and g
⇧

are extreme.
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Conjecture

Let ⇤ and ⇧ be higher-rank graphs. Then every extreme trace on ⇤⇥ ⇧ is
a product trace.
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The End
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