Traces arising from regular inclusions

Danny Crytser (with Gabriel Nagy)

Workshop on Noncommutative Analysis // 2016 // Iowa

June 4, 2016

<ロト (四) (主) (日) (日)

1

Outline

3 The groupoid framework: balanced measures

A 10

Tracial states

If A is a C*-algebra then a *tracial state* on A is a state such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$. We are interested in

< 同 ▶ < ∃ ▶

Tracial states

If A is a C*-algebra then a *tracial state* on A is a state such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$. We are interested in (1) how to define tracial states on C*-algebras and

Tracial states

If A is a C*-algebra then a *tracial state* on A is a state such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$. We are interested in (1) how to define tracial states on C*-algebras and (2) how to be sure that our methods bijectively describe all possible tracial states. In particular, we are interested in the case of *groupoid* and *graph* C*-algebras.

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

(1) an inclusion B ⊂ A of an abelian C*-subalgebra which is non-degenerate (B contains an approximate identity for A) and regular (the multiplicative and self-adjoint set N(B) = {n ∈ A : nBn* ∪ n*Bn ⊂ B} spans dense subset of A)

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

- (1) an inclusion B ⊂ A of an abelian C*-subalgebra which is non-degenerate (B contains an approximate identity for A) and regular (the multiplicative and self-adjoint set N(B) = {n ∈ A : nBn* ∪ n*Bn ⊂ B} spans dense subset of A)
- (2) a conditional expectation $\mathbb{E} : A \to B$ (a completely positive linear bimodule map fixing *B*), which we will require to have additional properties later on.

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

- (1) an inclusion B ⊂ A of an abelian C*-subalgebra which is non-degenerate (B contains an approximate identity for A) and regular (the multiplicative and self-adjoint set N(B) = {n ∈ A : nBn* ∪ n*Bn ⊂ B} spans dense subset of A)
- (2) a conditional expectation $\mathbb{E} : A \to B$ (a completely positive linear bimodule map fixing *B*), which we will require to have additional properties later on.

Note that $n^*n, nn^* \in B$ for any $n \in N(B)$ if B contains an approximate identity for A.

Tracial states: state extensions

If $\phi: B \to \mathbb{C}$ is a state on B, then $\phi \circ \mathbb{E}$ is a state extension to A.

< 同 ▶ < ∃ ▶

Tracial states: state extensions

If $\phi : B \to \mathbb{C}$ is a state on *B*, then $\phi \circ \mathbb{E}$ is a state extension to *A*.

Question

For which states $\phi \in S(B)$ is the extension $\phi \circ \mathbb{E}$ a *tracial state* on *A*?

Tracial states: state extensions

If $\phi : B \to \mathbb{C}$ is a state on *B*, then $\phi \circ \mathbb{E}$ is a state extension to *A*.

Question

For which states $\phi \in S(B)$ is the extension $\phi \circ \mathbb{E}$ a *tracial state* on *A*? If *S'* is the set of such states, is the map $S' \to T(A)$ given by $\phi \mapsto \phi \circ \mathbb{E}$ a surjection?

Invariant states

Definition

If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb)$ for all $b \in B$. If $N_0 \subset N(B)$, then ϕ is N_0 -invariant if it is *n*-invariant for all $n \in N_0$. If ϕ is N(B)-invariant we will call ϕ fully invariant

< 🗇 🕨 < 🖃 🕨

Invariant states

Definition

If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb)$ for all $b \in B$. If $N_0 \subset N(B)$, then ϕ is N_0 -invariant if it is *n*-invariant for all $n \in N_0$. If ϕ is N(B)-invariant we will call ϕ fully invariant

Example

If $\tau \in T(A)$ is a tracial state, then $\phi = \tau|_B$ is a fully invariant state on B.

- 4 同 ト - 4 目 ト

Invariant states

Definition

If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb)$ for all $b \in B$. If $N_0 \subset N(B)$, then ϕ is N_0 -invariant if it is *n*-invariant for all $n \in N_0$. If ϕ is N(B)-invariant we will call ϕ fully invariant

Example

If $\tau \in T(A)$ is a tracial state, then $\phi = \tau|_B$ is a fully invariant state on B.

Under fairly mild assumptions the converse of the above example is also true.

イロト イポト イヨト イヨト

Normalization of conditional expectations

Definition

Let $E : A \to B$ be a conditional expectation. We say that \mathbb{E} is *normalized* by $n \in N(B)$ if $\mathbb{E}(nan^*) = n\mathbb{E}(a)n^*$ for all $a \in A$. (Similar for $N_0 \subset N(B)$.)

In the cases that we care about, the relevant conditional expectations will be normalized by a set of normalizers that generate A.

< / ₽ ▶ < ∃ ▶

Invariant states, part II

Theorem (C., Nagy '15)

Suppose that $B \subset A$ is a regular inclusion and $\mathbb{E} : A \to B$ is a conditional expectation which is normalized by $N_0 \subset N(B)$. Then for any N_0 -invariant state $\phi \in S(B)$, the composition $\phi \circ \mathbb{E}$ is a tracial state when restricted to $C^*(B \cup N_0) \subset A$.

Image: A image: A

Invariant states, part II

Theorem (C., Nagy '15)

Suppose that $B \subset A$ is a regular inclusion and $\mathbb{E} : A \to B$ is a conditional expectation which is normalized by $N_0 \subset N(B)$. Then for any N_0 -invariant state $\phi \in S(B)$, the composition $\phi \circ \mathbb{E}$ is a tracial state when restricted to $C^*(B \cup N_0) \subset A$.

Corollary

Suppose that $\mathbb{E} : A \to B$ is normalized by $N_0 \subset N(B)$ and ϕ is a N_0 -invariant state on B, where N_0 generates A as a C^* -algebra. Then $\phi \circ \mathbb{E}$ is a tracial state on A.

< ロト < 同ト < ヨト

Proof

Proof

We show that if \mathbb{E} is normalized by n and $\phi \in S(B)$ is an n-invariant state, then $\phi \circ \mathbb{E}(na) = \phi \circ \mathbb{E}(an)$ for all $a \in A$, because we can then use the fact that the centralizer of a state always forms a C^* -algebra.

Proof

Proof

We show that if \mathbb{E} is normalized by n and $\phi \in S(B)$ is an n-invariant state, then $\phi \circ \mathbb{E}(na) = \phi \circ \mathbb{E}(an)$ for all $a \in A$, because we can then use the fact that the centralizer of a state always forms a C^* -algebra. It suffices to show

$$\phi(\mathbb{E}((nn^*)^j na)) = \phi(\mathbb{E}(an(n^*n)^j))$$

for any positive integer j, because we have the approximations

$$na = \lim_{k o \infty} (nn^*)^{1/k} na$$
 $an = \lim_{k o \infty} an(n^*n)^{1/k}$

and we can find suitable polynomials with zero constant term approximating the k-th root function.

Proof, ctd.

$$\phi(\mathbb{E}(an(n^*n)^j)) = \phi(\mathbb{E}(an(n^*n)^{j-1})n^*n)$$
(1)
$$= \phi(n\mathbb{E}(an(n^*n)^{j-1})n^*)$$
(2)
$$= \phi(\mathbb{E}(na(nn^*)^j)$$
(3)
$$= \phi(\mathbb{E}((nn^*)^j na)$$
(4)

<ロ> <同> <同> < 同> < 同>

E

Proof, ctd.

$$\phi(\mathbb{E}(an(n^*n)^j)) = \phi(\mathbb{E}(an(n^*n)^{j-1})n^*n)$$
(1)
$$= \phi(n\mathbb{E}(an(n^*n)^{j-1})n^*)$$
(2)
$$= \phi(\mathbb{E}(na(nn^*)^j)$$
(3)
$$= \phi(\mathbb{E}((nn^*)^jna)$$
(4)

Here (1) follows because \mathbb{E} is a conditional expectation,

< / ₽ ▶ < ∃ ▶

Proof, ctd.

$$\phi(\mathbb{E}(an(n^*n)^j)) = \phi(\mathbb{E}(an(n^*n)^{j-1})n^*n)$$
(1)

$$=\phi(n\mathbb{E}(an(n^*n)^{J^{-1}})n^*)$$
(2)

$$=\phi(\mathbb{E}(na(nn^*)^j)$$
(3)

$$=\phi(\mathbb{E}((nn^*)^j na)$$
(4)

< ロ ト < 同 ト < 三 ト

Here (1) follows because \mathbb{E} is a conditional expectation, (2) from the *n*-invariance of ϕ ,

Proof, ctd.

$$\phi(\mathbb{E}(an(n^*n)^j)) = \phi(\mathbb{E}(an(n^*n)^{j-1})n^*n)$$
(1)

$$=\phi(n\mathbb{E}(an(n^*n)^{j-1})n^*)$$
(2)

$$=\phi(\mathbb{E}(na(nn^*)^j)$$
(3)

$$=\phi(\mathbb{E}((nn^*)^j na)$$
(4)

Image: A image: A

Here (1) follows because \mathbb{E} is a conditional expectation, (2) from the *n*-invariance of ϕ , (3) from the fact that *n* normalizes \mathbb{E} ,

Proof, ctd.

$$\phi(\mathbb{E}(an(n^*n)^j)) = \phi(\mathbb{E}(an(n^*n)^{j-1})n^*n)$$
(1)

$$=\phi(n\mathbb{E}(an(n^*n)^{j-1})n^*)$$
(2)

$$=\phi(\mathbb{E}(na(nn^*)^j)$$
(3)

$$=\phi(\mathbb{E}((nn^*)^j na)$$
(4)

Image: A image: A

Here (1) follows because \mathbb{E} is a conditional expectation, (2) from the *n*-invariance of ϕ , (3) from the fact that *n* normalizes \mathbb{E} , and (4) follows from conditional expectation and commutativity of *B*.

Parametrizing the trace space

The previous result shows that if we have a conditional expectation which is normalized by N(B), then there is a surjective map

$$\mathsf{res}: T(A) \ni \tau \mapsto \tau|_B \in S_{\mathsf{inv}}(B)$$

from the tracial states on A to the fully invariant states on B.

Parametrizing the trace space

The previous result shows that if we have a conditional expectation which is normalized by N(B), then there is a surjective map

$$\mathsf{res}: \ T(A) \ni \tau \mapsto \tau|_B \in S_{\mathsf{inv}}(B)$$

from the tracial states on A to the fully invariant states on B. In other words, every fully invariant state lifts to a tracial state on the C^* -algebra. The restriction map is affine and continuous.

Parametrizing the trace space

The previous result shows that if we have a conditional expectation which is normalized by N(B), then there is a surjective map

$$\mathsf{res}: \ T(A) \ni \tau \mapsto \tau|_B \in S_{\mathsf{inv}}(B)$$

from the tracial states on A to the fully invariant states on B. In other words, every fully invariant state lifts to a tracial state on the C^* -algebra. The restriction map is affine and continuous.

Question

When is the restriction map injective? That is, for which inclusions $B \subset A$ is it always the case that any tracial state $\tau \in T(A)$ is fully determined by its restriction to B?

The extension property

Definition

A non-degenerate inclusion $B \subset A$ is said to have the *extension* property if every pure state $\phi \in P(B)$ has a *unique* extension to a state on A (which must then be pure).

Image: A image: A

The extension property

Definition

A non-degenerate inclusion $B \subset A$ is said to have the *extension* property if every pure state $\phi \in P(B)$ has a *unique* extension to a state on A (which must then be pure).

If an inclusion has the extension property one automatically obtains a conditional expectation $\mathbb{E} : A \to B$, so these inclusions fall within our framework.

The extension property

Definition

A non-degenerate inclusion $B \subset A$ is said to have the *extension* property if every pure state $\phi \in P(B)$ has a *unique* extension to a state on A (which must then be pure).

If an inclusion has the extension property one automatically obtains a conditional expectation $\mathbb{E} : A \to B$, so these inclusions fall within our framework.

Proposition (C., Nagy '15)

If $B \subset A$ is a non-degenerate inclusion with the extension property, then the restriction map carrying T(A) to $S_{inv}(B)$ is injective.

イロト イポト イヨト イヨト

Proof of proposition

Proof.

By a result of Archbold [1], if $B \subset A$ has the extension property, the kernel of the associated conditional expectation $\mathbb{E} : A \to B$ is spanned by the commutators $\{ab - ba : a \in A, b \in B\}$.

< 同 ▶ < ∃ ▶

Proof of proposition

Proof.

By a result of Archbold [1], if $B \subset A$ has the extension property, the kernel of the associated conditional expectation $\mathbb{E} : A \to B$ is spanned by the commutators $\{ab - ba : a \in A, b \in B\}$. A tracial state vanishes on any commutator, hence any tracial state factors through the conditional expectation onto B, i.e. $\tau = (\tau|_B) \circ \mathbb{E}$. Thus the restriction map from T(A) to $S_{inv}(B)$ is injective.

Proof of proposition

Proof.

By a result of Archbold [1], if $B \subset A$ has the extension property, the kernel of the associated conditional expectation $\mathbb{E} : A \to B$ is spanned by the commutators $\{ab - ba : a \in A, b \in B\}$. A tracial state vanishes on any commutator, hence any tracial state factors through the conditional expectation onto B, i.e. $\tau = (\tau|_B) \circ \mathbb{E}$. Thus the restriction map from T(A) to $S_{inv}(B)$ is injective.

Remark

We do not claim that the tracial state space is non-empty in this case (there are examples of inclusions with the extension property where $T(A) = \emptyset$).

Proof of proposition

Proof.

By a result of Archbold [1], if $B \subset A$ has the extension property, the kernel of the associated conditional expectation $\mathbb{E} : A \to B$ is spanned by the commutators $\{ab - ba : a \in A, b \in B\}$. A tracial state vanishes on any commutator, hence any tracial state factors through the conditional expectation onto B, i.e. $\tau = (\tau|_B) \circ \mathbb{E}$. Thus the restriction map from T(A) to $S_{inv}(B)$ is injective.

Remark

We do not claim that the tracial state space is non-empty in this case (there are examples of inclusions with the extension property where $\mathcal{T}(A) = \emptyset$). Also, there are cases of inclusions without the extension property for which $\tau \mapsto \tau|_B$ is still injective (for example, $\mathbb{C} \subset C_r^*(\mathbb{F}_2)$).

Étale groupoids

A groupoid consists of a set G equipped with the following:

< 同 ▶ < ∃ ▶

3.5
Étale groupoids

A groupoid consists of a set G equipped with the following: (i) a set $G^{(2)} \subset G \times G$ of composable pairs

Image: A image: A

Étale groupoids

A groupoid consists of a set G equipped with the following: (i) a set $G^{(2)} \subset G \times G$ of composable pairs (ii) a composition operation $\circ : G^{(2)} \to G$ which is associative $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ whenever one is defined;

- 4 同 ト 4 ヨ ト 4 ヨ ト

Étale groupoids

A groupoid consists of a set G equipped with the following:
(i) a set G⁽²⁾ ⊂ G × G of composable pairs
(ii) a composition operation ∘ : G⁽²⁾ → G which is associative (αβ)γ = α(βγ) whenever one is defined;
(iii) an involutive inversion operation α ↦ α⁻¹ such that (α, α⁻¹) ∈ G⁽²⁾ for all α and α⁻¹αβ = β and γαα⁻¹ = γ whenever the composition is defined.

Étale groupoids

A groupoid consists of a set G equipped with the following: (i) a set $G^{(2)} \subset G \times G$ of composable pairs (ii) a composition operation $\circ : G^{(2)} \to G$ which is associative

 $(lphaeta)\gamma=lpha(eta\gamma)$ whenever one is defined;

(iii) an involutive inversion operation $\alpha \mapsto \alpha^{-1}$ such that $(\alpha, \alpha^{-1}) \in G^{(2)}$ for all α and $\alpha^{-1}\alpha\beta = \beta$ and $\gamma\alpha\alpha^{-1} = \gamma$ whenever the composition is defined.

Sometimes elements of G are called *morphisms* or *arrows*, as an alternate definition of a groupoid is as a small category with inverses.

Units

There isn't a distinguished identity element in the definition of a groupoid.

- 4 同 1 - 4 回 1 - 4 回 1

э

Units

There isn't a distinguished identity element in the definition of a groupoid.

Definition

An element u of a groupoid G is called a unit if it satisfies $u = u^2$.

- 4 同 1 - 4 回 1 - 4 回 1

Units

There isn't a distinguished identity element in the definition of a groupoid.

Definition

An element u of a groupoid G is called a unit if it satisfies $u = u^2$.

For any element α of G, the compositions $s(\alpha) := \alpha^{-1}\alpha$ and $r(\alpha) = \alpha \alpha^{-1}$ are units referred to as the *source* and *range* of α . The set of all units is denoted by $G^{(0)} \subset G$.

Étale groupoids

A *topological groupoid* is one that has been equipped with a topology so that the operations become continuous. Henceforth our groupoids will be assumed to be Hausdorff, locally compact, and second countable.

Étale groupoids

A *topological groupoid* is one that has been equipped with a topology so that the operations become continuous. Henceforth our groupoids will be assumed to be Hausdorff, locally compact, and second countable.

Definition

An open bisection $B \subset G$ is an open subset of G such that $r|_B$ and $s|_B$ are both homeomorphisms onto open subsets of G.

Étale groupoids

A *topological groupoid* is one that has been equipped with a topology so that the operations become continuous. Henceforth our groupoids will be assumed to be Hausdorff, locally compact, and second countable.

Definition

An open bisection $B \subset G$ is an open subset of G such that $r|_B$ and $s|_B$ are both homeomorphisms onto open subsets of G. A topological groupoid G is *étale* if it has a basis for its topology consisting of bisections.

Étale groupoids

A *topological groupoid* is one that has been equipped with a topology so that the operations become continuous. Henceforth our groupoids will be assumed to be Hausdorff, locally compact, and second countable.

Definition

An open bisection $B \subset G$ is an open subset of G such that $r|_B$ and $s|_B$ are both homeomorphisms onto open subsets of G. A topological groupoid G is *étale* if it has a basis for its topology consisting of bisections.

Étale groupoids turn out to be the appropriate generalization of discrete groups/discrete dynamical systems to the groupoid context.

Image: A = A = A

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta)$$

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}.$$

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}.$$

We can complete $C_c(G)$ under the reduced norm

$$||f||_r = \sup_{u \in G^{(0)}} ||\pi_u(f)||$$

伺 ト イヨト イヨト

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}.$$

We can complete $C_c(G)$ under the reduced norm

$$||f||_r = \sup_{u \in G^{(0)}} ||\pi_u(f)||$$

where π_u is the representation on $\ell^2(s^{-1}(u))$ given by $\pi_u(f)\delta_\gamma = f * \delta_\gamma$ for $\gamma \in s^{-1}(u)$.

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}.$$

We can complete $C_c(G)$ under the reduced norm

$$||f||_r = \sup_{u \in G^{(0)}} ||\pi_u(f)||$$

where π_u is the representation on $\ell^2(s^{-1}(u))$ given by $\pi_u(f)\delta_{\gamma} = f * \delta_{\gamma}$ for $\gamma \in s^{-1}(u)$. The abelian C^* -algebra $C_0(G^{(0)})$ is contained in $C_r^*(G)$ as the completion of $C_c(G^{(0)} \subset C_c(G))$.

C^* -algebras of étale groupoids

The set $C_c(G)$ of continuous complex functions with compact support on G forms a *-algebra under the pointwise vector space operations, and convolution and involution given by

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}.$$

We can complete $C_c(G)$ under the reduced norm

$$||f||_r = \sup_{u \in G^{(0)}} ||\pi_u(f)||$$

where π_u is the representation on $\ell^2(s^{-1}(u))$ given by $\pi_u(f)\delta_\gamma = f * \delta_\gamma$ for $\gamma \in s^{-1}(u)$. The abelian C^* -algebra $C_0(G^{(0)})$ is contained in $C_r^*(G)$ as the completion of $C_c(G^{(0)} \subset C_c(G))$. There is a conditional expectation $\mathbb{E}_{red} : C_r^*(G) \mapsto C_0(G^{(0)})$ extending restriction $C_c(G) \to C_c(G^{(0)})$.

Bisections and balanced measures

Any $n \in C_c(G)$ whose support is contained in a bisection is a normalizer of $C_0(G^{(0)})$. Such *n* are called elementary normalizers.

< 同 ▶ < ∃ ▶

Bisections and balanced measures

Any $n \in C_c(G)$ whose support is contained in a bisection is a normalizer of $C_0(G^{(0)})$. Such *n* are called elementary normalizers.

Definition

Let μ be a Radon probability measure on $G^{(0)}$ and let $B \subset G$ be an open bisection. Then μ is called *B*-balanced if for every compact subset $K \subset G^{(0)}$ we have $\mu(BKB^{-1}) = \mu(s(B) \cap K)$. We call μ totally balanced if it *B*-balanced for every open bisection *B*.

Bisections and balanced measures

Any $n \in C_c(G)$ whose support is contained in a bisection is a normalizer of $C_0(G^{(0)})$. Such *n* are called elementary normalizers.

Definition

Let μ be a Radon probability measure on $G^{(0)}$ and let $B \subset G$ be an open bisection. Then μ is called *B*-balanced if for every compact subset $K \subset G^{(0)}$ we have $\mu(BKB^{-1}) = \mu(s(B) \cap K)$. We call μ totally balanced if it *B*-balanced for every open bisection *B*.

If μ is a totally balanced measure then the corresponding state ϕ_{μ} on $C_0(G^{(0)})$ will be *n*-invariant for every elementary normalizer *n*.

Balanced measures and tracial states

Let G be étale. If τ is a tracial state on $C_r^*(G)$, then the restriction $\tau|_{C_0(G^{(0)})}$ is a state on $C_0(G^{(0)})$, and the corresponding measure μ_{τ} on $G^{(0)}$ is balanced.

Balanced measures and tracial states

Let G be étale. If τ is a tracial state on $C_r^*(G)$, then the restriction $\tau|_{C_0(G^{(0)})}$ is a state on $C_0(G^{(0)})$, and the corresponding measure μ_{τ} on $G^{(0)}$ is balanced. The converse is true as well:

Proposition (C., Nagy)

Let G be an étale groupoid, let μ be a probability Radon measure on $G^{(0)}$, and let ϕ_{μ} be the corresponding state on $C_0(G^{(0)})$. The following conditions are equivalent:

- (i) μ is totally balanced;
- (ii) ϕ_{μ} is elementary invariant;
- (iii) ϕ_{μ} is fullly invariant;

(iv) $\phi_{\mu} \circ \mathbb{E}_{red}$ is a tracial state on $C^*_{red}(G)$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Balanced measures and tracial states

Let G be étale. If τ is a tracial state on $C_r^*(G)$, then the restriction $\tau|_{C_0(G^{(0)})}$ is a state on $C_0(G^{(0)})$, and the corresponding measure μ_{τ} on $G^{(0)}$ is balanced. The converse is true as well:

Proposition (C., Nagy)

Let G be an étale groupoid, let μ be a probability Radon measure on $G^{(0)}$, and let ϕ_{μ} be the corresponding state on $C_0(G^{(0)})$. The following conditions are equivalent:

- (i) μ is totally balanced;
- (ii) ϕ_{μ} is elementary invariant;
- (iii) ϕ_{μ} is fully invariant;

(iv) $\phi_{\mu} \circ \mathbb{E}_{red}$ is a tracial state on $C^*_{red}(G)$.

(In particular this shows that $\tau \mapsto \mu_{\tau}$ is a surjection onto the collection of totally balanced probability measures $\nabla^{p} \mapsto \overline{z} \mapsto \overline{z}$

Parametrizing the trace space

Question

When is the map $\tau \mapsto \mu_{\tau}$ injective (and hence a bijection)?

Parametrizing the trace space

Question

When is the map $\tau \mapsto \mu_{\tau}$ injective (and hence a bijection)?

Definition

A groupoid is *principal* if $r(\gamma) = s(\gamma)$ implies that γ is a unit. Equivalently if $Iso(G)_u = \{u\}$ for every $u \in G^{(0)}$.

Parametrizing the trace space

Question

When is the map $\tau \mapsto \mu_{\tau}$ injective (and hence a bijection)?

Definition

A groupoid is *principal* if $r(\gamma) = s(\gamma)$ implies that γ is a unit. Equivalently if $Iso(G)_u = \{u\}$ for every $u \in G^{(0)}$.

Proposition

Let G be a principal étale groupoid. Then the map from $T(C_r^*(G))$ onto the collection of totally balanced probability measures is a bijection. Equivalently, the map $\mu \mapsto \phi_{\mu} \circ \mathbb{E}_{red}$ is a surjection.

Proof

Proof.

By a result of Kumjian, if G is principal then the inclusion $C_0(G^{(0)}) \subset C_r^*(G)$ has the extension property. Thus the theorem from the previous section about general regular inclusions ensures that the map from $T(C_r^*(G))$ onto $S_{inv}(C_0(G^{(0)}))$ is in fact a bijection.

Proof

Proof.

By a result of Kumjian, if G is principal then the inclusion $C_0(G^{(0)}) \subset C_r^*(G)$ has the extension property. Thus the theorem from the previous section about general regular inclusions ensures that the map from $T(C_r^*(G))$ onto $S_{inv}(C_0(G^{(0)}))$ is in fact a bijection.

Question

What are necessary and sufficient conditions for $\tau \mapsto \mu_{\tau}$ to be injective? What information needs to be added to μ_{τ} in order to describe the trace space bijectively?

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

(1) the p_v are mutually orthogonal projections;

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

(4) $s_e s_e^* \leq p_{r(e)}$, and if $r^{-1}(v)$ is finite and non-empty (i.e. v is a regular vertex), then $p_v = \sum_{r(e)=v} s_e s_e^*$.

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

- (1) the p_v are mutually orthogonal projections;
- the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

(4) $s_e s_e^* \leq p_{r(e)}$, and if $r^{-1}(v)$ is finite and non-empty (i.e. v is a regular vertex), then $p_v = \sum_{r(e)=v} s_e s_e^*$.

For a directed path $\alpha = e_1 \dots e_n$, we denote the associated partial isometry $s_{e_1} \dots s_{e_n}$ by s_{α} .

Graph C*-algebras

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

(4) $s_e s_e^* \leq p_{r(e)}$, and if $r^{-1}(v)$ is finite and non-empty (i.e. v is a regular vertex), then $p_v = \sum_{r(e)=v} s_e s_e^*$.

For a directed path $\alpha = e_1 \dots e_n$, we denote the associated partial isometry $s_{e_1} \dots s_{e_n}$ by s_{α} . Elements of the form $s_{\alpha}s_{\beta}^*$, for $\alpha, \beta \in E^*$ (finite path space), span the graph C^* -algebra.
The abelian core

Definition

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$.

< / ₽ ▶ < ∃ ▶

The abelian core

Definition

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k.

The abelian core

Definition

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k. The abelian core $\mathcal{M}(E)$ is the C*-subalgebra of C*(E) generated by $\mathcal{G}_{\mathcal{M}}(E) = \{s_\alpha s_\alpha^*\}_\alpha \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ a cycle without entry}\}.$

(4月) (1日) (日)

The abelian core

Definition

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k. The abelian core $\mathcal{M}(E)$ is the C*-subalgebra of C*(E) generated by $\mathcal{G}_{\mathcal{M}}(E) = \{s_\alpha s_\alpha^*\}_\alpha \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ a cycle without entry}\}.$

It is shown in [4] that there is a conditional expectation \mathbb{E} from $C^*(E)$ onto $\mathcal{M}(E)$. It is easy to verify that $\mathcal{M}(E) \subset C^*(E)$ is regular (all the generators of $C^*(E)$ are normalizers of $\mathcal{M}(E)$). The abelian core is a MASA, in fact $\mathcal{M}(E) = \mathcal{D}(E)'$, where $\mathcal{D}(E) = \overline{\text{span}} \{ s_{\alpha} s_{\alpha}^* : \alpha \in E^* \}$.

Tracial states on graph C^* -algebras

Definition

A graph trace on E is a function $g: E^0 \to [0,\infty)$ such that

<ロト < 同ト < ヨト

Tracial states on graph C^* -algebras

Definition

A graph trace on E is a function $g: E^0 \to [0, \infty)$ such that (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and

- 4 同 1 - 4 回 1 - 4 回 1

Tracial states on graph C^* -algebras

Definition

A graph trace on E is a function $g: E^0 \to [0,\infty)$ such that

(1) if v is a vertex and
$$\{e_1, \ldots, e_n\} \subset r^{-1}(v)$$
, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and

(2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Tracial states on graph C^* -algebras

Definition

A graph trace on E is a function $g: E^0 \to [0,\infty)$ such that

(1) if v is a vertex and
$$\{e_1, \ldots, e_n\} \subset r^{-1}(v)$$
, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and

(2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$.

A graph trace is *bounded* if it is ℓ^1 and *normalized* if $||g||_1 = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Tracial states on graph C^* -algebras

Definition

A graph trace on E is a function $g: E^0 \to [0,\infty)$ such that

- (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and
- (2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$.

A graph trace is *bounded* if it is ℓ^1 and *normalized* if $||g||_1 = 1$.

Example

If τ is a tracial state on $C^*(E)$ then $g_{\tau}(v) = \tau(p_v)$ defines a normalized graph trace on E.

・ロッ ・雪 ・ ・ ヨ ・ ・ ー

Tracial states on graph C^* -algebras

Definition

A graph trace on E is a function $g: E^0 \to [0,\infty)$ such that

- (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and
- (2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$.

A graph trace is *bounded* if it is ℓ^1 and *normalized* if $||g||_1 = 1$.

Example

If τ is a tracial state on $C^*(E)$ then $g_{\tau}(v) = \tau(p_v)$ defines a normalized graph trace on E.

Tomforde in [5] showed that the map $\tau \mapsto g_{\tau}$ is surjective onto the normalized graph traces, using states on *K*-theory.

The tracial state space

The map $au o g_{ au}$ is not always injective.

< 同 ▶ < ∃ ▶

The tracial state space

The map $au o g_{ au}$ is not always injective.

Example

Let *E* be the graph with one edge *e* and one vertex *v*. Then $C^*(E) \cong C(\mathbb{T})$, which has infinitely many tracial states. However, there is only one graph trace, g(v) = 1.

< / ₽ ▶ < ∃ ▶

The tracial state space

The map $au o g_{ au}$ is not always injective.

Example

Let *E* be the graph with one edge *e* and one vertex *v*. Then $C^*(E) \cong C(\mathbb{T})$, which has infinitely many tracial states. However, there is only one graph trace, g(v) = 1.

Question

What additional structure needs to be added to parametrize all the tracial states? When is the map $\tau \mapsto g_{\tau}$ injective?

< / ₽ ▶ < ∃ ▶

The tracial state space, ctd.

Of special interest are *tight* graphs, which have no entries to cycles.

< 同 ▶ < ∃ ▶

The tracial state space, ctd.

Of special interest are *tight* graphs, which have no entries to cycles. We found a natural operation to remove all the entries to cycles in a graph (corresponds to taking a quotient of $C^*(E)$), which we call tightening $E \mapsto E_{tight}$.

- 4 同 ト - 4 目 ト

The tracial state space, ctd.

Of special interest are *tight* graphs, which have no entries to cycles. We found a natural operation to remove all the entries to cycles in a graph (corresponds to taking a quotient of $C^*(E)$), which we call tightening $E \mapsto E_{\text{tight}}$. Formally, this entails taking $H = \{w \in E^0 : w \text{ is the source of an entry to a cycle}\}$, then taking the *saturation* of this hereditary set of vertices, obtaining \overline{H} .

The tracial state space, ctd.

Of special interest are *tight* graphs, which have no entries to cycles. We found a natural operation to remove all the entries to cycles in a graph (corresponds to taking a quotient of $C^*(E)$), which we call tightening $E \mapsto E_{\text{tight}}$. Formally, this entails taking $H = \{w \in E^0 : w \text{ is the source of an entry to a cycle}\}$, then taking the *saturation* of this hereditary set of vertices, obtaining \overline{H} . The theory of graph algebras says that, taking the ideal $I_{\overline{H}}$ generated by $\{p_v : v \in \overline{H}\}$, there is a *-isomorphism $C^*(E)/I_H \cong C^*(E \setminus \overline{H})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The tracial state space, ctd.

Of special interest are *tight* graphs, which have no entries to cycles. We found a natural operation to remove all the entries to cycles in a graph (corresponds to taking a quotient of $C^*(E)$), which we call tightening $E \mapsto E_{\text{tight}}$. Formally, this entails taking $H = \{w \in E^0 : w \text{ is the source of an entry to a cycle}\}$, then taking the *saturation* of this hereditary set of vertices, obtaining \overline{H} . The theory of graph algebras says that, taking the ideal $I_{\overline{H}}$ generated by $\{p_v : v \in \overline{H}\}$, there is a *-isomorphism $C^*(E)/I_H \cong C^*(E \setminus \overline{H})$. The map $C^*(E) \to C^*(E \setminus \overline{H})$ induces an isomorphism on tracial state spaces.

- (目) - (目) - (目)

The tracial state space, ctd.

Of special interest are *tight* graphs, which have no entries to cycles. We found a natural operation to remove all the entries to cycles in a graph (corresponds to taking a quotient of $C^*(E)$), which we call tightening $E \mapsto E_{tight}$. Formally, this entails taking $H = \{w \in E^0 : w \text{ is the source of an entry to a cycle}\}, then$ taking the saturation of this hereditary set of vertices, obtaining \overline{H} . The theory of graph algebras says that, taking the ideal $I_{\overline{\mu}}$ generated by $\{p_v : v \in \overline{H}\}$, there is a *-isomorphism $C^*(E)/I_H \cong C^*(E \setminus \overline{H})$. The map $C^*(E) \to C^*(E \setminus \overline{H})$ induces an isomorphism on tracial state spaces. The quotient graph $E \setminus H$ (formed by removing all the vertices in \overline{H} and the edges they emit) is the tightening of E, E_{tight} .

Cyclically tagged graph traces

Definition

The cyclic support of a graph trace g is the set supp^c g of vertices v with g(v) > 0 that lie on cycles without entry. A cyclically tagged graph trace is a pair (g, μ) , where g is a normalized graph trace and μ : supp^c $g \to \text{Prob}(\mathbb{T})$. It is consistent if whenever v and w are on the same cycle, then $\mu(v) = \mu(w)$. The space of consistent cyclically tagged graph traces is denoted by $T_1^{\text{CCT}}(E)$.

Example

If τ is a tracial state on $C^*(E)$, we obtain the graph trace g_{τ} as before, and the cyclic tagging $\mu = \mu_t a u$ is defined for $v \in \text{supp}^c g$

$$\int_{\mathbb{T}} z^k d\mu_{m{v}} = rac{ au(s^k_\lambda)}{ au(p_{m{v}})} \qquad s(\lambda) = r(\lambda) = m{v} \quad |\lambda| ext{ minimal.}$$

Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If $(g, \mu) \in T_1^{CCT}(E)$, there is a state $\phi_{(g,\mu)}$ on $\mathcal{M}(E)$ which satisfies $\phi_{(g,\mu)}(s_\alpha s_\alpha^*) = g(s(\alpha))$ and $\phi_{(g,\mu)}(s_\alpha s_\lambda^k s_\alpha^*) = g(s(\alpha)) \int_{\mathbb{T}} z^k d\mu_s(\alpha)$ (set right-hand side to 0 if $g(s(\alpha)) = 0$).

(4 同) (4 回) (4 \Pi) (4 \Pi)

Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If $(g, \mu) \in T_1^{\mathsf{CCT}}(E)$, there is a state $\phi_{(g,\mu)}$ on $\mathcal{M}(E)$ which satisfies $\phi_{(g,\mu)}(s_\alpha s^*_\alpha) = g(s(\alpha))$ and $\phi_{(g,\mu)}(s_\alpha s^k_\lambda s^*_\alpha) = g(s(\alpha)) \int_{\mathbb{T}} z^k d\mu_s(\alpha)$ (set right-hand side to 0 if $g(s(\alpha)) = 0$). Furthermore $\phi_{(g,\mu)}$ is fully invariant and the composition $\phi_{(g,\mu)} \circ \mathbb{E}$ is a tracial state on $C^*(E)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If $(g, \mu) \in T_1^{\mathsf{CCT}}(E)$, there is a state $\phi_{(g,\mu)}$ on $\mathcal{M}(E)$ which satisfies $\phi_{(g,\mu)}(s_\alpha s_\alpha^*) = g(s(\alpha))$ and $\phi_{(g,\mu)}(s_\alpha s_\lambda^k s_\alpha^*) = g(s(\alpha)) \int_{\mathbb{T}} z^k d\mu_s(\alpha)$ (set right-hand side to 0 if $g(s(\alpha)) = 0$). Furthermore $\phi_{(g,\mu)}$ is fully invariant and the composition $\phi_{(g,\mu)} \circ \mathbb{E}$ is a tracial state on $C^*(E)$.

Idea of proof

Divide the Gelfand spectrum Ω of $\mathcal{M}(E)$ into two parts, and then define the state on $\mathcal{M}(E)$ by choosing a measure on Ω that is suitably invariant. (One part will carry the graph trace and the other will carry the tagging.)

Parametrizing $T(C^*(E))$

Theorem (C., Nagy)

(1) for any E, the map

$$T_1^{\mathsf{CCT}}(E_{\mathsf{tight}})
i (g,\mu) \mapsto au_{(g,\mu)} \circ
ho_{\mathsf{tight}} \in \mathcal{T}(\mathcal{C}^*(E))$$

(where $\tau_{(g,\mu)} \in T(C^*(E_{tight}))$ corresponds to (g,μ)) is an isomorphism.

3

Parametrizing $T(C^*(E))$

Theorem (C., Nagy)

(1) for any E, the map

$$T_1^{\mathsf{CCT}}(E_{\mathsf{tight}})
i (g, \mu) \mapsto \tau_{(g, \mu)} \circ \rho_{\mathsf{tight}} \in T(C^*(E))$$

(where $\tau_{(g,\mu)} \in T(C^*(E_{tight}))$ corresponds to (g,μ)) is an isomorphism.

(2) if E is tight, then $\tau \mapsto (g_{\tau}, \mu_{\tau})$ is an isomorphism from $T(C^*(E))$ onto $T_1^{CCT}(E)$.

When is $\tau \mapsto g_{\tau}$ injective

Tomforde noted that if *E* satisfies condition (K), then the map $\tau \mapsto g_{\tau}$ is injective. However this is not necessary.

< 同 ▶ < ∃ ▶

When is $\tau \mapsto g_{\tau}$ injective

Tomforde noted that if *E* satisfies condition (K), then the map $\tau \mapsto g_{\tau}$ is injective. However this is not necessary.

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

When is $\tau \mapsto g_{\tau}$ injective

Tomforde noted that if *E* satisfies condition (K), then the map $\tau \mapsto g_{\tau}$ is injective. However this is not necessary.

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

```
(i) the map \tau \mapsto g_{\tau} is injective;
```

When is $\tau \mapsto g_{\tau}$ injective

Tomforde noted that if *E* satisfies condition (K), then the map $\tau \mapsto g_{\tau}$ is injective. However this is not necessary.

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

- (i) the map $\tau \mapsto g_{\tau}$ is injective;
- (ii) the source of each cycle in E is essentially left infinite.

When is $\tau \mapsto g_{\tau}$ injective, ctd.

Proof.

(ii) \Rightarrow (i): If a vertex v is essentially left infinite, then any bounded graph trace g must vanish on v. Thus if the source of each cycle is essentially left infinite, there are no measures to consider (after passing to the tightening) and the map $\tau \mapsto g_{\tau}$ is injective.

When is $\tau \mapsto g_{\tau}$ injective, ctd.

Proof.

(ii) \Rightarrow (i): If a vertex v is essentially left infinite, then any bounded graph trace g must vanish on v. Thus if the source of each cycle is essentially left infinite, there are no measures to consider (after passing to the tightening) and the map $\tau \mapsto g_{\tau}$ is injective. (i) \Rightarrow (ii): If v is the source of a cycle and v is *not* essentially left infinite, then we can define a (non-normalized but bounded) graph trace g on E by $g(w) = |\{\text{paths } v \to w\}|$. Thus there is a normalized graph trace g on E which does not vanish at v, and if we take any non-Lebesgue probability measure for μ_{v} , the tagging (g, μ_v) is consistent.

Directions for future work

(1) Results on invariant states seem to generalize readily to non-abelian context (suggested by R. Exel).

Directions for future work

- (1) Results on invariant states seem to generalize readily to non-abelian context (suggested by R. Exel).
- (2) Find necessary and sufficient conditions for the balanced measures to parametrize all of $T(C_r^*(G))$ (should have something to do with non-existence of compact invariant sets or something related, especially for ample groupoids).

Bibliography

- R. J. Archbold. *Extensions of states of C*-algebras.* J. London Math. Soc. **21** (1980) 43-50
- D. Crytser and G. Nagy. Traces arising from regular inclusions. 2016. arXiv:1605.05766
- A. Kumjian. On C*-diagonals. Can. Math. J. XXXVIII (1986) 969-1008.
- G. Nagy and S. Reznikoff. *Abelian core of graph algebras*. J. London Math. Soc. **3** (2012), 889-908
- M. Tomforde. *The ordered K*₀-*group of a graph C**-*algebra*. C.R. Math. Acad. Sci. Soc. **25** (2003) 19-25

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

Dan Crytser Traces arising from regular inclusions

・ロト ・回ト ・モト ・モト

3