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Tracial states

If A is a C ∗-algebra then a tracial state on A is a state such that
φ(xy) = φ(yx) for all x , y ∈ A. We are interested in (1) how to
define tracial states on C ∗-algebras and (2) how to be sure that
the methods we use exhaust all possible tracial states. In
particular, we are interested in the case of graph C ∗-algebras.
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Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following
initial data:

(1) an inclusion B ⊂ A of an abelian C ∗-subalgebra which is
non-degenerate (B contains an approximate identity for A)
and regular (the multiplicative and self-adjoint set
N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B} spans dense subset of A)

(2) a conditional expectation E : A→ B (a completely positive
linear bimodule map), which we will require to have additional
properties later on.

For the rest of the talk, unless otherwise specified, we will assume
this framework.
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Tracial states: state extensions

If φ : B → C is a state on B, then φ ◦ E is a state extension to A.

Question

For which states φ ∈ S(B) is the extension φ ◦ E a tracial state on
A?
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Invariant states

Definition

If φ ∈ S(B) and n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) for all b ∈ B. If N0 ⊂ N(B), then φ is
N0-invariant if it is n-invariant for all n ∈ N0. If φ is
N(B)-invariant we will call φ totally invariant

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a totally invariant
state on B.

The upshot of our analysis is that with fairly mild assumptions the
converse of the above example is also true.
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Normalization of conditional expectations

Definition

Let E : A→ B be a conditional expectation. We say that E is
normalized by n ∈ N(B) if E(nan∗) = nE(a)n∗ for all a ∈ A.
(Similar for N0 ⊂ N(B).)

In the cases that we care about, the relevant conditional
expectations will be normalized by a set of normalizers that
generate A.
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Invariant states, part II

Theorem (C., Nagy ’15)

Suppose that B ⊂ A is a regular inclusion and E : A→ B is a
conditional expectation which is normalized by N0 ⊂ N(B). Then
for any N0-invariant state φ ∈ S(B), the composition φ ◦ E is a
tracial state when restricted to C ∗(B ∪ N0) ⊂ A.

Corollary

Suppose that E : A→ B is normalized by N0 ⊂ N(B) and φ is a
N0-invariant state on B, where N0 generates A as a C ∗-algebra.
Then φ ◦ E is a tracial state on A.
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Parametrizing the trace space

The previous result shows that if we have a conditional expectation
which is normalized by N(B), then there is a surjective map

res : T (A) 3 τ 7→ τ |B ∈ Sinv(B)

from the tracial states on A to the totally invariant states on B. In
other words, every totally invariant state lifts to a tracial state on
the C ∗-algebra. The restriction map is affine and continuous.

Question

When is the restriction map injective? That is, for which inclusions
B ⊂ A is a tracial state τ ∈ T (A) fully determined by its
restriction to B?
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The extension property

Definition

A non-degenerate inclusion B ⊂ A is said to have the extension
property if every pure state φ ∈ P(B) has a unique extension to a
state on A (which must then be pure).

If an inclusion has the extension property one automatically
obtains a conditional expectation E : A→ B so these inclusions
fall within our framework.

Proposition (C., Nagy ’15)

If B ⊂ A is a non-degenerate inclusion with the extension property,
then the restriction map carrying T (A) to Sinv(B) is injective.
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Proof of proposition

Proof.

By a result of Archbold [1], if B ⊂ A has the extension property,
the kernel of the associated conditional expectation E : A→ B is
spanned by the commutators {ab − ba : a ∈ A, b ∈ B}. A tracial
state vanishes on any commutator, hence any tracial state factors
through the conditional expectation onto B, i.e. τ = (τB) ◦ E.
Thus the restriction map from T (A) to Sinv(B) is injective.

Remark

We do not claim that the tracial state space is non-empty in this
case (in fact there are many examples of inclusions with the
extension property where T (A) = ∅).
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Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is an affiliated
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such
that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses∗e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a
regular vertex), then pv =

∑
r(e)=v ses∗e .

To a directed path α = e1 . . . en, we associate a partial isometry
sα = se1 . . . sen .
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The abelian core

Definition

A cycle is a path λ = e1 . . . en in E with r(e1) = s(en). An entry
to λ is a path f1 . . . fk with r(f1) = r(ek) and f1 6= ek for some k .
The abelian core M(E ) is the C ∗-subalgebra of C ∗(E ) generated
by GM(E ) = {sαs∗α}α ∪ {sαsλs∗α : λ a cycle without entry}.

It is shown in [3] that there is a conditional expectation E from
C ∗(E ) onto M(E ). It is easy to verify that M(E ) ⊂ C ∗(E ) is
regular (all the generators of C ∗(E ) are normalizers of M(E )).
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Tracial states on graph C ∗-algebras

Definition

A graph trace on E is a function g : E 0 → [0,∞) such that

(1) if v is a vertex and {e1, . . . , en} ⊂ r−1(v), then∑n
i=1 g(s(ei )) ≤ g(v);

(2) if v is a regular vertex, then g(v) =
∑

r(e)=v g(s(e)).

A graph trace is bounded if it is `1 and normalized if ||g ||1 = 1.

Example

If τ is a tracial state on C ∗(E ) then gτ (v) = τ(pv ) defines a
normalized graph trace on E .

Tomforde showed that the map τ 7→ gτ is surjective onto the
normalized graph traces, using states on K -theory.
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The tracial state space

The map τ → gτ is not always injective – there are examples of
graph C ∗-algebras where many tracial states correspond to the
same graph trace.

Question

What additional structure needs to be added to parametrize all the
tracial states? When is the map τ 7→ gτ injective?
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The tracial state space, ctd.

Of special interest are graphs which have no entries to cycles. We
found a natural operation to remove all the entries to cycles in a
graph (corresponds to taking a quotient of C ∗(E )), which we call
tightening E 7→ Etight. There is a surjective ∗-homomorphism
ρtight : C ∗(E )→ C ∗(Etight).
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Cyclically tagged graph traces

Definition

A cyclically tagged graph trace is a pair (g , µ), where g is a
normalized graph trace and µ is a function from the set of vertices
with nonzero g -value lying on cycles without entries to the set of
probability measures on T. It is consistent if whenever v and w are
on the same cycle, then µ(v) = µ(w). The space of consistent
cyclically tagged graph traces is denoted by T CCT

1 (E ).

Theorem (C., Nagy ’15)

For any (g , µ) ∈ T CCT
1 (E ) there is a corresponding tracial state

τ(g ,µ) on C ∗(E ). Moreover, the map

T CCT
1 (Etight) 3 (g , µ) 7→ τ(g ,µ) ◦ ρtight ∈ T (C ∗(E ))

is an isomorphism.
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When is τ 7→ gτ injective

Tomforde noted that if E satisfies condition (K), then the map
τ 7→ gτ is injective. However this is not necessary.

Definition

Two (finite) paths λ and µ are incomparable if neither one
contains the other as initial prefix. A vertex v is essentially left
infinite if there is an infinite set {λk} of finite paths that are
pairwise incomparable and such that s(λk) = v for all k.

Theorem (C., Nagy ’15)

For a directed graph E the following are equivalent:

(i) the map τ 7→ gτ is injective;

(ii) the source of each cycle in E is essentially left infinite.
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When is τ 7→ gτ injective, ctd.

Proof.

(ii) ⇒ (i): If a vertex v is essentially left infinite, then any bounded
graph trace g must vanish on v . Thus if the source of each cycle is
essentially left infinite, there are no measures to consider (after
passing to the tightening) and the map τ 7→ gτ is injective.
(i) ⇒ (ii): If v is the source of a cycle and v is not essentially left
infinite, then we can define a (non-normalized but bounded) graph
trace g on E by g(w) = |{paths v → w}|. Thus there is a
normalized graph trace g on E which does not vanish at v , and if
we take any non-Lebesgue probability measure for µv , the tagging
(g , µv ) is consistent.
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Thank you!
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