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Abstract. We give an emended proof of a result in the literature characteriz-
ing which graphs yield stable Cuntz-Krieger graph C∗-algebras. We strengthen

this result by adding another necessary condition. We characterize stability
of C∗-algebras associated to certain higher-rank graph C∗-algebras, as well as

étale groupoids.

1. Introduction

A C∗-algebra A is said to be stable if A ∼= A⊗K, where K denotes the C∗-algebra
of compact operators on an infinite-dimensional separable Hilbert space. Hjelm-
borg and Rørdam in [11, Theorem 3.3] characterized stability for C∗-algebras which
admit approximate identities consisting of projections. Hjelmborg in [10, Theorem
2.14] used this characterization to characterize stability for the Cuntz-Krieger alge-
bra C∗(E) associated to a locally finite directed graph E. His description introduced
two graph-theoretic concepts. A vertex v ∈ E0 is said to be left-finite if one only
finitely many vertices lie on the paths whose source is v; such a vertex can form
an obstruction to stability of C∗(E) by leading to a unital (and hence non-stable)
quotient. A graph trace on E is a R+-valued function on the vertices of E which
satisfies Cuntz-Krieger-type relations; when suitably normalized, such a trace in-
duces a tracial state on C∗(E), another obstruction to stability. Tomforde in [25,
Theorem 3.2] treated the case of the Cuntz-Krieger graph C∗-algebra C∗(E) asso-
ciated to an arbitrary directed graph E, showing that C∗(E) is stable if and only if
no vertex on a cycle of E is left-finite and E has no bounded graph traces. There
is a gap in the proof of [25, Theorem 3.2] which is fixed by the proof of Theorem
3.31, which also adds an additional necessary condition for stability.

A k-graph (or higher-rank graph) is a higher-dimensional generalization of a
directed graph, formed from equivalence classes of directed paths within a colored
directed graph. To any well-behaved k-graph Λ one can affiliate a universal C∗-
algebra C∗(Λ) generated by partial isometries satisfying Cuntz-Krieger relations.
The analysis of C∗(Λ) is closely analogous to that of a graph C∗-algebra; however,
k-graphs can present rich combinatorial difficulties not present in graphs. Due to
this complexity, we cannot at present characterize when a k-graph gives rise to a
stable C∗-algebra. We give necessary conditions (Corollaries 4.13 and 4.16) and a
sufficient condition (Theorem 4.17), all inspired by the graph case.

Generalizing even farther we study groupoid C∗-algebras. Again, we are unable
to give a condition on a groupoid that is necessary and sufficient for its C∗-algebra
to be stable . We give partial results inspired by the graph and k-graph cases.
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The layout of the paper is as follows. In Section 2, we record some background
results for stable C∗-algebras. In Section 3, we give background on graph C∗-
algebras and give a complete characterization of stability for graph C∗-algebras
(Theorem 3.31). In Section 4, we give a partial extension of these results to the
realm of k-graph C∗-algebras. In Section 5, we extend some of our results to the
realm of étale groupoid C∗-algebras.

Most of the results in this paper formed part of the author’s thesis work while
at Dartmouth College. Many thanks to Dana Williams for his encouragement and
advice, and to Mark Tomforde for his useful suggestions on the initial version of
these results.

2. Stability of C∗-algebras

This section reviews the basic properties of stable C∗-algebras that we will use
throughout the paper.

Note. In this section and throughout the paper, we use the term “ideal” to mean
a closed, two-sided ideal of a C∗-algebra.

Definition 2.1. A C∗-algebra A is stable if A ∼= A⊗K, where K denotes the C∗-
algebra of compact operators on an infinite-dimensional separable Hilbert space.

Remark. Because K is nuclear, there is no need to specify a tensor norm for A⊗K.

The following is immediate from the structure of K and is stated without proof.

Lemma 2.2. No stable C∗-algebra is unital.

Proposition 2.3 ([20, Cor. 2.3(ii)]). Any ideal or quotient of a stable C∗-algebra
is stable.

Corollary 2.4. A stable C∗-algebra has no nonzero unital quotients.

Definition 2.5. A tracial state on a C∗-algebra A is a state φ ∈ S(A) such that
φ(xy) = φ(yx) for all x, y ∈ A. The (possibly empty) set of tracial states on A is
denoted by T (A).

Lemma 2.6 ([11, Prop. 5.1]). If A is stable then T (A) = ∅.

Recall that if p and q are projections in a C∗-algebra A, then we say that p is
subequivalent to q, denoted p . q, if there is a partial isometry x ∈ A such that
x∗x = p and xx∗ ≤ q. By a comparison between two projections we mean such a
partial isometry.

Lemma 2.7 ([25, Lemma 3.6],[10],[11]). Let A be a C∗-algebra with increasing ap-
proximate identity (pn)∞n=1 consisting of projections. Then the following are equiv-
alent.

(1) A is stable.
(2) For every projection p ∈ A there exists a projection q ∈ A such that p ∼ q

and p ⊥ q.
(3) For every n ∈ N there exists m > n such that pn . pm − pn.
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3. Stability of graph algebras

In this section we give background theory on graph C∗-algebra, as well as the
notions of left infinite vertices and graph traces. Then we prove a strengthened
version (Theorem 3.31) of [25, Thm. 3.2] with an emended proof.

Definition 3.1. A (directed) graph consists of a quadruple E = (E0, E1, r, s) where
E0 and E1 are countable sets called, respectively, the vertices and edges of E,
and r, s : E1 → E0 are called the range and source maps. A vertex v ∈ E0

is called regular if it receives a finite and positive number of edges; that is, if
0 < |r−1(v)| < ∞. If a vertex is not regular then it is said to be singular, either a
source (|r−1(v)| = 0) or an infinite receiver (|r−1(v)| = ∞). A graph E is said to
be row-finite if no vertex receives infinitely many edges, and E is said to have no
sources if every vertex receives at least one edge.

A path in E is a finite sequence of edges λ = e1e2 . . . en, such that s(ei) = r(ei+1)
for 1 ≤ i ≤ n − 1. The (finite) path space of E, denoted E∗, is the set of all such
paths. The range of a path λ = e1 . . . en is defined as r(λ) := r(e1) and the source
is s(λ) := s(en). The length of λ = e1 . . . en is defined to be |λ| = n. We include
the vertices E0 in E∗ as the paths of length zero with r(v) = v = s(v). A cycle is a
directed path λ ∈ E∗ \E0 with s(λ) = r(λ). (Note that we orient paths as in [17],
as opposed to the orientation used in [25].)

Definition 3.2. Let E be a directed graph and let B be a C∗-algebra. A Cuntz-
Krieger E-family in B is a collection {Se, Pv}e∈E1,v∈E0 ⊂ B, where the Se are
partial isometries with mutually orthogonal range projections and the Pv are mu-
tually orthogonal projections, satisfying the following Cuntz-Krieger relations:

(1) if e ∈ E1, then S∗eSe = Ps(e)
(2) if e ∈ E1, then SeS

∗
e ≤ Pr(e);

(3) if v ∈ E0 is regular, then
∑
r(e)=v SeS

∗
e = Pv.

Typically we abbreviate {Se, Pv}e∈E1,v∈E0 as {S, P}. The C∗-algebra generated by
a Cuntz-Krieger family {S, P} ⊂ B is denoted by C∗(S, P ) ⊂ B. The Cuntz-Krieger
graph C∗-algebra of E, denoted C∗(E), is the universal C∗-algebra generated by a
Cuntz-Krieger E-family {s, p}; any other C∗(S, P ) is obtained as the quotient of
C∗(E) via a unique ∗-homomorphism π : C∗(E)→ C∗(S, P ) satisfying π(pv) = Pv
and π(Se) = se. (It can be shown that such a C∗-algebra exists for any E and is
unique up to isomorphism.)

If µ = e1 . . . en is a directed path in E, then by sµ we denote the partial isometry
sµ = se1 . . . sen in C∗(E).

The following properties are well-known consequences of the Cuntz-Krieger rela-
tions and describe the ∗-algebraic structure of C∗(E). We will use them constantly
throughout the paper.

Corollary 3.3 ([17, Corollary 1.14]). Suppose that E is a graph. Let µ, ν ∈ E∗.
Then the following hold:

(a) if |µ| = |ν| and µ 6= ν, then sµs
∗
µsνs

∗
ν = 0;

(b) More generally, we always have s∗µsν =


s∗µ′ if µ = νµ′

sν′ if ν = µν′

0 otherwise
;

(c) if sµsν 6= 0, then µν is a path (that is, s(µ) = r(ν)) and sµsν = sµν ;
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(d) if sµs
∗
ν 6= 0, then s(µ) = s(ν).

The following well-known fact follows directly from Corollary 3.3 (see [14, Prop.
1.4]).

Corollary 3.4. Let E be a directed graph. If E0 = {v1, . . . , vn} is finite, then
C∗(E) is unital, with unit 1 =

∑n
k=1 pvi . If E0 = {vk}∞k=1 is infinite, then C∗(E)

is non-unital, and if we set pn =
∑n
k=1 pvk then (pn)∞n=1 forms a strictly increasing

approximate identity for C∗(E) consisting of projections.

Definition 3.5. Let E be a directed graph and let v ∈ E0. Define L(v) :=
r(s−1(v)) = {r(λ) : λ ∈ E∗, s(λ) = v}. We say that v is left finite (resp. left
infinite) if L(v) is finite (resp. infinite). A cycle λ ∈ E∗ is left finite (resp. left
infinite) if s(λ) is left finite (resp. left infinite).

The ideal structure of a graph C∗-algebra described by certain sets of vertices.

Definition 3.6. Let E be a directed graph. A subset H ⊂ E0 is hereditary if for
any e ∈ E1, r(e) ∈ H implies s(e) ∈ H. The subset H is saturated if for any regular
vertex v, the inclusion s(r−1(v)) = {s(e) : r(e) = v} ⊂ H implies v ∈ H.

The basic example of a saturated and hereditary subset of E0 is HI = {v ∈ E0 :
pv ∈ I}, where I is any ideal of C∗(E). Note that it is trivial to check that the
arbitrary intersection of a collection of saturated subsets of E0 is again saturated
(if possibly empty).

Definition 3.7. Let E be a directed graph and let H ⊂ E0 be any set of vertices.
Then the saturation H is defined to be the smallest saturated subset of E0 that
contains H, that is

H =
⋂
{S ⊂ E0 : H ⊂ S, S saturated}.

Lemma 3.8. Let H ⊂ E0 be any set of vertices.

(1) We can write

H =

∞⋃
n=0

Hn

where H0 = H and Hk is defined inductively as the set of all regular vertices

v ∈ E0 \
⋃k−1
n=0Hn such that {s(e) : r(e) = v} ⊂

⋃k−1
n=0Hn.

(2) If H is hereditary then H is a saturated and hereditary subset.

Proof. The decomposition of H is straightforward to verify. As to the second claim,
note that for e ∈ E1, the only way that r(e) can belong to Hn is if s(e) belongs
to Hn−1, unless r(e) ∈ H0 = H in which case the hereditary property of H gives
s(e) ∈ H0, so that H is hereditary. �

Lemma 3.9. Let E be a graph and let v ∈ E0. Then H := E0 \ L(v) (where L(v)
is defined as in Defn. 3.5), is a hereditary subset of E0. The set H is saturated if
v lies on a cycle or v is singular.

Proof. Checking that H is always hereditary is straightforward. Suppose that v
lies on a cycle, and let w be a regular vertex so that r−1(v) = {e1, . . . , en} and
s(ek) ∈ H for k = 1, . . . , n. If w were not in H, then there would exist a path from
v to w. Unless the path were constant (i.e. a vertex), it would have to contain one of
the edges e1, . . . , en, so that v could reach the source of such an edge, contradicting
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our assumptions about s(e1), . . . , s(en). Thus the only way that w could fail to lie
in H is if w = v. But v ∈ L(v) = E0 \H via the constant path of length 0. Thus
w must lie in H. So if v lies on a cycle, H is saturated.

Now suppose that v is singular, and let w be a regular vertex receiving edges
e1, . . . , en with s(ei) ∈ H for i = 1, . . . , n. The only way that w could fail to belong
to H is if w = v; as v is regular and w and singular this is impossible. Thus w
belongs to H, and H is saturated.

�

Remark. One can check that the converse of Lemma 3.9 also holds, so that E0\L(v)
is saturated if and only if v is singular or lies on a cycle.

One can realize certain ideals and quotients of graph C∗-algebras as graph C∗-
algebras themselves. Given a saturated and hereditary set of vertices H, we can
rather easily write down a description of the ideal generated in C∗(E) by {pv : v ∈
H} as a graph algebra of a graph EH , using results from [6] (which were later refined
in [21]). The quotient by an ideal IH is a bit more complicated to describe, as issues
can arise where the naive choice of “quotient graph” can lead to relations among
the vertex projections that are not present in the quotient C∗(E)/IH . Vaguely
speaking, the solution to this problem is to add extra edges to the quotient graph
that prevent these relations from arising.

The following definition, originating in [6] and refined in [21], allows us to realize
certain ideals as graph C∗-algebras. We don’t need the full generality of [21, Def.
4.1], because we will not put any gap projections in our ideals.

Definition 3.10 (cf. [21, Def. 4.1]). Let E be a directed graph, let H be a
nonempty saturated and hereditary subset of E0. Let

F1(H) = {α ∈ E∗ : α = e1 . . . en, s(en) ∈ H, r(en) 6∈ H}

Let F1(H) denote a set of duplicates of F1(H), i.e. F1(H) = {α : α ∈ F1(H)}.
Define EH to be a graph with

E
0

H = H ∪ F1(H)

E
1

H = {e ∈ E1 : r(e) ∈ H} ∪ F1(H)

and we extend r and s to F1(H) via r(α) = α ∈ F1(H) and s(α) = s(α) ∈ H.

The following is a weaker version of the result in [21], sufficient for our purposes.

Theorem 3.11 ([21, Thm. 5.1]). Let H ⊂ E0 be a saturated and hereditary subset,
let IH be the ideal of C∗(E) generated by {pv : v ∈ H}. Then IH ∼= C∗(EH).

Definition 3.12. Let E be a directed graph and let H ⊂ E0. Call a path α ∈ E∗
H-minimal if s(α) ∈ H and there is no path β with s(β) ∈ H with βγ = α for
some γ ∈ E∗ \ E0.

The vertices {v ∈ H} are H-minimal paths of length zero. Note that if α and
β are distinct H-minimal paths, then s∗αsβ by Corollary 3.3. Thus we obtain the
following simple result.

Lemma 3.13. If we enumerate the H-minimal paths as {αi}ni=1, then pn :=∑n
i=1 sαs

∗
α forms an increasing approximate identity for IH consisting of projec-

tions.
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The following definitions are used to realize the quotient of a graph C∗-algebra
as a graph C∗-algebra.

Definition 3.14. Let E be a directed graph and let H be a saturated and heredi-
tary subset of E0. Define

BH = {v ∈ E0 : |r−1(v)| =∞ and 0 < |r−1(v) ∩ s−1(E0 \H)| <∞},

the set of breaking vertices for H. Define for S ⊂ BH the ideal I(H,S) generated by

{pv : v ∈ H} ∪ {pHv : v ∈ S}, where

pHv = pv −
∑
r(e)=v
s(e)6∈H

ses
∗
e.

(The projections pHv are referred to as gap projections.)

Definition 3.15. Let H be a saturated hereditary subset of E0 and let S ⊂ BH ,
then we define a graph E(H,S) as follows (an apostrophe indicates a duplicate copy
of an edge or vertex)

E0
(H,S) = E0 \H ∪ {v′ : v ∈ BH \ S}

E1
(H,S) = {e ∈ E1 : s(e) 6∈ H} ∪ {e′ : s(e) ∈ BH \ S}

Remark. Note that any cycle λ ∈ E∗(H,S) must belong to E∗.

Proposition 3.16 ([1, Cor. 3.5]). Suppose that H ⊂ E0 is saturated and hereditary
and S ⊂ BH , and let I(H,S) be defined as in Definition 3.14. Then C∗(E)/I(H,S)

∼=
C∗(E(H,S)).

In particular, this shows that if H is a proper saturated and hereditary subset of
E0, then the quotient C∗(E)/IH is a nonzero C∗-algebra. The following definition
and lemma are needed to lift comparisons between projections in quotient graph
C∗-algebras. The idea of the following lemma comes from the proof of [25, Thm.
3.2].

Lemma 3.17. Let E be a directed graph such that C∗(E) is stable. If v ∈ E0 lies
on a cycle or is singular, then v is left infinite.

Proof. Let v be as in the statement of the theorem. By Lemma 3.9, we know
that H := E0 \ L(v) is saturated and hereditary. The quotient graph E(H,BH)

has non-empty vertex set L(v) by Definition 3.15. The quotient C∗(E)/I(H,BH)
∼=

C∗(E(H,BH)) is a nonzero stable C∗-algebra and hence non-unital; this implies that
L(v) is infinite. �

A key step in the proof of our main result (Theorem 3.31) involves comparing
certain projections. We therefore require a short digression into comparison theory
for positive elements.

Definition 3.18 ([19, Prop. 2.4]). Let A be a C∗-algebra and let x, y ∈ A+. We
write x . y if ∃rj ∈ A such that rjyr

∗
j → x. For x ∈ A and y ∈ M2(A) we

write x . y if there exists a sequence rj ∈ M1,2(A) of 1 × 2 matrices such that
rjyr

∗
j → x; we write y . x if there is a sequence rj ∈ M2,1 of 2 × 1 matrices such

that rjxr
∗
j → y.
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It is shown in [19] that the relation . on A+ is transitive and agrees with the
usual partial ordering on positive elements; in particular, it agrees with the usual
ordering projections ([19, Prop. 2.1]).

Lemma 3.19. Let e, f be projections in a C∗-algebra A such that ef = 0. Then
e⊕ f . e+ f .

Proof. Let rj = [e f ] and see that rj(e⊕ f)r∗j = e+ f . �

The following technical lemma is adapted from [10, Lemma 2.6]: we relax the
hypothesis that the ideal is stable, but it only applies to graph C∗-algebras.

Lemma 3.20. Let E be a directed graph and let H be a proper saturated hereditary
subset of E0, and let π : C∗(E)→ C∗(E)/IH denote the quotient ∗-homomorphism.
Suppose that e, f ∈ C∗(E) are projections such that π(e) . π(f). Then there exists
a projection q ∈ IH such that e . f ⊕ q. We can choose q to have the form

q =
∑k
i=1 sαi

s∗αi
for a set of paths {αi}ki=1 with s(αi) ∈ H for each i = 1, . . . , n.

Proof. Let {αi}∞i=1 be the set of all H-minimal paths as in Definition 3.12, with
pn =

∑n
i=1 sαi

s∗αi
the associated approximate unit from Lemma 3.13. By [12,

Lemma 4.12], there is a positive element x ∈ I(H)+ such that e . f ⊕ x. For each
ε > 0, define ϕε : R+ → R+ by

ϕε(t) =


0 t ≤ ε,
ε−1(t− ε) ε ≤ t ≤ 2ε,

1 t ≥ 2ε.

By [19, Prop. 2.4], we can find δ ∈ (0, 1/2) such that e . f ⊕ ϕδ(x). Take a
projection q = pn from the approximate unit such that ||x− pnxpn|| < δ; then [19,
Prop. 2.2] implies that ϕδ(x) . qxq. It is trivial to verify that qxq . q( x

||x|| )q . q,
so we have

e . f ⊕ φδ(x) . f ⊕ q,
with q in the desired form. �

Definition 3.21 ([10],[25]). A graph trace on a directed graph E is a function
g : E0 → R+ such that

(1) for any v ∈ E0, we have g(v) ≥
∑
r(e)=v g(s(e)) (in particular, the sum is

always convergent), and
(2) for any regular v ∈ E0, we have g(v) =

∑
r(e)=v g(s(e)).

We define the norm of g to be ||g|| :=
∑
v∈E0 g(v), and when g has finite norm we

say that g is bounded. If ||g|| = 1 then we call g a normalized graph trace. The
(possibly empty) collection of graph traces on E with norm 1 is denoted by T (E).

Remark. The set of graph traces forms a convex cone and any bounded graph trace
can be scaled to obtain a normalized graph trace.

Example 3.22 ([25]). If E is a directed graph and τ is a tracial state on C∗(E),
then we can define a normalized graph trace gτ on E via

gτ (v) = τ(pv).

That is, any tracial state on C∗(E) induces a graph trace on E. (This process for
obtaining graph traces from tracial states is called restriction.)
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In fact, every graph trace on E arises as the restriction of a tracial state on
C∗(E). In other words, we can induce tracial states from graph traces.

Theorem 3.23 ([23, Prop. 3.2],[5, Thm. 4.23]). Let E be a directed graph, and
let g ∈ T (E) be a normalized graph trace. Then there is a unique tracial state
τg ∈ T (C∗(E)) such that every α, β ∈ E∗

τg(sαs
∗
β) =

{
g(s(α)) α = β

0 else
.

In particular, τg(pv) = g(v).

Remark. The map g 7→ τg is a left inverse to the map τ 7→ gτ , i.e. gτh = h for any
normalized graph trace h. These maps are bijective exactly when every cycle of E
is essentially left infinite, see [5, Thm. 4.41]. (This is weaker condition to place on
E than Condition (K), which implies that the maps are bijective, as noted in [23].)

Combining Theorem 3.23 and Corollary 2.6 we obtain the following corollary,
which is basically contained in the proof of [25, Thm. 3.2] and in a more restricted
form in [10, Lemma 2.8].

Corollary 3.24. If E is a directed graph such that C∗(E) is stable, then E has no
bounded graph traces.

Lemma 3.25 ([25, Cor. 3.3]). Let E be a directed graph and let v ∈ E0 be left
infinite. For any finite subset F ⊂ E0 there is a finite subset W ⊂ E0 \F such that
pv .

∑
w∈W pw.

Proof. If w ∈ L(v) = {r(λ) : λ ∈ E∗, s(λ) = v}, say r(λ) = w and s(λ) = v then
pv = s∗λsλ ∼ sλs

∗
λ ≤ pw. Therefore we can take any vertex w ∈ L(v) \ F and set

W = {w}. �

The following well-known fact is included for convenience.

Lemma 3.26. Let p, p′, q, q′ be projections in a C∗-algebra A with p ⊥ q and
p′ ⊥ q′. If p . p′ and q . q′, then p+ q . p′ + q′.

The following definition makes it easier to refer to certain paths.

Definition 3.27. If E is a directed graph and v ∈ E0, let vE∗ = {λ ∈ E∗ : r(λ) =
v} and E∗v = {λ ∈ E∗ : s(λ) = v}. We write wE∗v for wE∗ ∩ E∗v.

Lemma 3.28. Suppose that E is a directed graph in which every cycle is left infinite
and that T (E) = ∅. Then every singular vertex in E0 is left infinite.

Proof. Let w ∈ E0 be a singular vertex which is not left infinite, so that L(w) is a
finite set; we derive a contradiction. First, note that the hypotheses imply w does
not lie on any cycle.

Claim: there is a vertex v ∈ L(w) which is singular and such that E∗v is finite.
If E∗w is finite we are done. Otherwise consider the (finite) set of vertices {r(e) :
s(e) = w}. At least one of these must receive infinitely many edges, say w′. If E∗w′

is finite, we are done; otherwise repeat the operation, obtaining a new singular
vertex w′′ (note that w′, w′′, . . . all belong to L(w)). The process can never repeat,
because that would entail the existence of a directed cycle among the vertices of
L(w), contradicting left finiteness of w. We cannot repeat the process forever,
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because w is assumed to be left finite. Thus we eventually find a singular vertex
v ∈ L(w) so that E∗v is finite.

Now we can define a function g : E0 → N given by setting g(z) = |zE∗v|. Note
that g ∈ `1(E0), with ||g||1 = |E∗v|, and it is not difficult to check that g satisfies
the Cuntz-Krieger relations for graph traces. This contradicts the assumption that
there are no bounded graph traces on E. �

Lemma 3.29 ([10, Lemma 2.3]). Let E be a directed graph, and let E0 = {v0, v1, . . . , }
be an enumeration of the vertices of E, with approximate identity of projections
(pn)∞n=0 as in Definition 3.4. Then C∗(E) is stable if and only if for any F ⊂ E0,
there exists a finite set W ⊂ E0 \ F such that

∑
v∈F pv .

∑
w∈W pw.

Proof. Apply Corollary 3.4 and Lemma 2.7. �

Remark. As pointed out in [25], an induction argument shows that C∗(E) is stable
as long as we can, for every v ∈ E0 and finite F ⊂ E0, find some finite W ⊂ E0 \F
such that pv .

∑
w∈W pw.

Here is the characterization of stable graph C∗-algebras given in [25, Theorem
3.2].

Theorem 3.30 ([25, Thm. 3.2]). Let E be a directed graph. Then the following
are equivalent.

(a) C∗(E) is stable.
(b) C∗(E) has no nonzero unital quotients and no tracial states.
(c) E has no left finite cycles and T (E) = ∅.
(d) E has no left finite cycles and no nonzero bounded graph traces.
(e) For any v ∈ E0 and any finite F ⊂ E0, there exists finite W ⊂ E0 \ F such

that pv .
∑
w∈W pw.

(f) For any finite V ⊂ E0 there exists finite W ⊂ E0 \ V such that
∑
v∈V pv .∑

w∈W pw.

v

v1 v2 v3
· · · · · ·

· · · · · ·

Figure 1.

The proof of this theorem in [25] contains a gap. Let H = H(E) ⊂ E0 be the set
of left infinite vertices and let H denote its saturation. There is a small error in the
proof that for any v ∈ H and any finite F ⊂ E0 there exists finite W ⊂ E0 \F with
pv .

∑
w∈W pw. Specifically the comparison constructed is backwards: xpx∗ = q

implies that q . p, not vice versa. This will be addressed in the proof of Theorem
3.31 below.
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There’s also an issue with the incorrect statement of [25, Lemma 3.8], which we
have already fixed with Lemma 3.20. The graph in Figure 1 shows that one cannot
assume that the ideal generated by the will satisfy the hypotheses of [10, Lemma
2.6]

The search for a proof that avoids these problems eventually lead us to consider
singular vertices, which ended up adding a necessary condition that a graph must
satisfy in order to yield a stable C∗-algebra: all singular vertices must be left
infinite. Here our the strengthened characterization of stable graph C∗-algebras.

Theorem 3.31. Let E be a directed graph. The following are equivalent.

(1) C∗(E) is stable.
(2) C∗(E) has no nonzero unital quotients and no tracial states.
(3) C∗(E) has no left finite cycles and no bounded graph traces.
(4) E has no left finite cycles, no left finite singular vertices, and no bounded

graph traces.
(5) for any vertex v ∈ E0 and any finite F ⊂ E0, there exists finite W ⊂ E0\F

such that pv .
∑
w∈W pw.

(6) for any finite V ⊂ E0, and any finite F ⊂ E0, there exists finite W ⊂ E0\F
such that

∑
v∈V pv .

∑
w∈W pw.

Proof. (1) =⇒ (2): Apply Corollary 2.4 and Corollary 2.6.
(2) =⇒ (3): Apply Corollary 3.17 and Corollary 3.24.
(3) =⇒ (4): Apply Lemma 3.28.
(4) =⇒ (5): We must show that, for any v ∈ E0 and finite F ⊂ E0, there is a

finite set W ⊂ E0 \ F such that pv .
∑
w∈E pw. We adapt the proof of [25, Thm

3.2]. Let H be the set of left infinite vertices and H be its saturation.
Case I: v ∈ H. As in the proof of [25, Thm. 3.2], we establish this by induction

on k = min{n : v ∈ Hn}. If k = 0, then Lemma 3.25 shows that this is possible.

Suppose inductively that we can, for any v′ ∈ ∪k−1
n=0Hn and for any finite F ′ ⊂ E0,

find a finite W ⊂ E0\F ′ with pv′ .
∑
w∈W pw. Because v ∈ Hk it must be the case

we can list the edges with range v as e1, . . . , ej , and vi := s(ei) ∈
⋃k−1
n=0Hn for each

i = 1, . . . , j. Use the inductive assumption to find a finite set W1 ⊂ E0 \ F with
se1s

∗
e1 ∼ pv1 .

∑
w∈W1

pw. Repeat this, findingWi a finite subset of F∪W1 . . .Wi−1

and pvi .
∑
w∈Wi

pw for i = 1, . . . , j. Thus there are partial isometries x1, . . . , xj
with x∗i xi = seis

∗
ei and xix

∗
i ≤

∑
w∈Wi

pwi
. Set W = W1t. . .tWj , a finite subset of

E0 \F . The pairwise disjointness of the sets Wi and Lemma 3.26 ensures that x =∑j
i=1 xi is a partial isometry with x∗x =

∑j
i=1 seis

∗
ei = pv and xx∗ ≤

∑
w∈W pw.

Thus in the first case, the condition (5) holds.
Case II: v 6∈ H. This follows the same as in the proof of [25, Thm. 3.2], with

a few adjustments. Let IH be the ideal of C∗(E) generated by {pv : v ∈ H} and
let π : C∗(E)→ C∗(E)/IH ∼= C∗(E(H,∅)) be the quotient ∗-homomorphism (where
the isomorphism is Theorem 3.11). Note that any vertex v which is the range of a
cycle λ ∈ E∗ must belong to H, by our assumption that every cycle is left infinite.
Thus the graph E \ H has no cycles and so C∗(E(H,∅)) is AF by [7, Cor. 2.13].
Any tracial state on C∗(E(H,∅))) would give a tracial state on C∗(E) by composing
with π, and this in turn would restrict to a graph trace on E. Thus [2, Thm. 4.10]
implies that C∗(E(H,∅)) is a stable AF algebra.

Enumerate E0 \ H as {vk}∞k=1, with v = v1. Set qn =
∑n
i=1 π(pvi) and notice

that (qn)∞n=1 is an approximate unit for C∗(E)/IH consisting of projections. Let
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m = max{k : vk ∈ F}, where we set m = 1 if F ⊂ H. By stability of C∗(E)/IH
and Lemma 2.7 we can find n > m such that qm . qn − qm. In other words,
π(pv) . π(

∑n
k=m+1 pvk); now Lemma 3.20 provides us with set {αi}ni=1 of H-

minimal paths such that

pv .

(
n∑

k=m+1

pvk

)
+

(
j∑
i=1

sαi
s∗αi

)
For each i = 1, . . . , j we have sαis

∗
αi
∼ s∗αi

sαi = ps(αi), and as s(αi) ∈ H we can

use Case I to find W1, . . . ,Wj finite sets in E0 so that Wi ∩ (F ∪ {vm+1, . . . , vn} ∪
W1 ∪ . . .Wi−1) = ∅ and sαi

s∗αi
.
∑
w∈Wi

pw. Finally set W = {vm+1, . . . , vn} ∪
W1 ∪ . . . ∪Wj and we have pv .

∑
w∈W pw with W ∩ F = ∅.

(5) =⇒ (6): This follows using the exact same argument as in [25, Thm. 3.2].
(6) =⇒ (1): This follows from Lemma 3.29. �

Remark. Another proof of the (4) =⇒ (5) part of Theorem 3.31 could use the fact
that the ideal I(H,BH) is itself isomorphic to a slightly different graph C∗-algebra
as in [21]. The present approach seems to involve the least machinery.

A sink in a directed graph is a vertex v ∈ E0 which is not the source of any edge.
The first part of the following corollary, which is the same as [25, Cor. 3.3], is one
of the most direct ways to tell if a given directed graph yields a stable C∗-algebra.

Corollary 3.32 ([25, Cor. 3.3]). If E is a directed graph and every vertex of E
is left infinite, then C∗(E) is stable. If E has no sinks and C∗(E) is stable, then
every vertex of E is left infinite.

Remark. As pointed out in [25], taking E to be an infinite chain of edges terminating
in a sink gives an example of a directed graph whose C∗-algebra is stable (in fact,
C∗(E) ∼= K), yet none of whose vertices are left infinite.

4. Stability of k-graph algebras

The rest of the paper will center around extending parts of Theorem 3.31 to
“combinatorial” C∗-algebras beyond graph C∗-algebras. So far a complete gener-
alization has eluded us because the “(4) =⇒ (5)” part of Theorem 3.31 uses facts
about AF graph C∗-algebras that don’t readily generalize. In the present section
we consider k-graphs (also known as higher-rank graphs), which were introduced in
[13] as higher-dimensional generalizations of directed graphs.

Note. The semigroup Nk is a category with one object and composition given by
coordinate-wise addition. For an element m ∈ Nk we denote the coordinates by mi

for i = 1, . . . , k. The standard basis elements in Nk are denoted by e1, e2, . . . , ek,

so that m =
∑k
i=1miei. (We regard all categories as “arrows-only” so that the

objects are precisely the identity morphisms.)

Definition 4.1. A k-graph (also called a higher-rank graph) consists of a countable
category Λ along with a degree functor d : Λ→ Nk which satisfies the factorization
property : if λ ∈ Λ and m,n ∈ Nk satisfy d(λ) = m + n, then there exist unique
µ, ν ∈ Λ such that d(µ) = m, d(ν) = n, and µν = λ.

For n ∈ Nk we write Λn := d−1(n) = {λ ∈ Λ : d(λ) = n} for the paths of degree
n in Λ. Using the factorization property, one can see that the set of objects (that
is, identity morphisms) of Λ is precisely Λ0 = d−1(0), which we refer to as the set of
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vertices of Λ. The range and source maps r, s : Λ→ Λ0 satisfy r(λ)λ = λ = λs(λ)
for all λ ∈ Λ. For v ∈ Λ0, we set vΛ = {λ ∈ Λ : r(λ) = v} and for n ∈ Nk let vΛn

denote vΛ ∩ Λn.

Remark. In analogy with directed graphs the morphisms in a k-graph are often
called paths. Directed graphs can be identified with 1-graphs, where the vertices
are the morphisms of degree 0, the edges are the morphisms of degree 1, and the
other paths in E∗ are the morphisms of degree > 1. (For details, see [17, Ch.10].)

The following restrictions on a k-graph ensure the existence of a non-trivial
associated C∗-algebra, and although they are not the most general such conditions,
(see e.g. [17, Ch. 10]), they are comparatively simple to state and give a wide
variety of examples.

Definition 4.2. Let Λ be a k-graph. We say that Λ is row-finite if, for every
v ∈ Λ0 and n ∈ Nk, the set vΛn is finite.

We say that Λ has no sources if, given any v ∈ Λ0 and n ∈ Nk the set vΛn is
non-empty.

Definition 4.3. If Λ is a row-finite k-graph with no sources and B is a C∗-algebra
then a Cuntz-Krieger Λ-family in B is a collection of partial isometries S = {Sλ :
λ ∈ Λ} ⊂ B satisfying:

(i) {Sv : v ∈ Λ0} are mutually orthogonal projections;
(ii) SλSµ = Sλµ if s(λ) = r(µ);

(iii) S∗λSλ = Ss(λ) for every λ ∈ Λ;

(iv) Sv =
∑

{λ∈Λn:r(λ)=v}

SλS
∗
λ for every v ∈ Λ0 and every n ∈ Nk.

The universal C∗-algebra generated by a Λ-family is called the k-graph C∗-algebra
of Λ, and is denoted by C∗(Λ) = C∗({sλ : λ ∈ Λ}).

The existence of a nonzero Cuntz-Krieger for arbitrary Λ as above is shown in
[13, Prop. 2.11]. For v ∈ Λ0 we denote sv by pv, in analogy with the graph case.

Definition 4.4. For m,n ∈ Nk denote m ∨ n ∈ Nk by (m ∨ n)i = max{mi, ni} for
i = 1, . . . , k. If λ, µ ∈ Λ have r(λ) = r(µ), then a minimal common extension of λ
and µ is an element ν ∈ Λ such that there exist α, β ∈ Λ with ν = λα = µβ and
d(ν) = d(λ) ∨ d(µ). Let Λmin(λ, µ) be the set of all ordered pairs (α, β) ∈ Λ × Λ
such that λα = µβ is a minimal common extension of λ and µ.

The k-graph analogue of Corollary 3.3 is the following, which justifies the equa-
tion C∗(Λ) = span{sλs∗µ : λ, µ ∈ Λ}.

Lemma 4.5 ([17, Lemma 10.6]). Let Λ be a row-finite k-graph with no sources,
and let S = {Sλ} be a Cuntz-Krieger Λ-family. Then for every λ, µ ∈ Λ,

S∗λSµ =
∑

(α,β)∈Λmin(λ,µ)

SαS
∗
β .

Corollary 4.6. The k-graph C∗-algebra C∗(Λ) is unital if and only if Λ0 is finite;
otherwise the sequence {

∑n
i=1 pvi}∞n=1 (where {vi}∞i=1 = Λ0) forms an approximate

identity consisting of projections, just as in Corollary 3.4.
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Definition 4.7. Let Λ be a row-finite k-graph with no sources. A subset H ⊂ Λ0

is said to be hereditary if r(λ) ∈ H implies s(λ) ∈ H. A subset H ⊂ Λ0 is said to
be saturated if s(vΛn) ⊂ H implies v ∈ H for any v ∈ Λ0 and n ∈ Nk. If H ⊂ Λ0

then we let IH denote the ideal of C∗(Λ) generated by {pv : v ∈ H}.
Theorem 4.8 ([17, Ch. 10]). If Λ is a row-finite k-graph with no sources and
H ⊂ Λ0 is saturated and hereditary then Λ \ ΛH := (Λ0 \H, s−1(Λ0 \H), r, s) is a
row-finite k-graph with no sources and C∗(Λ \ ΛH) ∼= C∗(Λ)/IH .

Definition 4.9. Let Λ be a row-finite k-graph with no sources. A k-graph trace
on Λ is a function g : Λ0 → [0,∞) such that g(v) =

∑
λ∈vΛn g(s(λ)) for all v ∈ Λ0

and all n ∈ Nk. A k-graph trace g is bounded if
∑
v∈Λ0 g(v) < ∞, in which case

the sum
∑
g(v) is referred to as the norm of g. The (possibly empty) collection of

k-graph traces on Λ with norm 1 is denoted by T (Λ).

Example 4.10. Just as in Example 3.22, we can obtain k-graph traces on Λ by
restricting tracial states on C∗(Λ).

Producing tracial states on k-graph algebras requires a different approach from
that used by Tomforde in [24]. In [8, Lemma 2.1] it is shown that any g ∈ T (Λ)
which is faithful (in the sense that g(v) > 0 for all v) is the restriction of a faithful
tracial state τg on C∗(Λ).

Lemma 4.11. Let Λ be a row-finite k-graph with no sources and let g be a k-graph
trace on Λ. Then H = {v ∈ Λ0 : g(v) = 0} is a saturated and hereditary subset of
H.

Proof. This is essentially the same as [24, Lemma 3.7] and follows from the defini-
tion of a k-graph trace. �

Proposition 4.12. Let Λ be a row-finite k-graph with no sources and let g be a
k-graph trace on Λ with norm 1. Then there is a tracial state τg on C∗(Λ) such
that τg(pv) = g(v) for each v ∈ Λ0.

Proof. Let H be the zero set of g. By the preceding lemma H is a saturated and
hereditary subset of Λ0. The restriction of g to Γ(Λ\ΛH) is faithful by construction
of H. Thus by [8, Lemma 2.1] it lifts to a faithful tracial state τ on the quotient
C∗(Λ)/IH . If q is the quotient map C∗(Λ) → C∗(Λ)/IH , then τ ◦ q is the desired
tracial state on C∗(Λ). �

Remark. One could obtain the previous result using an approach similar to [5, Thm.
4.26]; this would require generalizing the proof of [5, Thm. 4.19] to k-graphs as a
preliminary step, so we use the present approach instead.

Corollary 4.13. Let Λ be a row-finite k-graph with no sources. If C∗(Λ) is stable,
then T (Λ) = ∅.
Proof. The same argument as Corollary 3.24, with Proposition 4.12 playing the
role of Theorem 3.23. �

Definition 4.14. Let Λ be a k-graph. A cycle in Λ is a path λ ∈ Λ \Λ0 such that
r(λ) = s(λ). Given v ∈ Λ0, we define

L(v) = r(Λv) = {w ∈ Λ0 : w = r(λ) for some λ ∈ s−1(v)}.
We say that v is left finite (resp. left infinite) if L(v) is finite (resp. infinite). A

cycle λ is called left finite (resp. left infinite) if s(λ) is left finite (resp. left infinite).
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Lemma 4.15. Let Λ be a row-finite k-graph with no sources. Suppose that v = s(λ)
for some cycle λ ∈ Λ; then H = Λ0 \ L(v) is a (possibly empty) saturated and
hereditary subset.

Proof. The same as Lemma 3.9. �

Corollary 4.16. Suppose that Λ is a row-finite k-graph with no sources and C∗(Λ)
is stable. Then every cycle in Λ is left infinite.

Proof. The same as the proof of Lemma 3.17, with Theorem 4.8 playing the role of
Proposition 3.16. �

Corollaries 4.13 and 4.16 describe necessary conditions for a k-graph Λ to yield
a stable C∗-algebra. We have been unable to show that any Λ with no left finite
cycles and with T (Λ) = ∅ is stable. The main difficulty is that there is not yet a
criterion to decide when a k-graph Λ yields an AF k-graph C∗-algebra (see [8] for
a detailed account), which prevents the proof of Theorem 3.31 from generalizing.

However, we have the following sufficient condition.

Theorem 4.17. Let Λ be a row-finite k-graph with no sources. Suppose that every
vertex v ∈ Λ0 is left infinite. Then C∗(Λ) is stable.

Proof. Let Λ0 = {v1, v2, . . .} denote the vertex set of Λ. By Corollary 4.6, we have
an approximate identity (pn)∞n=1 with pn =

∑n
i=1 pvi . Note that for any path λ ∈ Λ

we have, just as in the graph case, that

ps(λ) = s∗λsλ ∼ sλs∗λ ≤ pr(λ).

Then the same reasoning as in Lemma 3.29, (and the remark that follows) and
Lemma 3.25 gives the desired result. �

Remark. The converse to Theorem 4.17 does not hold, due to the example in the
comment following [25, Cor. 3.3].

Question. If Λ is a row-finite k-graph Λ with no sources, such that T (Λ) = ∅ and
every cycle of Λ is left infinite, is C∗(Λ) stable?

5. Stability of groupoid and inverse semigroup C∗-algebras

In this section, we generalize the main results of Section 3 to the context of
C∗-algebras of étale groupoids. We only include a limit introduction to groupoid
C∗-algebras; the interested reader should consult [18] and [3] for a more detailed
background.

We can generalize the notion of a left infinite vertex (in the sense of Definition
3.5) to the context of groupoids in two ways, which do not seem to be equivalent.
Definition 5.13 is the analogue of left infinite vertex that implies every tracial state
vanishes on a suitable set of units (we call these groupoids weakly left infinite).
Definition 5.22 is the groupoid analogue of “left infinite vertex” that is suitable to
produce comparisons between projections as in Lemma 3.29 (we call these groupoids
strongly left infinite). Checking that strongly left infinite groupoids are also weakly
left infinite is routine; however, we have not proven the converse or found a weakly
left infinite groupoid that is not strongly left infinite.

ALTHOUGH THE CUNTZ GROUPOID SEEMS WEAKLY LEFT INFINITE
BUT NOT STRONGLY LEFT INFINITE
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Definition 5.1. A groupoid consists of set G along with a collection G(2) ⊂ G×G of
composable pairs and a partially defined composition operation G(2) → G, written
(α, β) 7→ αβ, along with an involutive inverse function G → G, written α → α−1,
such that

(i) The composition is associative, that is (αβ)γ and α(βγ) are defined and
equal whenever (α, β) and (β, γ) belong to G(2).

(ii) For each α ∈ G we have (α, α−1) ∈ G(2) and α−1(αβ) = β and (αβ)β−1 = α
whenever (α, β) ∈ G(2).

Definition 5.2. A topological groupoid consists of a groupoid G equipped with
a topology that makes the composition and inversion functions continuous (where
G(2) is given the relative product topology).

Remark. The inversion function is in fact a homeomorphism from G to itself.
All topological groupoids we mention are assumed to be locally com-

pact, Hausdorff, and second countable.

Definition 5.3 ([18]). Let G be a groupoid. The unit space of G, denoted G(0) is
the set {u ∈ G : (u, u) ∈ G(2) and u2 = u}. The map α 7→ α−1α has range equal to
G(0) and is called the source map s : G → G(0); the map α 7→ αα−1 is called the
range map, r : G→ G(0).

A topological groupoid G is called étale if r is a local homeomorphism when
considered as a map from G into itself.

Remark. Two elements α, β are composable (i.e. (α, β) ∈ G(2)) if and only if
s(α) = r(β), in which case r(αβ) = r(α) and s(αβ) = s(β). We have r(α) = s(α−1)
and vice versa.

A subset B ⊂ G is called a bisection (also known as a G-set) if r|B and s|B are
both injective. A topological groupoid G is étale if and only if there exists a basis
for the topology of G consisting of open bisections.

An immediate consequence of a groupoid G being étale is that, for each u ∈ G(0),
the range fiber r−1(u) = {γ ∈ G : r(γ) = u} is discrete in the relative topology, as
is the source fiber s−1(u).

Definition 5.4. Let G be an étale groupoid and consider the vector space of
continuous complex-valued functions on G with compact support. For f, g ∈ Cc(G)
we define their convolution product f ∗ g ∈ Cc(G) via

f ∗ g(γ) =
∑
αβ=γ

f(α)g(β),

where the fact that the supports are compact ensures the sum is finite. For f ∈
Cc(G) define the involution f∗ ∈ Cc(G) via

f∗(γ) = f(γ−1),

Remark. It is not difficult to show that the operations above endow Cc(G) with the
structure of a ∗-algebra. Furthermore, for each f ∈ Cc(G) there exists a constant
K > 0 so that if π : Cc(G) → B(H) is any ∗-representation of Cc(G) as bounded
operators on a Hilbert space H, then ||π(f)|| ≤ K.

Definition 5.5 (see, e.g. [3]). Let G be an étale groupoid; for each unit u ∈ G(0)

let Hu = `2(s−1(u)). Define πr : Cc(G)→ B(H) via

πr(f)(δu) = f ∗ δu
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Now set H = ⊕u∈G(0)Hu; then the left-regular representation of G is πr : Cc(G)→
B(H) given by π(f) = ⊕uπu(f). It can be shown that πr is in fact a non-degenerate
∗-representation of Cc(G).

We define the reduced norm on Cc(G) via ||f ||r := ||πr(f)||; we define the uni-
versal norm on Cc(G) via

||f || = sup{||π(f)|| : π a non-degenerate ∗ -repn of Cc(G) on some Hilbert space}.

Define C∗r (G) to be the completion of Cc(G) in || · ||r; define C∗(G) to be the
completion of Cc(G) in || · ||. We let πr : C∗(G) → C∗r (G) denote the quotient
∗-homomorphism induced by the inequality || · ||r ≤ || · ||.

Remark. If G is an étale groupoid, then G(0) forms an open subset of G and we
can embed Cc(G

(0)) in Cc(G) by setting each function to 0 outside on G \ G(0).
This extends to an inclusion of C0(G(0)) into both C∗(G) and C∗r (G); restricting
πr : C∗(G)→ C∗r (G) to C0(G(0)) gives the identity map.

We also have a map Cc(G) → Cc(G
(0)) given by f 7→ f |G(0) ; this extends via

continuity to faithful expectations E : C∗(G) → C0(G(0)) and Er : C∗r (G) →
C0(G(0)). Only the latter is necessarily faithful.

The following is a well-known fact about groupoid C∗-algebras. Our approximate
identities are assumed to be positive and bounded of norm 1.

Lemma 5.6. If G is an étale groupoid, then any approximate identity for C0(G(0))
is an approximate identity for C∗(G) and C∗r (G).

Corollary 5.7. Let G be an étale groupoid. The following are equivalent:

(1) C∗r (G) is unital;
(2) C∗(G) is unital;
(3) G(0) is compact.

Definition 5.8. Let G be a groupoid and let X ⊂ G(0); we say that X is invariant
if r−1(X) = s−1(X). Equivalently, if r(γ) ∈ X implies that s(γ) ∈ X.

If G is a groupoid and X is a non-empty invariant subset. Define GX := r−1(X)
to be the reduction of G to X.

It is a fact (see [18, Prop. 4.5]) that if Y is an open invariant subset of G(0) and
F := G(0) \ Y , then G|Y and G|F are étale and we obtain a short exact sequence
of full C∗-algebras:

0→ C∗(GY )→ C∗(G)→ C∗(GF )→ 0.

For the reduced C∗-algebras, we always have the inclusion C∗r (GY ) ↪→ C∗r (G)
contained in the kernel of C∗r (G)→ C∗r (G|F ), but this kernel can properly include
C ∗r (G|Y ).

This discussion gives us the following useful corollary.

Corollary 5.9. Let G be an étale groupoid.

(i) If C∗(G) is stable, then so is C∗r (G);
(ii) If C∗r (G) is stable, then there are no non-empty invariant compact open

subsets of G(0), and no proper invariant open co-compact subsets of G(0)

Proof. The proof of (i) comes from the fact that stability descends to quotients, see
Prop. 2.3. �
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Question. If G is an étale groupoid and C∗r (G) is stable, is it necessarily true that
C∗(G) is stable?

Definition 5.10. Let G be an étale groupoid and let µ be a Radon probability
measure on G(0). We say that µ is invariant if µ(s(B)) = µ(r(B)) for every open
bisection B ⊂ G. (Such measures were called totally balanced in [5], to avoid
overloading the word “invariant,” but “invariant” seems to be more widely used.)

For a Radon probability measure µ on G(0), let φµ be the corresponding state

f 7→
∫
G(0) fdµ on C0(G(0)). Recall that Er is the conditional expectation of C∗r (G)

onto C0(G(0)) defined by extending the restriction map Cc(G)→ Cc(G
(0)).

Theorem 5.11 ([5, Thm. 2.5]). If µ is a measure on G(0), then the state Cc(G) 3
f 7→ φµ(Er(f)) is a tracial state if and only if µ is invariant.

Corollary 5.12. Let G be an étale groupoid. If C∗r (G) is stable, then there are no
invariant Radon probability measures on G(0).

Proof. Follows immediately from Lemma 2.6 and Theorem 5.11. �

It is helpful to be able to recognize when a groupoid has no invariant probability
measures. Vaguely speaking, the idea is that if every open set U ⊂ G(0) can be
“spread around” a lot, then an invariant probability measure should vanish on U .

Definition 5.13. LetG be an étale groupoid and let U ⊂ G(0) be a non-empty open
set. We say that U is weakly left infinite if, for any n, there exist open bisections
B1, . . . , Bn such that B−1

n Bm = ∅ if m 6= n (equivalently, if r(Bn) ∩ r(Bm) = ∅ if
n 6= m) and such that s(Bn) = U for all n. We call the groupoid G weakly left
infinite if G(0) has an open cover consisting of weakly left infinite sets.

Theorem 5.14. Let G be a weakly left infinite étale groupoid. Then G has no
invariant probability measures.

Proof. Let G(0) = ∪∞n=1Xn, where each Xn is a left infinite open subset of G(0).
Suppose that µ is an invariant Radon probability measure on G(0). We will prove
that each Xn has µ(Xn) = 0.

Let m ∈ N; we will show that µ(Xn) ≤ 1
m . By Definition 5.13, we can find open

bisections B1, . . . , Bm with mutually disjoint ranges such that s(Bi) = Xn for all
i = 1, . . . ,m. The set Y = r(B1)tr(B2)t. . .tr(Bm) has measure µ(Y ) = m·µ(Xn),
by the assumption that µ is invariant. Thusm·µ(Xn) ≤ 1, because µ is a probability
measure; this shows that µ(Xn) ≤ 1

m for all m ∈ N. Thus µ(Xn) = 0 for each n,

and we have µ(G(0)) ≤
∑
µ(Xn) = 0, a contradiction. Thus G has no invariant

probability measures. �

Example 5.15. (This example refers to the path groupoid defined in [15, Defn.
2.3].) Let E be a directed graph and GE its path groupoid. If v is a left infinite

vertex, then the open set U = Z(v) is a weakly left infinite set in G
(0)
E , as can be

checked. In fact in this example we have an infinite sequence of bisections Z(wn, v)
where wn ∈ L(v) and Z(wn, v) ∩ Z(wm, v) = ∅ if m 6= n, somewhat stronger than
in Definition 5.13.

If every vertex is left infinite (in the sense of Definition 3.5, then we meet the hy-
potheses of Theorem 5.14, so that GE has no invariant probability measures. (There
are weaker hypotheses that ensure there are no invariant probability measures on
the path groupoid, as evidenced in Theorem 3.31.)
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Corollary 5.16. Let G be a weakly left infinite étale groupoid. Then T (C∗(G)) =
T (C∗r (G)) = ∅.

Proof. Any tracial state τ on C∗(G) corresponds to an invariant Radon probability
measure on G(0) by Theorem 5.11. Then Theorem 5.14 establishes the corollary. �

Definition 5.17. Let G be a groupoid. A subgroupoid is a nonempty subset H ⊂ G
that forms a groupoid when given H(2) = G(2) ∩ (H ×H) and operations given by
restricting the operations on G. We say that H is wide if H(0) = G(0).

Proposition 5.18 ([4, Appendix A]). Let G be an étale groupoid and let H be an
open wide subgroupoid. Then the ∗-homomorphism ι0 : Cc(H)→ Cc(G) given by

ι0(f)(γ) =

{
f(γ) γ ∈ H
0 otherwise

extends to a C∗-inclusion, C∗(H) ⊂ C∗(G).

Remark. The analogous result for the reduced norm should follow from a consid-
eration of the regular representation of G.

So far we have not found any interesting examples where the following proposi-
tion applies, but it seems worth noting.

Proposition 5.19. Let G be an étale groupoid and let H be an open wide sub-
groupoid of G. If C∗(H) is stable, then C∗(G) is stable.

Proof. BecauseH is wide, C∗(H) contains C0(G(0)), which contains an approximate
identity for C∗(G) as in Lemma 5.6. Stability of C∗(G) then follows from [11, Prop.
4.4]. �

Definition 5.20 ([22, Defn 3.5]). An étale groupoid G is called ample if there
exists a basis for the topology on G consisting of compact open bisections.

Lemma 5.21. Let G be an ample étale groupoid. Then C∗r (G) has an approximate
identity pn consisting of projections in Cc(G).

Proof. Follows from the assumption that our groupoids are second countable. �

Remark. The path groupoids of [15] and [13], as well as the groupoids of germs
constructed in [16] and [9], are all ample.

Definition 5.22. Let G be an ample étale groupoid. We say that G is strongly left
infinite if there exists a collection {Fn}n≥1 of non-empty, pairwise disjoint, compact

open subsets of G(0) such that for each n ≥ 1 the set

L(Fn) = {j ∈ N : ∃ open bisection B such that s(B) = Fn and r(B) ⊂ Fj}
is infinite.

Remark. If a groupoid is strongly left infinite, then it is weakly left infinite in the
sense of Definition 5.13. We are unsure if the converse is true.

If E is a directed graph, then the condition of GE being strongly left infinite is
weaker than every vertex in the graph being left infinite. For example, the graph
consisting of an infinite chain of vertices terminating in a sink has no left infinite
vertices, but yields a strongly left infinite path groupoid (informally, you can “go
left as well as right” when working with the groupoid).
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Proposition 5.23. Let G be an ample étale groupoid and suppose that G is strongly
left infinite. Then C∗(G) is stable (and hence C∗r (G) is stable as well).

Proof. Let {Fn} be a cover for G(0) as in Definition 5.22. Let pn be the charac-
teristic function of ∪nk=1Fn; then pn ∈ Cc(G(0)) and (pn)∞n=1 forms an increasing
approximate identity of projections for C∗(G). Note that if m > n, then pm − pn
is the characteristic function of Fn+1 ∪ . . . ∪ Fm.

By Lemma 2.7, we must find for each n ∈ N anm > n such that pn . pm−pn. We
begin by finding a compact open bisectionB1 such that s(B1) = F1 and r(B1) ⊂ Fn1

is not contained in F1∪F2 . . .∪Fn. Inductively find for each k = 2, . . . , n a compact
open bisection Bk such that s(Bk) = Fk and r(Bk) ⊂ Fnk

is not contained in
F1 ∪ F2 ∪ . . . ∪ Fn ∪ Fn1

∪ . . . ∪ Fnk−1
. Note that Bj ∩ Bk = ∅ if j 6= k. Set v to

be the indicator function of B1 ∪ B2 ∪ . . . ∪ Bn, so that v ∈ Cc(G). Furthermore
v∗v is the indicator function of F1 ∪ . . . ∪ Fn, i.e. v∗v = pn. If we define m to be
the maximum of {n1, . . . , nk}, then we also have vv∗ ≤ pm − pn (by construction).
Now an application of Lemma 2.7 finishes the proof. �

Question. If G is an ample étale groupoid such that C∗(G) is stable, is G strongly
left infinite?
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