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1 Introduction

This report examines directed graphs, which consist of vertices and oriented
edges between them. Every directed graph E has an associated graph C*-algebra,
C∗(E), as defined by Kumjian and Pask in [5]. Such a C∗-algebra is generated by
a collection of partial isometries and projections satisfying relations defined via the
graph E. The study of graph algebras focuses on understanding graph-theoretic
conditions on a graph E which control algebraic or analytic behavior of C∗(E).

We will study the properties of well-known graph product operations, such as
the tensor product, on directed graphs and higher rank graphs. Higher rank graphs,
or k-graphs, introduced by Alex Kumjian and David Pask are the multidimensional
analogue to directed graphs. Products on k-graphs are of particular interest due to
the fact that the tensor product of the C*-algebras of 1-graphs correspond to the
C*-algebra of their product 2-graph, as shown by Johnston and Reynolds.

This report also focuses on graph traces, functions from the vertices of a graph
to the natural numbers, as introduced by Hjelmborg, Tomforde, and Johnson. The
set of these traces on directed graphs is isomorphic to the set of tracial states on the
associated C*-algebra. Extreme graphs traces, which are graph traces that cannot be
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written as a convex combinations of other graph traces, can be used to determine the
set of all graph traces on the graph and to determine the space of tracial states on a
graph C*-algebra. Johnson introduces a simple way to discover the extreme traces of
a finite, loopless directed graph, highlighting the correlation between extreme traces
and sources of a graph. This result is not easily generalized to k-graphs, as the
behavior of their graph traces is more complicated.

This report studies how these two ideas interact by exploring how taking graph
products of directed and higher rank graphs affects the collection of graph traces on a
graph. We examine closely how these graph products affect the convex structure of the
collection of graph traces, paying close attention to the extreme traces which facilitate
this structure. Minimal results were found using the Cartesian product; however, the
number of extreme traces on the product graph is the number of extreme traces on
the factor graph multiplied together. Stronger relations between traces on the factor
graph and product graph can be found using the tensor product, such as the ability
to combine traces from the factor graphs into traces on the product graphs. However,
the majority of these relations are found in and this work focuses on locally convex
higher-rank graphs, where traces on the factor graphs can be combined to create
traces on the product graph, traces on product graphs can be projected onto factor
graphs, and where products of extreme traces on factor graphs are extreme traces on
product graphs. We speculate that the converse is also true, that extreme traces on
the product graphs can be projected onto extreme traces on the factor graphs, but
have only confirmed this conjecture for the case of products of 1-graphs.

This work was carried out at the Kansas State University SUMaR program
under support of NSF Grant # DSM-1262877 and advised by Dr. Danny Crytser.

2 Directed graphs, product graphs, and their

traces

Definition 2.1 (Raeburn). A directed graph, G, consists of a vertex set, G0, and a
set of edges, G1, along with mappings s, r : G1 → G0. For each edge, e ∈ G1, s(e) is
the source of e and r(e) denotes the range of e. (We say that e is an edge from s(e)
to r(e).)

Example 2.2. Below is an example of a directed graph, G with G0 = {v, w} and
G1 = {e}, with r(e) = v and s(e) = w.

wv e

Definition 2.3 (Johnston, Raeburn). A vertex v ∈ E0 is considered a source if
r−1(v) = ∅; that is, if it receives no edges. For a directed graph E, the (possibly
empty) set of sources in E is denoted by SE. A vertex v is an infinite receiver if
r−1(v) is infinite. A vertex which is either a source nor an infinite receiver is called
singular ; nonsingular vertices are called regular.
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Definition 2.4. Let E be a directed graph. A directed path in E consists of a finite
sequence of edges λ = e1 . . . en such that s(ek) = r(ek+1) for k = 1, . . . , n − 1. The
range of λ is defined to be the range of e1, and the source of λ is defined to be the
source of en. The length of λ is equal to n, and denoted by |λ|. The collection of all
finite paths in E is denoted by E∗, and we include E0 in E∗ as the paths of length
0. A cycle is a finite path of positive length such that r(λ) = s(λ). An entrance to a
cycle λ = e1 . . . en is an edge f with r(f) = r(ek) for some k such that f 6= ek.

Definition 2.5 (cf. [2],[10],[1]). A trace on a directed graph E is a function g : E0 →
[0,∞) with two properties:

(i) For any regular vertex v ∈ E0,

g(v) =
∑

e∈E1,r(e)=v

g(s(e)).

(ii) For any infinite receiver v ∈ E0 and any finite collection of edges e1, . . . , en ∈
r−1(v), we have

g(v) ≥
n∑
i=1

g(s(ei)).

Definition 2.6. A normalized graph trace on a directed graph E is a graph trace on
E with the additional property that

∑
v∈E0 g(v) = 1. We will often refer to normalized

graph traces simply as graph traces. The collection of normalized graph traces on E
(which may be empty) is denoted by T (E).

As all graph traces considered henceforth will be normalized graph traces,
it will be a convention to refer to these normalized graph traces simply as
graph traces.

Example 2.7. Below is the unique normalized graph trace g of the directed graph
G shown in Example 2.2, as can verified by the reader.

g(w) = 1/2g(v) = 1/2 e

Lemma 1. If g and g′ are graph traces and t ∈ [0, 1], then g′′ = tg + (1 − t)g′ is a
graph trace, where g′′(v) = tg(v) + (1− t)g′(v).

Proof. Let g0, g1 be graph traces on a directed graph E, and let t ∈ [0, 1].
Let gt(v) = (1− t)g0(v) + tg1(v).
So, for v1, . . . , vn ∈ E0,

∑n
k=1 g0(vk) = 1 and

∑n
k=1 g1(vk) = 1.
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Then,

n∑
k=1

gt(vk) =
n∑
k=1

(1− t)g0(v) + tg1(v)

=
n∑
k=1

(1− t)g0(v) +
n∑
k=1

tg1(v)

= (1− t)
n∑
k=1

g0(v) + t

n∑
k=1

g1(v)

= (1− t) + t

= 1

Let v ∈ E0 and e1, . . . , en be edges with r(e) = v. Then,

g0(v) ≥
n∑
k=1

g0(s(ek))

and

g1(v) ≥
n∑
k=1

g1(s(ek))

. As t ∈ [0, 1], t ≥ 0 and 1− t ≥ 0. So,

(1− t)g0(v) ≥ (1− t)
n∑
k=1

g0(s(ek))

and

tg1(v) ≥ t
n∑
k=1

g1(s(ek))

.
Then,

gt(v) = (1− t)g0(v) + tg1(v)

≥ (1− t)
n∑
k=1

g0(s(ek)) + t
n∑
k=1

g1(s(ek))

=
n∑
k=1

(1− t)g0(v) + tg1

=
n∑
k=1

gt(v)

As gt(v) ≥
∑n

k=1 g(s(ek)) for all edges with r(e) = v, and for v1, . . . , vn ∈ E0,∑n
k=1 gt(vk) = 1, gt(v) is a graph trace of E by Definition 2.5.
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Definition 2.8. An extreme graph trace is a graph trace that cannot be written as
a convex combination of other graph traces. That is, if g is an extreme graph trace
and g = tg′ + (1− t)g′′ for t ∈ (0, 1), then g′ = g′′ = g.

Example 2.9. Some directed graphs have multiple graph traces.

g(w) = t2

g(u) = t1 + t2

g(v) = t1

fe

As the sum of graph trace values on the vertices must be 1, we know that 2(t1+t2) = 1
and that t1 + t2 = 1

2
, setting a relationship between the graph’s two sources which

remains true for all graph traces. Because of this relationship, specifying the value
of the trace at one source is enough to determine the graph trace on all vertices.
Note that the value at u will always be 1

2
regardless of the value of the traces at the

sources. Furthermore, this graph has two extreme graph traces, one where t1 = 1
2
,

and one where t2 = 1
2
. All other graph traces (of which there are infinitely many)

are convex combinations of these two extreme graph traces, which can be found by
g = (2g(v))gv + (2g(w))gw = (2(g(v)gv + (1 − 2g(v))gw = sgv + (1 − s)gw. One can
imagine the set of graph traces of this graph as a line segment with the extreme traces
at the ends and all other graph traces ranging between the two extreme traces.

Example 2.10. Graph traces are not limited to graphs with no cycles.

g(v) = 1

It will now be our convention to label vertices simply with the numeric value
associated with the graph trace at that vertex rather than with an equation. If it is
necessary to label vertices otherwise, these name labels will be in the form of lowercase
letters and should be distinguishable from graph traces.

Example 2.11. Graph traces are not limited to finite graphs. Consider the following
example of an infinite graph with graph trace as shown.

1
2

1
2k+1

1
4

1
8

1
2k

. . . . . .
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However, not all directed graphs have graph traces. Following are examples of
directed graphs without traces.

Example 2.12. Graphs with loops do not always have graph traces. Consider the
following graph:

v

As v is a regular vertex, to have a graph trace, we must have

g(v) =
∑

e∈E1,r(e)=v

g(s(e)).

Note that v receives two edges, both with source v. Then, g(v) = 2g(v). This is only
true when g(v) = 0. However, this means that

∑
v∈E0 g(v) 6= 1 and g(v) is not a

graph trace.

Example 2.13. Not every infinite graph holds a trace.

v1 v2 v3

. . .
v4

As each vertex is a regular vertex, we know that:

g(v1) = c =
∑

e∈E1,r(e)=v

g(s(e)) = g(v2) = g(v3) = g(v4) · · ·

So, each vertex must have the same graph trace value. However, as there are infinitely
many vertices,

∑
v∈E0 g(v) 6= 1 and g(v) is not a graph trace.

Definition 2.14. Let E be a finite graph with no cycles and let v, w ∈ E0. Then,
define the number of finite paths from v as n(v) = |{λ ∈ E∗ : s(λ) = v}|. Also define
the number of paths between v and w as n(v, w) = |{λ ∈ E∗ : s(λ) = v, r(λ) = w}|.

Theorem 2.15 (Johnson). Let E be a finite graph with no cycles. Then there is a
bijection between the extreme traces on E and the sources of E, given by

SE 3 v 7→ gv ∈ T (E),

where gv(w) = n(v,w)
n(v)

.
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Remark 2.16. The set of graph traces forms a convex compact subset of C0(E0, [0, 1])
hence by the Krein-Millman Theorem, T (E) is the closed convex hull of its extreme
points, the extreme traces. Knowing the extreme traces of a graph defines all the
graph traces of the graph, as all other graph traces are convex combinations of extreme
graph traces. Furthermore, when the graph is finite, by Carathéodory’s theorem we
know that every trace can be written as a convex combination of |E0| + 1 or fewer
extreme traces.

Theorem 2.17. [cf. Kadison-Ringrose, Vol. 1, Lemma 3.4.6] Let g be a graph
trace on a directed graph E, where E does not have any infinite receivers. Then the
following are equivalent:

(i) If h is another graph trace on E and there exists some t ∈ (0, 1) such that
g(v) ≥ th(v) ∀v ∈ E0, then h = g.

(ii) g is an extreme graph trace.

Proof. (i)→ (ii) : Let g be a graph trace on a directed graph E that satisfies condition
(i). Suppose that there are graph traces g′, g′′ on E such that g = tg′ + (1− t)g′′ for
some t ∈ (0, 1). From this we see that g ≥ tg′, and then setting h = g′ in condition
(i) gives g = g′ (and hence also g′′ = g), thus g is extreme.

(ii) → (i) : Let g be an extreme graph trace on the directed graph E. Let h be
a graph trace on E, and t ∈ (0, 1) such that g(v) ≥ th(v) ∀v ∈ E0. Define f = g−th

1−t .
As g > th and 1 > t, we know that the value of f will always be non-negative. As∑

v∈E0

g(v) = 1

and ∑
v∈E0

th(v) = t

we know ∑
v∈E0 g(v)− th(v)

1− t
= 1

, so
∑

v∈E0 f(v) = 1. As the Cuntz-Krieger relations are linear, and f is a linear
combination of graph traces which satisfy these conditions, we know f is a graph
trace. This would then mean that g is a convex combination of other graph traces,
specifically g = th+ (1− t)f . However, g is extreme, so by Definition 2.8, g = h = f .
So, when g is extreme, (i) holds true.

Theorem 2.18. If E is a graph with finitely many vertices, then (i) and (ii) of
Theorem 2.17 are equivalent to

(iii) If h is a graph trace on E such that h(v) = 0 whenever g(v) = 0, then g = h.
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Proof. (iii)→ (i) : Let g, h be graph traces on the finite directed graph E, such that

h(v) = 0 whenever g(v) = 0, then g = h. Let c (0, 1) and c 6= g(v)
h(v)

for all v where

g(v)/h(v) is non-zero. Let t = min{ g(v)
h(v)

, c} for all v such that h(v), g(v) 6= 0. As E

has finitely many vertices and all g(v)
h(v)

values are positive, t will be positive.

Consider the inequality, g(v) ≥ th(v). There are two cases to examine. First, when
g(v) = 0, by definition h(v) = 0 and the inequality holds. Second, if g(v) 6= 0, then

either h(v) = 0 and the inequality holds, or h(v) 6= 0. Then, g(v)
h(v)
≥ t, by definition of

t and g(v) ≥ th(v), showing that the inequality holds.
Therefore, when h is a graph trace on E such that h(v) = 0 whenever g(v) = 0, then
g = h, we know that there exists some t ∈ (0, 1) such that g(v) ≥ th(v) ∀v ∈ E0,
then h = g.

Given two directed graphs, E and F , one can combine them to form a larger
graph, which we will refer to as their product graph. The graphs, E and F used to
create product graphs will be referred to as factor graphs. In this section we will
discuss several ways of combining directed graphs into product graphs. We will refer
to these combination techniques as graph products and will show several relations
between aspects of the factor graphs and their product graphs.

In this section it will be helpful to identify when two graphs are “the same”: if
E and F are directed graphs, then an isomorphism from E to F consists of an edge
bijection φ : E1 → F 1 and a vertex bijection φ0 : E0 → F 0 such that rF (φ(e)) =
φ0(rE(e)) and sF (φ(e)) = φ0(sE(e))

Definition 2.19 (Johnston). The box (Cartesian) product of E with F is the graph
E�F = (E0×F 0, (E1×F 0)∪ (E0×F 1), r�, s�), where r�, s� are defined as follows:
For all e ∈ E1, f ∈ F 1, u ∈ E0, v ∈ F 0:

r�(e, v) = (rE(e), v) r�(u, f) = (u, rF (f))
s�(e, v) = (sE(e), v) s�(u, f) = (u, sF (f))

Example 2.20. Given the directed graph E shown below, we can compute the box
product of E with itself, E�E.

v2v1 e1
�

w2w1 e2

v1w1

v2w2

v2w1

v1w2

v1e2

e1w1

v2e2

e1w2
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Proposition 2.21. Let E and F be finite, directed graphs without cycles with m and
n extreme traces, respectively. Then E�F has mn extreme traces.

Proof. Let E and F be finite, directed graphs without cycles. Let E have m extreme
traces and F have n extreme traces. As shown by Johnson in [2], extreme traces
correspond to sources, so |SE| = m and |SF | = n. Futhermore, a vertex vw in E�F
is a source if and only if v ∈ SE and w ∈ SF . Therefore, |SE�F | = mn. As extreme
traces correspond to sources, E�F has mn extreme traces.

Definition 2.22 (Johnston). The tensor (categorical) product of E with F is the
graph E ⊗ F = (E0 × F 0, E1 × F 1, r⊗, s⊗), such that for all (e, f) ∈ E1 × F 1 we
define:

r⊗(e, f) = (rE(e), rF (f)) and s⊗(e, f) = (sE(e), sF (f)).

Example 2.23. Given the directed graph E shown below, we can compute the tensor
product of E with itself, E ⊗ E.

v2v1 e1 ⊗
w2w1 e2

v1w1

v2w2

v2w1

v1w2

e1e2

Lemma 2. Let E be a directed graph, let P denote the graph with one vertex and no
edges, and let C denote the graph with one vertex and one edge.

(i) E�P ∼= E

(ii) E ⊗ C ∼= E

Example 2.24. As isolated vertices can be created in product graphs using the tensor
product, it is possible to have a product graph that holds a trace whose factor graphs
do not. In the following example, neither of the two factor graphs hold a graph trace.
However, due to the isolated vertex, the product graph has a unique graph trace
g(v2w2) = 1, g(v1w1) = 0, g(v1w2) = 0, g(v2w1) = 0.
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v1

v2

e2

e1

⊗

w1

w2

f3

f2

f1

v1w1

v1w2

v2w1

v2w2

e2f2

e2f3

e2f1
e1f1

e1f2

e1f3

Example 2.25. Creating isolated vertices is not the only way to achieve tensor
product graphs with traces whose factor graphs do not have traces. Consider the
following graphs that do not hold traces.

v1 v2 v3

. . .
v4

⊗

w
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The tensor product of these two graphs, as shown below, does have a graph
trace. This graph trace can be seen above in Example 2.11.

v1w vk+1wv2w v3w vkw
. . . . . .

Proposition 2.26. Let E and F be directed graphs with graph traces gE and gF
respectively. Then g = gE ⊗ gF given by g(vw) = gE(v)gF (w) defines a graph trace
on E ⊗ F

Proof. Let E and F be directed graphs with graph traces gE and gF respectively.
Consider g = gE ⊗ gF given by g(vw) = gE(v)gF (w) on E ⊗ F . As gE(v) ≥ 0 and
gF (w) ≥ 0, we know that gE(v)gF (w) ≥ 0. As gE and gF are graph traces, we know∑

v∈E0 gE(v) = 1 and
∑

w∈F 0 gF (v) = 1. So,

∑
vw∈E0×F 0

g(v) =
∑
v∈E0

gE(v)
∑
w∈F 0

gF (w)

= 1.

Let vw ∈ E0×F 0 be a regular vertex. Then, v ∈ E0 and w ∈ F 0 are regular vertices.
Then, gE(v) =

∑
e:r(e)=v g(s(e)) and gF (w) =

∑
f :r(f)=w g(s(f)). So,

g(vw) =
∑

e:r(e)=v

gE(s(e))
∑

f :r(f)=w

gF (s(f))

=
∑

ef :r(ef)=vw

g(s(ef)).

Let vw be an infinite reciever. As gE(v) ≥
∑

e:r(e)=v gE(s(e)) and gF (w) ≥∑
f :r(f)=w gF (s(f)) (note: this is true for regular and non-regular vertices), we know

that

g(vw) ≥
∑

e:r(e)=v

gE(s(e))
∑

f :r(f)=w

gF (s(f))

≥
∑

ef :r(ef)=vw

g(s(ef)).

Therefore, by Definition 2.5, g = gE ⊗ gF is a graph trace on E ⊗ F .

Example 2.27. Consider the directed graph E, with unique trace, shown below and
the tensor product, E ⊗E with product graph trace. Note, however, that this is not
the only graph trace on E ⊗ E.

g(v2) = 1
2

g(v1) = 1
2

⊗
g(w2) = 1

2
g(w1) = 1

2
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g(v1w1) = 1
4

g(v2w2) = 1
4

g(v2w1) = 1
4

g(v1w2) = 1
4

Example 2.28. There is no corresponding product trace operation for the box
product. Consider the directed graph E shown below and the box product E�E
with unique graph traces.

g(v2) = 1
2

g(v1) = 1
2

�
g(w2) = 1

2
g(w1) = 1

2

g(v1w1) = 2
5

g(v2w2) = 1
5

g(v2w1) = 1
5

g(v1w2) = 1
5

3 Traces on Locally Convex k-graphs

Higher-rank graphs are multi-dimensional generalizations of directed graphs which
tend to be more complicated than directed graphs. They were introduced in
citeKumjian-Pask as a way to generalize both graph C∗-algebras and Robertson-
Steger algebras. Much of the theory of graph C∗-algebras carries over to the setting
of higher-rank graphs, but some results become more complicated.

In order to define a higher-rank graph, it will be useful to have an understanding
of the semigroup Nk. (Note: we are using the convention that 0 ∈ N.)

Definition 3.1. Let k be a positive integer. Then Nk = {n = (n1, . . . , nk) : ni ∈
N for all i = 1, . . . , k}. Then Nk is a semigroup with the addition inherited from
vector addition in Rk. If m,n ∈ Nk, then we say that m ≤ n if mi ≤ ni for all
i = 1, . . . , k. (In particular, ≤ is a partial order and not a total order on Nk.) Note
that the identity element in Nk is the zero vector 0 = (0, . . . , 0). For i = 1, . . . , k,
let ei denote the ith standard basis vector, i.e. e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
and so on.

12



Remark 3.2. Any semigroup S with identity can be viewed as a category with one
object, where the elements of S correspond to the morphisms in the category and the
object corresponds to the identity element.

Definition 3.3. A k-graph (Λ, d) consists of a (countable small) category Λ and a
degree functor d : Λ→ Nk (i.e. d(λ1λ2) = d(λ1) + d(λ2)) satisfying the factorization
property : for any λ ∈ Λ, if d(λ) = m + n for m,n ∈ Nk, then there exist unique
µ, ν ∈ Λ such that λ = µν and d(µ) = m,d(ν) = n. We will refer to elements of Λ as
paths in Λ, and if d(λ) = 0 we will often refer to λ as a vertex.

Remark 3.4. The degree functor and factorization property of a higher-rank graph
encodes the category structure as well: for λ ∈ Λ say of degree n ∈ Nk, we can write
n = n + 0, and then the factorization rules give us a unique λ′, λ′′, of degree n and
0 respectively, such that λ = λ′λ′′. We must have λ = λ′, and we define s(λ) := λ′′.
Similarly we can define r(λ) to be the unique path of degree 0 such that r(λ)λ = λ.

Example 3.5 ([7]). We can visualize a k-graph by drawing its 1-skeleton, which
is the colored directed graph (Λ0,

⋃k
i=1 Λei , r, s, c) where the coloring c is defined by

c(Λei) = {i}. The 1-skeleton alone does not determine a k-graph, as it does not take
into consideration the factorization property of k-graphs. This factorization can be
determined through the creation of factorization squares, as shown below.

v1 v2

v3v4

k

ef g h

l

To determine the factorization rules for this graph, we need to know the factorizations
of ek and fk. There are two possible sets of factorization rules, which are shown below:

v1 v2

v3v4

k

e g

l

v1 v2

v3v4

k

f h

l

If the first set of potential factorization rules, as shown above, we have ek = lg and
fk = lh, while in the second, we have ek = lh and fk = lg, as shown below. A
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1-skeleton and its associated factorization property, as shown by the collection of
factorization squares, is enough to define a k-graph. Each set of factorization rules
defines a different k-graph for the 1-skeleton.

v1 v2

v3v4

k

e h

l

v1 v2

v3v4

k

f g

l

Definition 3.6. Let (Λ, d) be a k-graph. Then for any n ∈ Nk, we set Λn = d−1(n) =
{λ ∈ Λ : d(λ) = n}. If λ ∈ Λ, then λΛ denotes the set of all extensions of λ, that
is, paths ν = λµ for some µ ∈ Λ. Specializing to the case λ = v ∈ Λ0, we have
vΛn = {µ ∈ Λ : d(µ) = n, r(µ) = v}.

We say that λ is a maximal path of degree less than or equal to n if d(λ) ≤ n
and the only ν ∈ λΛ with d(ν) ≤ n is λ. The set of maximal paths of degree less
than or equal to n is denoted by Λ≤n; the subset of these which have range vertex
v ∈ Λ0 is denoted by vΛ≤n.

We say that Λ is row-finite if for every v ∈ Λ0 and every n ∈ Nk, the set vΛ≤n

is finite.

We say that Λ is locally convex if whenever there exist paths λ ∈ Λei and
µ ∈ Λej with i 6= j and r(λ) = r(µ), there must also exist paths ν ∈ s(λ)Λej and
ρ ∈ s(µ)Λei .

Remark 3.7. It is not too difficult to see that Λ being row-finite is equivalent to EΛ

(the 1-skeleton of Λ) being row-finite. If Λ has no sources, in the sense that vΛn is
non-empty for every v ∈ Λ0 and n ∈ Nk, then Λ is locally convex (the converse is not
true, as Example 3.5 shows).

Definition 3.8. Let Λ be a row-finite, locally convex k-graph, and let Λ0 be its set
of vertices. A function g : Λ0 → [0,∞) is called a higher-rank graph trace if

(i) for any vertex v ∈ Λ0 and any degree n ∈ Nk, we have∑
λ∈vΛ≤n

g(s(λ)) = g(v);

(ii) ∑
v∈Λ0

g(v) = 1

.
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Remark 3.9. We will often refer to such higher-rank graph traces simply as graph
traces when there is no chance of confusion. One can define graph traces on non-
row-finite and non-locally convex k-graphs, but care must be taken in modifying the
definition.

Example 3.10. Below is an example of a graph trace on a higher-rank graph. Note
that the values are different than they would be on a directed graph with analogous
form (Example 2.28).

g(v1) = 1
4

g(v2) = 1
4

g(v3) = 1
4

g(v4) = 1
4

k

f g

l

Example 3.11. Not every k-graph carries a graph trace.

g(v1) = s

g(v2) = s g(v3) = s

g(v) = 2s = s

Propagating the trace from a value at the graph’s source, one can see that, by
Definition 3.8, g(v) = g(v1) + g(v2) = g(v3). As g(v1) = g(v2) = g(v3), this gives
the relation 2g(v1) = g(v1) which is only true if g(v1) = 0. This would mean that the
value of g is 0 on all vertices and

∑
v∈Λ0 g(v) 6= 1. Therefore, the above graph has no

graph trace.

Example 3.12. Consider the 2-graph with three vertices, t, t1, and t2, with m lines
of one degree and j lines of the other with source t1 and range t, and with n lines of
the first degree and k lines of the second degree with source t2 and range t.

t1 t2

t

m
j n

k
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Traces on higher rank graphs can be understood by examining the relationships
between the values of sources on the graph. Looking at g(t), we know that mg(t1) +
ng(t2) = jg(t1)+kg(t2). This give the relation (n−k)g(t2) = (j−m)g(t1). As the sum
of graph trace values equals 1, we also know that g(t1) + g(t2) +mg(t1) + ng(t2) = 1.
This gives the relation (1 +m)g(t1) + (1 + n)g(t2) = 1. A graph trace on this graph
must satisfy both of these conditions. However, not all values of n, m, j, k satisfy
these relations while maintaining appropriate values for the graph trace. For example,
due to the first relation, when n > k, j > m to sustain a graph trace. Similarly, when
n < k, j < m, as the values of the graph trace must be positive. Furthermore, when
n = k, the relationship between j and m has no restrictions. The same is true for n
and k when j = m. If the values of n, m, j, k do not satisfy one of these conditions,
then the graph has no trace.

The condition that a graph be locally convex is very strong, as the following lemma
shows. (Note: for n ∈ Nk, |n| :=

∑k
i=1 ni ∈ N is referred to as the weight of n.)

Lemma 3. Let Λ be a locally convex k-graph. Suppose that λ ∈ Λ and ei is a standard
basis vector in Nk such that both

• s(λ) receives no paths of degree ei, and

• r(λ) receives a path of degree ei.

Then d(λ) ≥ ei.

Proof. The proof is by induction on |d(λ)|. If |d(λ)| = 1 then by local convexity and
the fact that s(λ) receives no paths of degree ei, d(λ) = ei so our base case holds.
Assume that for if λ ∈ Λ∗, |d(λ)| = n, and the conditions given in the statement of
the Lemma hold, then d(λ) ≥ ei. Let λ ∈ Λ∗ be such that |d(λ)| = n + 1 and such
that the conditions given in the statement of the lemma hold.

By factorization property, we can factor λ into as λ = λ′λ′′ of degrees ej and d(λ)−ej
respectively, for some basis vector ej ∈ Nk, where r(λ′′) = s(λ0). Note that |d(λ′′)| =
|d(λ)| − 1.

Case 1 : ej = ei. In this case, d(λ) ≥ ei, so we are finished

Case 2 : ej 6= ei. By local convexity there must be a path µ0 such that r(µ0) = s(λ0)
and d(µ0) = ei. Therefore r(λ′′) receives a path of degree ei and s(λ′′) = s(λ), which
does not receive a path of degree ei by hypothesis. Thus d(λ′′) ≥ ei by induction, and
d(λ) = d(λ′′) + ej, so we have established the Lemma.

Definition 3.13. Let Λ be a finite graph with no cycles with v, w ∈ Λ0. Then, define
the number of finite paths from v as n(v) = |{λ ∈ Λ : s(λ) = v}|. Also define the
number of paths between v and w as n(v, w) = |{λ ∈ Λ : s(λ) = v, r(λ) = w}|.

Proposition 3.14. Let Λ be a finite locally convex k-graph, and suppose that v ∈ SΛ

is a source. For w ∈ Λ0, let gv(w) = n(v,w)
n(v)

. Then gv is a higher-rank graph trace on
Λ.
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Proof. It suffices to show that for every w ∈ Λ0 and every basis vector ei ∈ Nk, we
have gv(w) =

∑
λ∈wΛ≤ei gv(s(λ)). This amounts to showing that

|n(v, w)| =
∑

λ∈Λ≤ei

|n(v, s(λ))| (1)

There are two cases to consider, depending on whether or not the vertex w receives
any edges of degree ei.

Case I : w receives no edges of degree ei. Then wΛ≤ei = {w} and the sum on the
right-hand side of the above equation is trivially equal to |n(v, w)|.
Case II : wΛei = {f1, . . . , fm}. Define a bijection between wΛv and ∪mj=1{fj}×s(fj)Λv
as follows: for any path λ ∈ wΛv, use Lemma 3 to see that d(λ) ≥ ei. Then use
the factorization property to get λ = fjλ

′ for some j ∈ {1, . . . ,m} and λ′ ∈ s(fj)Λv.
Then define φ(λ) = (fj, λ

′); as λ = fjλ
′, the map φ is injective. Since fjµ ∈ wΛv

for any j and µ ∈ s(fj)Λv, we have that φ is surjective as well. This establishes the
desired equation, so that gv is a trace.

Lemma 4. Let Λ be a finite locally-convex k-graph, and let g be a trace on Λ. Then
the following are equivalent:

• g is extreme;

• if h is another graph trace on Λ, and there exists t ∈ (0, 1) such that g(v) ≥ th(v)
for all v ∈ Λ0, then g = h;

• if h is another graph trace on Λ such that h(v) = 0 whenever g(v) = 0, then
g = h.

• if h is another graph trace such that the set of v ∈ SΛ such that h(v) = 0 is the
same as the set of v ∈ SΛ such that g(v) = 0, then g = h.

Lemma 5. Let Λ be a finite, locally convex k-graph with no cycles and suppose that
g ∈ T (Λ) is a graph trace on Λ such that there is a unique source v ∈ SΛ with
g(v) 6= 0. Then g is extreme and g = gv.

Proof. Suppose that h is another trace such that h(v) = 0 whenever g(v) = 0. We
show that h = g. Immediately we see that the only source where h has nonzero value
is v. It is a general fact that, in a finite k-graph, h(w) =

∑
v∈SΛ

n(v, w)h(v) (take n
to be the maximum degree of any path in the definition of a graph trace). Thus we
have h(w) = n(v, w)h(v) for all w ∈ Λ0. Summing over all w ∈ Λ0 and applying the
normalization condition, we obtain h(v) = 1

n(v)
. This shows that h(w) = gv(w) for all

w, whence h = g, and g is extreme.

Proposition 3.15 (cf. [2]). If Λ is a finite locally convex k-graph with no cycles,
then there is a one-to-one correspondence between sources and extreme traces defined
by SΛ 3 v 7→ gv ∈ T (Λ) where gv(w) = n(v,w)

n(v)
.
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Proof. Since each gv is only nonzero on a single source, namely v, it is clear that the
map SΛ → extT (Λ) given above is injective. It remains to show that it is surjective,
i.e. that every extreme trace g ∈ extT (Λ) must have the form gv for some v ∈ SΛ. If
g is extreme, consider a source v ∈ SΛ such that g(v) 6= 0. Then one can check that
gv vanishes on every vertex that g vanishes on, hence g = gv by Lemma 4. Thus the
map SΛ 3 v 7→ gv ∈ extT (Λ) is indeed a bijection.

4 Products of higher-rank graphs

Definition 4.1. Let Λ be a k-graph and let Π be an `-graph. The product of Λ and
Π, denoted Λ × Π, is simply the Cartesian product of Λ and Π, equipped with the
following structure:

(i) d(λ, π) = (d(λ), d(π)), where the left hand side of this equation is interpreted
as a vector in Nk+`.

(ii) r(λ, π) = (r(λ), r(π)) and likewise for the source map.

(iii) (λ, π)(λ′, π′) = (λλ′, ππ′) whenever both compositions in the factor graphs are
defined.

Note that this with degree map, the vertex set of Λ× Π is just Λ0 × Π0.

Lemma 6. With the structure given, Λ × Π is a (k + `)-graph. (That is, it satisfies
the factorization rules.)

Proof. See [3] for a proof.

Remark 4.2. Let Λ be a k-graph and let Π be an `-graph, with 1-skeletons EΛ and
EΠ respectively. The 1-skeleton of Λ × Π is the same as the box product of EΛ and
EΠ, as can be verified fairly straightforwardly. Therefore, Λ × Π is row-finite if and
only if both Λ and Π are row-finite.

Lemma 7. Let Λ be a k-graph and let Π be an `-graph. Then Λ×Π is locally convex
if and only if both Λ and Π are locally convex.

Proof. (if): Suppose that ei and ej (i 6= j) are two basis vectors in Nk+` ∼= Nk × N`

(where as usual we identify the last ` entries in a vector as a vector in N`). Let
ν = λπ, ν ′ = λ′π′ ∈ Λ× Π satisfy r(ν) = r(ν ′), d(ν) = ei, and d(ν ′) = ej.

Case I: ei and ej both belong to Nk or both belong to N`. Assume without loss
of generality the former; then π = π′ ∈ Π0 is a vertex (call it w), and we have λ, λ′ two
paths in Λ with r(λ) = r(λ′) and d(λ) = ei, d(λ′) = ej. Applying local convexity of Λ
gives µ, µ′ ∈ Λ with r(µ) = s(λ), r(µ′) = s(λ′), d(µ) = ej, and d(µ′) = ei. Then the
paths ρ = µw and ρ′ = µ′w in Λ × Π satisfy r(ρ) = s(ν), r(ρ′) = s(ν ′), d(ρ) = d(ν ′),
and d(ρ′) = d(ν).

Case II: ei belongs to Nk and ej belongs to N`, or vice versa. Assume without
loss of generality the former;
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Example 4.3. Let E∗ and F ∗ be the 1-graphs associated with the colored directed
graphs below:

v1 v2

v

e1 e2
w1 w2

w

f1 f2

Then E∗ × F ∗ is the 2-graph corresponding to the skeleton below.

v1w1 v2w2

vw

v2w1 v1w2

vw1 vw2

v1w v2w

v2f2

vf1 vf2

v1f1 v2f2v1f2

e1w1

e1w2e2w1

e2w2

e1w e2w

t1 t4

t1 + t2 + t3 + t4

t2 t3

t1 + t2 t3 + t4

t1 + t3 t2 + t4

The graph traces on the product graph are represented by different combina-
tions of t1, t2, t3, t4 as shown above, where each ti corresponds to one of the four sources
for 1 ≤ i ≤ 4. Then we know that 4(t1 + t2 + t3 + t4) = 1, so t1 + t2 + t3 + t4 = 1/4.
This gives us a set of possible graph traces with four possible extreme traces. The
graph trace on the product graph E∗×F ∗ can be concentrated at any one of the four
sources, and be equal to zero at every other source. This is an example of a graph
where the number of possible extreme traces is equal to the number of sources.

Example 4.4. We can also take the product of k-graphs when k>1. Consider the
2-graph and the 1-graph shown below.

a4 a5 a6

a1 a2 a3

b1 b2 b3

We can take the product of these graphs, which will be a 3-graph represented
by the following skeleton.
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a4b1 a5b1 a6b1

a1b1

a2b1

a3b1

a4b2

a1b2

a5b2

a2b2

a6b2

a3b2

a4b3

a1b3

a5b3

a2b3

a6b3

a3b3

Lemma 8. Let Λ be a finite k-graph with no cycles, and let g : Λ0 → [0, infty) such
that

∑
v∈Λ0 g(v) = 1. If for every v ∈ Λ0 and every standard basis vector ei ∈ Nk

g(v) =
∑

λ∈vΛ≤ei

g(s(λ)),

then g is a graph trace on Λ.

Proof. For all sources w, we know

g(w) =
∑

λ∈vΛ≤n

g(s(λ))

so we only have to consider vertices that receive an edge. Since for any v

g(v) =
∑

λ∈vΛ≤0

g(s(λ))

using our givens we have

g(v) =
∑

λ∈vΛ≤n

g(s(λ))

for n=1. Assume that for a given k and any v ∈ E0,

g(v) =
∑

λ∈vΛ≤k

g(s(λ))

20



Then, for all m in the standard basis vectors of Nk,

g(v) =
∑

λ∈vΛ≤k

∑
λ1∈s(λ)Λ≤m

g(s(λ1))

=
∑

λ∈vΛ≤k+1

g(s(λ)).

Thus by induction for all n we have

g(v) =
∑

λ∈vΛ≤n

g(s(λ))

Proposition 4.5. Let Λ be a k-graph and let Π be an `-graph. Suppose that we are
given graph traces g1 on Λ and g2 on Π. Define the map g1g2 : Λ0 ×Π0 → [0,∞) via
g1g2(vw) = g1(v)g2(w). Then g1g2 is a graph trace on Λ× Π.

Proof. for any regular vertex viwj, any n in the set of standard basis vectors Nk,∑
λ∈viwjΛ=n

g(s(λ)) =
∑

λ1∈viΛ≤n
1

g1(s(λ1)g2(wi)

= g2(wi)
∑

λ1∈viΛ≤n
1

g1(s(λ1)

= g1(vi)g2(wj)

Use a similar argument for the set of degrees from Π.∑
vw∈(Λ×Π)0

g(vw) =
∑

v∈Λ0,w∈Π0

g1(v)g2(w)

=
∑
v∈Λ0

g(v)
∑
w∈Π0

g(w)

= 1 ∗ 1

= 1

By Lemma 8 this is sufficient to prove that g is a graph trace.

There is a construction for traces that moves in the opposite direction as well.

Proposition 4.6. Let g be a graph trace on Λ × Π. Then define g1 : Λ0 → [0,∞)
and g2 : Π0 → [0,∞) by

g1(v) =
∑
w∈Π0

g(vw) g2(w) =
∑
v∈Λ0

g2(vw).

Then g1 is a graph trace on Λ and g2 is a graph trace on Π.

21



Proof. By symmetry it will suffice to prove that g1 is a graph trace.∑
v′∈Λ0

g1(v′) =
∑
v′∈Λ0

∑
w′∈Π0

g(v′w′)

=
∑

v′w′∈Λ0×Π0

g(v′w′)

= 1

Let Λ be a k-colored higher rank graph. Fix an arbitrary vertex v ∈ Λ0 and a standard
basis vector ei ∈ Nk. Then

g1(v) =
∑
w∈Π0

g(vw)

=
∑
w∈Π0

∑
λ∈vΛ≤ei

g(s(λ)w)

=
∑

λ∈vΛ≤ei

g1(s(λ)).

Since the choice of v and ei were arbitrary, this holds for all v ∈ Λ0 and all ei ∈ Nk.
Thus by Lemma 8 we have that g1 is a graph trace on Λ.

Lemma 9. If g = gΛgΠ, then g1 = gΛ and g2 = gΠ.

Proof. Fix a vertex vw ∈ Λ×Π with v ∈ Λ and w ∈ Π, so that g(vw) = gΛ(v)gΠ(w).
Then, because gΠ is a graph trace, we have that

g1(v) =
∑
w′∈Π0

g(vw′)

=
∑
w′∈Π0

gΛ(v)gΠ(w′)

= gΛ(v)
∑
w′∈Π0

gΠ(w′)

= gΛ(v).

Additionally, because gΛ is a graph trace,

g2(w) =
∑
v′∈Λ0

g(v′w)

=
∑
v′∈Λ0

gΛ(v′)gΠ(w)

= gΠ(w)
∑
v′∈Λ0

gΛ(v′)

= gΠ(w)

These are what we wished to prove.
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Lemma 10. Let g and g′ be graph traces on Λ such that g(v) = g′(v) whenever v is
a source in Λ. Then g = g′.

Proof. We are given that for any source v on Λ, g(v) = g′(v). Define the set of
vertices Sn to be the set {v|∀λ ∈ Λ∗ with r(λ) = v, |d(λ)| ≤ n} where if d(λ) =
c1e1 + c2e2 + . . . + clel, then |d(λ)| = c1 + c2 + . . . + cl. Note that by the givens we
have that S0, the set of all sources, satisfies ∀v ∈ S0, g(v) = g′(v). Assume that for
any vertex v ∈ Sn, g(v) = g′(v). Pick an arbitrary vertex vk ∈ Sn+1.

Case 1: Suppose vk ∈ Sn; then g(vk) = g′(vk).

Case 2: Suppose vk 6∈ Sn. Then g(vk) =
∑

λ∈vkΛ≤m g(s(λ))∀m where m ∈ Nk.
Since vk 6∈ Sn, it must receive at least one path of degree n+ 1. Note that |n+ 1| > 0
and thus no maximal paths will have degree 0. Then, because ∀λ ∈ vkΛn+1 s(λ) ∈ S0,
we have

g(vk) =
∑

λ∈vkΛ≤n+1

g(s(λ))

=
∑

λ∈vkΛ≤n+1

g′(s(λ))

= g′(v).

Since both cases result in g(vk) = g′(vk) for an arbitrary vk ∈ Sn+1, we have proven
the desired result by induction.

Definition 4.7. Let g be a trace on Λ × Π. We say that g is a product trace if
g = g1g2, where g1 is a trace on Λ and g2 is a trace on Π. Additionally, we define
proj(g) to be the product trace g1g2.

The preceding lemma shows that g 7→ proj(g) is an idempotent map onto the
collection of product traces.

For the remainder of this section, g will refer to a trace on the product
graph Λ×Π. Furthermore, g1 and g2 will refer to factor traces/projections
of g onto the factor graphs on Λ and Π, respectively.

Proposition 4.8 ([6, Lemma 1.1]). If g is a trace on Λ×Π and g1 is extreme, then
g = g1g2.

Proof. Consider an arbitrary w ∈ Π0. Then either g2(w) = 0 or g2(w) 6= 0.
Case 1: Suppose g2(w) = 0. Then ∀v ∈ Λ0 we must have g(vw) = 0 by the definition
of g2. Thus g(vw) = g1(v)g2(w).

Case 2: Suppose g2(w) 6= 0. Let h : Λ→ [0,∞) be defined by h(v) = g(vw)
g2(w)

.∑
v∈Λ0

h(v) =
∑
v∈Λ0

g(vw)

g2(w)

=
g2(w)

g2(w)

= 1.
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Then, ∀v ∈ Λ0, we also have the following:

h(v) =
g(vw)

g2(w)

=
∑

µ∈vw(Λ×Π)≤(n,0)

g(s(µ))

g2(w)

=
∑

λ∈vΛ≤n

h(s(λ)).

Thus h is a graph trace on Λ. We know that for any v ∈ Λ0, if g1(v) = 0 then∑
w′∈Π0 g(vw′) = 0. Since all values of g are non-negative, g(vw) = 0 which implies

h(v) = 0. Then, g1(v) = 0 implies h(v)=0. This combined with 2.17 tells us that

h = g1. Therefore we conclude that ∀v ∈ Λ0, g1(v) = g(vw)
g2(w)

. Then g1(v)g2(w) = g(vw)
for all w.

Proposition 4.9. If gΛ and gΠ are extreme graph traces on Λ and Π respectively,
then gΛgΠ is an extreme trace on Λ× Π.

Proof. Express gΛgΠ as g′ + (1− t)g′′ for some graph traces g′, g′′ ∈ Λ×Π and some
t ∈ (0, 1). Then ∀v ∈ Λ0,

(g′ + (1− t)g′′)1(v) =
∑
w∈Π0

(g′ + (1− t)g′′)(vw)

=
∑
w∈Π0

g′(vw) +
∑
w∈Π0

(1− t)g′′(vw)

= g′1(v) + (1− t)g′′1(v)

So gΛ = g′1 + (1 − t)g′′1 . Because gΛ is extreme, we know g′1 = g′′1 = gΛ. A similar
argument holds to show that g′2 = g′′2 = gΠ. Since gΛ is extreme, g′ + (1 − t)g′′ =
gΛgΠ.

Lemma 11. The product trace gΛgΠ is extreme if and only if gΛ and gΠ are extreme.

Proof. If gΛ and gΠ are extreme, then the above proposition shows that gΛgΠ is
extreme. For the other direction start off contrarily with the assumption that gΛ

is not extreme. Then gΛ = g′ + (1 − t)g′′ for some graph traces g′ 6= g′′ and some
t ∈ (0, 1). Then gΛgΠ = g′gΠ + (1 − t)g′′gΠ. Since g′gΠ 6= g′′gΠ and t ∈ (0, 1), we
have the contradiction that gΛgΠ is not an extreme trace. Therefore, gΛ must be an
extreme trace. A symmetric argument may be used to prove that gΠ is an extreme
trace as well.

Proposition 4.10. If E∗ and F ∗ are 1-graphs, then every extreme trace on E∗×F ∗
is a product trace.
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Proof. Let g be an arbitrarily chosen extreme trace on E∗ × F ∗. Then g must have
nonzero trace on at least one source, which must be a product of sources on E∗ and
F ∗. Call this source the product of some v ∈ E∗ with some w ∈ F ∗ which we will call
vw. As mentioned in Section 2 , all extreme traces on directed graphs have nonzero
trace on exactly one source. Since 1-graphs are equivalent to directed graphs in terms
of tracial properties, all extreme traces on both E∗ and F ∗ have exactly one source
with nonzero trace. Since the product of two extreme traces is always extreme, there
is an extreme trace h on E∗ × F ∗ with its only source with nonzero trace being vw.
Since h is extreme, by 2.17 vw must be the only source that g has nonzero trace
on. Also since g and h share the same set of sources and there are finite vertices on
E∗×F ∗ and g(viwj) = 0 whenever h(viwj) = 0, g = h by the extension of 2.17. Thus
g is a product of extreme traces.

Conjecture 4.11. If Λ is a k-graph and F ∗ is a 1-graph, then every extreme trace
on Λ× F ∗ is a product of extreme traces

Conjecture 4.12. If g is an extreme graph trace on Λ× Π, then g = g1g2.

We have a number of statements; any of which would alone imply this result.

• if g is an extreme graph trace and ∀v, v′ ∈ SΛ,∀w,w′ ∈ SΠ, if g(v′w) 6= 0 and
g(vw′) 6= 0 then g(vw) 6= 0 (and, by switching the roles of primes and non
primes, g(v′w′) 6= 0).

• if g is an extreme graph trace then g = g1g2.

5 Future directions

So far we have obtained several results pertaining to traces on locally convex k-
graphs. It would be interesting to extend these to k-graphs which are not locally
convex in a meaningful way. However, the technical difficulties arising from the
failure of local convexity make this somewhat tricky. In this section we discuss the
connection between traces on higher-rank graphs and tracial states on higher-rank
graph C∗-algebras.

Example 5.1. One property of directed graphs that does not hold for non-locally
convex higher-rank graphs is the correspondence of number of sources with number of
extreme traces. These higher-rank graphs can have more extreme traces than sources,
as shown in the graph below. This 2-graph has 5 sources but has 6 extreme traces
because of the relation of traces on the sink (i.e., t1 + t2 = t3 + t4 + t5). Additionally,
this set of extreme traces does not form a simplex.
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t1 + t2
= t3 + t4 + t5

t1 t2

t3

t4

t5

Because of the possible strange behavior of these higher-rank graphs, we will focus on
higher-rank graphs that are product graphs, with tracial states that do form simplices.

If Λ is a locally convex, row-finite k-graph, then the C∗-algebra of Λ is defined
(see [8]) to be the universal C∗-algebra generated by a family {sλ : λ ∈ Λ} of partial
isometries, satisfying the following Cuntz-Krieger relations:

• {sv : v ∈ Λ0} is a family of mutually orthogonal projections;

• sλsµ = sλµ whenever s(λ) = r(µ);

• s∗λsλ = ss(λ);

• sv =
∑

λ∈vΛ≤n sλs
∗
λ for any v ∈ Λ0 and n ∈ Nk.

Thus if τ : C∗(Λ)→ C is a tracial state (i.e. positive linear functional of norm
1 such that τ(xy) = τ(yx) for all x, y ∈ C∗(Λ)), then we see that

τ(sv) =
∑

λ∈vΛ≤n

τ(ss(λ)

for all v ∈ Λ0 and n ∈ Nk. This is the motivation for the definition of a higher-rank
graph trace in the locally convex case.

Local convexity of Λ is equivalent to the existence of a family {sλ} in which
every sλ is nonzero, as shown in [8].

If Λ is not locally convex, then it is still possibly to meaningfully assign to Λ a
C∗-algebra generated by a family of nonzero partial isometries, but the Cuntz-Krieger
relations have to be reformulated. Stating the new relations requires the introduction
of some new graph-theoretic terminology, coming form [9].

Definition 5.2. Let Λ be a k-graph and let λ, µ ∈ Λ. Then ρ ∈ Λ is a common
extension of λ and µ if there exist π, σ ∈ Λ such that ρ = λπ = µσ. Define
d(λ) ∨ d(µ) ∈ Nk by (d(λ) ∨ d(µ))i = max{d(λ)i, d(µ)i} for i = 1, . . . , k. The set
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of minimal common extensions of λ and µ, denoted MCE(λ, µ) is the set of all
common extensions ν of λ and µ such that d(ν) = d(λ) ∨ d(µ). By Λmin(λ, µ) we
denote the set of all ordered pairs (α, β) ∈ Λ× Λ such that λα = µβ ∈MCE(λ, µ).

We say that Λ is finitely aligned if for any λ and µ in Λ, the set MCE(λ, µ) is
finite (possibly empty). A set E ⊂ vΛ is called exhaustive if for every λ ∈ vΛ, there
is some τ ∈ E such that MCE(λ, τ) 6= ∅.

Remark 5.3. Every row-finite graph is finitely aligned,

With these definitions in place, we can define the C∗-algebra of a finitely aligned
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