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In this paper, we consider the family of rational maps

Fλ(z) = zn +
λ

zd
,

where n ≥ 2, d ≥ 1, and λ ∈ C. We consider the case where λ lies in the main cardioid of one of
the n− 1 principal Mandelbrot sets in these families. We show that the Julia sets of these maps
are always homeomorphic. However, two such maps Fλ and Fµ are conjugate on these Julia sets
only if the parameters at the centers of the given cardioids satisfy µ = νj(d+1)λ or µ = νj(d+1)λ
where j ∈ Z and ν is an (n− 1)th root of unity. We define a dynamical invariant, which we call
the minimal rotation number. It determines which of these maps are conjugate on their Julia
sets, and we obtain an exact count of the number of distinct conjugacy classes of maps drawn
from these main cardioids.

Keywords : Julia set; Mandelbrot set; symbolic dynamics.

1. Introduction

In recent years there have been many papers deal-
ing with the family of rational maps of the Riemann
sphere, C, given by

Fλ(z) = zn +
λ

zd
,

where n ≥ 2, d ≥ 1, and λ ∈ C [Blanchard et al.,
2005; Devaney, 2007; McMullen, 1988]. For many
parameter values, the Julia sets for these maps are
Sierpiński curves, i.e. planar sets that are homeo-
morphic to the well-known Sierpiński carpet frac-
tal. One distinguishing property of Sierpiński curve
Julia sets is that the Fatou set consists of infinitely

many open disks, each bounded by a simple closed
curve, but no two of these bounding curves intersect
[McMullen, 1995; Milnor & Tan, 1993].

There are many different ways in which these
Sierpiński curves arise as Julia sets in these families.
For example, the Julia set is a Sierpiński curve, if λ
is a parameter for which

(1) the critical orbits enter the immediate basin of
attraction of ∞ after two or more iterations
[Devaney et al., 2005];

(2) the parameter lies in the main cardioid of
a “buried” baby Mandelbrot set [Devaney &
Look, 2005]; or
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P. Blanchard et al.

(3) the parameter lies on a buried point in a Can-
tor necklace in the parameter plane [Devaney,
2004].

The parameter planes for these maps in the
cases where n = d = 3 and n = d = 4 are shown
in Fig. 1. The red disks that are not centered at
the origin are the regions where the first case above
occurs. These disks are called Sierpiński holes.

Many small copies of the Mandelbrot set are
visible in Fig. 1. The ones that touch the external
red region are not “buried”, so their main cardioids
do not contain Sierpiński curve Julia sets. Only the
ones that do not meet this boundary contain param-
eters from case 2.

Finally, numerous Cantor necklaces, i.e. sets
homeomorphic to the Cantor middle-thirds set with
the removed open intervals replaced by open disks,
appear in these figures. The buried points in the
Cantor set portion of the necklace are the parame-
ters for which case 3 occurs.

The dynamical behavior on Sierpiński curve
Julia sets drawn from nonsymmetrically located
Sierpiński holes is never the same [Devaney & Pil-
grim, 2009]. That is, only symmetrically located
Sierpiński holes contain parameters for which
the corresponding maps have conjugate dynamics.
While it is known that two such maps are not conju-
gate on their Julia sets, there is no known dynamical
invariant that explains this lack of conjugacy.

Fig. 1. Two parameter planes: n = d = 3 (left) and n = d = 4 (right). The colors are given by the standard escape time
coloring algorithm applied to the free critical points (see the comments that follow Symmetry Lemma 2).

In this paper, we describe the topology of and
the dynamics on a very different type of Julia
set, the “checkerboard” Julia sets, that arise in
these families. For most values of n and d consid-
ered in this paper, the λ-parameter plane contains
n−1 “principal Mandelbrot sets” [Devaney & Look,
2006], and we consider the Julia sets for parameters
that lie within the main cardioids of these sets. For
such parameters λ, the maps Fλ have two distinct
types of Fatou components (see Fig. 2). Since ∞ is
a superattracting fixed point, the immediate basin
of ∞ and its preimages lie in the Fatou set. These
components are the escaping Fatou components.
The Fatou set also contains a collection of compo-
nents corresponding to other finite attracting peri-
odic orbits and their preimages. These components
are the nonescaping Fatou components. As we shall
show, none of the boundaries of the escaping Fatou
components intersect. Likewise, the boundaries of
the nonescaping Fatou components do not intersect.
However, each such boundary intersects infinitely
many boundaries of the escaping Fatou compo-
nents, and each boundary of an escaping Fatou
component intersects infinitely many nonescaping
boundaries. Hence, the topology of these Julia sets
is very different from the topology of Sierpiński
curve Julia sets. We use the word “checkerboard”
to describe this pattern of Fatou components.

In Fig. 2, we display the Julia set for the map
F0.18(z) = z4 + 0.18/z3. The red regions are the
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Checkerboard Julia Sets for Rational Maps

Fig. 2. The image on the left is the checkerboard Julia set for F0.18(z) = z4+0.18/z3. The image on the right is a magnification
of one-seventh of the Julia set. In both images, the points that are colored black remain bounded under iteration while points
that are not colored black have orbits that escape to infinity. The orbits that escape fastest are colored red, followed by those
colored orange, and so on.

preimages of the attracting basin of ∞, and the
black regions are the preimages of the basins of
the finite attracting cycles. The boundary of each
red region touches infinitely many boundaries of the
black regions, but it does not touch the boundary
of any other red region. Similarly, the boundary of
each black region touches infinitely many bound-
aries of the red regions, but it does not touch the
boundary of any other black region.

The external red region in the left-hand image
of Fig. 2 is the immediate basin of attraction of ∞.
We denote this basin by Bλ. The central red region
that contains the pole at the origin is mapped to Bλ.
We let Tλ denote this Fatou component. All other
red regions are also eventually mapped to Bλ.

Note that there are n+ d (= 7 in this example)
large black regions that touch Bλ and Tλ at unique
points. These Fatou components are (eventually)
periodic. We call them the connecting (Fatou) com-

ponents since they are the only Fatou components
that extend from Bλ to Tλ. Each of these connect-
ing components seems to be separated by another
red region that touches exactly two boundaries of
the adjacent connecting components. On one side
of these red regions, we see d−1 (= 2 in this exam-
ple) smaller black components. On the other side,
we see n − 1 (= 3 in this example) smaller black
components. Each such black component connects
to a pair of red regions. If we were to magnify this

image, we would see that this pattern repeats itself
at any scale.

In Sec. 3, we make this construction precise.
In particular, we give an algorithm for describ-
ing the topological structure of these Julia sets.
This algorithm also describes the dynamics on these
Julia sets via symbolic dynamics, and it provides a
proof of:

Theorem 1. Let Fλ(z) = zn + λ/zd with n ≥ 2
and d ≥ 1. Any two Julia sets that correspond to

parameters in the main cardioids of the principal

Mandelbrot sets in the parameter plane for these

maps are homeomorphic.

Theorem 1 says that checkerboard Julia sets
are analogous to Sierpiński curve Julia sets [Why-
burn, 1958] because all checkboard Julia sets with
the same n and d are homeomorphic.

As in the Sierpiński case [Devaney & Pilgrim,
2009], only certain symmetrically located cardioids
give rise to conjugacies on their respective Julia sets.
However, unlike the Sierpiński case, we can define a
dynamical invariant for checkboard Julia sets. We
call it the minimal rotation number, and we prove
that it is a conjugacy invariant for checkerboard
Julia sets.

Theorem 2. Two maps drawn from different

main cardioids of principal Mandelbrot sets are
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P. Blanchard et al.

topologically conjugate on their Julia sets if and

only if their minimal rotation numbers are equal.

In particular, two such maps restricted to their

Julia sets are topologically conjugate only if the

parameters are symmetric either under the rotation

z �→ νj(d+1)z or under the map z �→ νj(d+1)z, where

j ∈ Z and νn−1 = 1.

Theorem 2 leads to an exact count of the
number of main cardioids that have nonconjugate
dynamics.

Theorem 3. Let g be the greatest common divisor

of n − 1 and n + d. If g is even, then there are

exactly 1 + g/2 distinct conjugacy classes among

the maps drawn from the main cardioids of the prin-

cipal Mandelbrot sets. If g is odd, then the number

of conjugacy classes is (g + 1)/2.

2. Preliminaries

Consider the family of maps on the Riemann
sphere, C,

Fλ(z) = zn +
λ

zd

where n ≥ 2, d ≥ 1, and λ ∈ C. The point at
infinity is superattracting of order n. As above, we
denote the immediate basin of ∞ by Bλ. Also, 0 is
a pole of order d, so there is a neighborhood of 0
that is mapped into Bλ. If this neighborhood is dis-
joint from Bλ, we use the term “trap door” for the
preimage of Bλ that contains 0. We denote the trap
door by Tλ.

The map Fλ(z) has n + d “free” critical points.
They satisfy the equation

zn+d =
dλ

n
.

Hence, they are equally spaced on the circle of
radius

n+d

√

d|λ|

n

centered at the origin. There are also n+d prepoles.
They satisfy the equation zn+d = −λ.

For a given n and d, let λ0 be the positive
parameter

λ0 =

(

d

n
+ 1

)
n+d
1−n

(

d

n

)
d+1

n−1

.

The map Fλ0
(z) = zn + λ0/z

d has a real, superat-
tracting fixed point.

The family Fλ has symmetries in both the
dynamical plane and the parameter plane. The
proofs of the following three symmetry lemmas are
straightforward and are left to the reader.

Symmetry Lemma 1. The map Fλ is conjugate to

Fλ by the conjugacy z �→ z.

This first symmetry implies that important
subsets of the parameter plane are symmetric under
complex conjugation.

Symmetry Lemma 2. If ω is a (n + d)th root of

unity, then

Fλ(ωz) = ωnFλ(z).

This second symmetry implies that the Julia
set of Fλ is symmetric under the map z �→ ωz.
Similarly, Bλ and Tλ possess this (n + d)-fold
symmetry.

Moreover, since the free critical points are
arranged symmetrically with respect to z �→ ωz, all
of the free critical orbits behave symmetrically with
respect to this rotation. However, it is not necessar-
ily true that all of these critical orbits behave in
the same manner. For example, consider the map
F0.18(z) = z4 + 0.18/z3 (see Fig. 2). The orbit
of the free critical point on the positive real axis
is asymptotic to a fixed point, but the other six
free critical orbits are asymptotic to one of two
attracting period-three orbits whose basins are the
other six connecting Fatou components. This sym-
metry implies that all of these basins are arranged
symmetrically.

The most important consequence of Symmetry
Lemma 2 is the fact that the orbits of all of the free
critical points can be determined from the orbit of
any one of them (see Fig. 3). So the one-dimensional
λ-plane is a natural parameter plane for these maps.

Symmetry Lemma 3. Suppose that η is an (n +
d)(n − 1)th root of unity. Let ν = ηn+d and ω =
ηn−1. Then

F k
νλ(ηz) = ηnk

F k
λ(z)

for k = 1, 2, 3, . . . .

Note that ν is an (n − 1)th root of unity and ω is
an (n + d)th root of unity. Symmetry Lemma 3 is
proved by induction on k.

This symmetry allows us to determine the
orbit diagram of Fνλ from the orbit diagram of λ.
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Checkerboard Julia Sets for Rational Maps

Fig. 3. The orbit diagram for the critical points of Fλ0
(z) =

z13 + λ0/z7. The critical point on the positive real axis is a
fixed point, and it is labeled with the number 0. The orbits of
the remaining critical points are determined from the orbit
of the fixed point using Symmetry Lemma 2.

In particular, if cλ is a critical point for Fλ, then
ηcλ is a critical point for Fνλ. We denote this crit-
ical point by cνλ. From Symmetry Lemma 3, we
have

F k
νλ(cνλ) = F k

νλ(ηcλ) = ηnk

F k
λ(cλ).

Therefore, the orbits of the critical points of Fλ and
Fνλ behave symmetrically with respect to rotation
by some power of η (see Fig. 4).

Symmetry Lemma 3 also implies that the full
basin of ∞ for Fλ is homeomorphic to the full basin
of Fνλ under the rotation z �→ ηz. Since this basin
is completely invariant, the Julia set of Fνλ is the

Fig. 4. The orbit diagram for the critical points of Fλ1
(z) =

z13 + λ1/z7 where λ1 = νλ0.

rotation of the Julia set of Fλ under the rotation
z �→ ηz. This observation implies Theorem 1.

As we shall see, the dynamics of Fλ and Fνλ are
not necessarily conjugate. For example, if λ lies in
the main cardioid of the right-hand principal Man-
delbrot set in the n = d = 3 case, the map Fλ has a
pair of attracting fixed points (see Fig. 1). In con-
trast, if λ is an element of the main cardioid of the
left-hand principal Mandelbrot set, the map Fλ has
an attracting cycle of period two.

The map Fνλ is conjugate to ωFλ by the rota-
tion z �→ ηz because

Fνλ(ηz) = (ηz)n +
νλ

(ηz)d
= ηnzn +

ν

ηd

λ

zd

= ηn

(

zn +
λ

zd

)

= ηω

(

zn +
λ

zd

)

.

More generally, the map Fνjλ is conjugate to
the map ωjFλ via the rotation z �→ ηjz.

In the parameter planes, there are numerous
subsets that are homeomorphic to the Mandelbrot
set [Devaney, 2006] (see the black regions in Fig. 1).
We abuse terminology and refer to these subsets as
Mandelbrot sets as well.

Note that, in the left parameter plane in Fig. 1,
there are two large Mandelbrot sets along the real
axis. Similarly, in the right parameter plane in the
same figure, there are three large Mandelbrot sets
symmetrically located with respect to the rotation
z �→ νz where ν = e2πi/3. With the exception of
the n = d = 2 and d = 1 cases, the parameter
plane for the family Fλ contains n − 1 symmetri-
cally located Mandelbrot sets [Devaney, 2006]. We
call these sets the principal Mandelbrot sets for the
family Fλ. In [Devaney, 2006], the existence of these
sets was proved for the case n = d > 2. However,
the same proof works if d �= 1 and n �= d. In this
paper, we describe the structure of and dynamics
on the Julia sets for parameters that lie in the main
cardioids of these principal Mandelbrot sets. Con-
sequently, we denote these main cardioids using the
following conventions:

(1) Let the main cardioid whose center is λ0 be
denoted M0.

(2) The remaining n−2 main cardioids are denoted
Mj where the ordering is in the counterclock-
wise direction.

If n = d = 2, there does not exist a principal
Mandelbrot set in the parameter plane. In this case,
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P. Blanchard et al.

Fig. 5. Two parameter planes: (left) n = d = 2 and (right) n = 4, d = 1.

the “tail” of the Mandelbrot set, i.e. the parameter
corresponding to c = −2 in the Mandelbrot set for
z2 + c, extends to the origin, where the map is just
F0(z) = z2. So, we do not have a complete Mandel-
brot set. Nonetheless, there is a main cardioid M0

in which each parameter has four connecting Fatou
components (see the left-hand parameter plane in
Fig. 5).

If d = 1, there are no principal Mandelbrot
sets in the parameter plane. However, there are
n − 1 distinct cardioid-shaped regions arranged
symmetrically around the origin (see the right-
hand parameter plane in Fig. 5). We denote these
regions by M0,M1, . . . ,Mn−2. Parameters drawn
from these regions have n + 1 connecting Fatou
components.

For the maps that we study, the boundary of
each of the Fatou components is a simple closed
curve.

Proposition 1. Suppose λ lies in some Mj. Then

each of the Fatou components of Fλ is bounded by

a simple closed curve. Consequently, the Julia sets

of these maps are compact, connected sets.

Proof. Since the set of Fatou components consists
of Bλ and all of its preimages together with the con-
necting Fatou components and all of their preim-
ages, it suffices to show that the boundary of Bλ

and the boundaries of the connecting Fatou com-
ponents are simple closed curves. By the symmetry

lemmas, in fact, we need only prove this for one of
the connecting Fatou components.

First consider ∂Bλ. Since all of the critical
orbits tend to attracting cycles, Fλ is hyperbolic
on its Julia set. Consequently, J(Fλ) is locally con-
nected. In particular, ∂Bλ is a locally connected set
(see Lemma 19.3 in [Milnor, 2006]). Thus we need
only show that the set C − Bλ is connected.

We argue by contradiction. Suppose that C −
Bλ is disconnected. Let W0 denote its component
that contains the trap door. The second symmetry
lemma implies that W0 is symmetric under z �→ ωz.
Also, Tλ is contained in W0 since, if not, there would
be a critical point in ∂Tλ ∩ ∂Bλ, which contradicts
the assumption that Fλ is hyperbolic on J(Fλ).

At least one other component of C − Bλ, say
W1, is mapped over W0. If not, ∂W0 would be
backward invariant, which cannot happen. Another
application of the second symmetry implies that
Wj = ωjW1 is also mapped onto W0 for j =
1, . . . , n + d − 1. We have n + d distinct preimages
of W0.

However, we claim that there are points in W0

that are also mapped into W0. To see why, recall
that ∂Tλ is mapped over the entire boundary of
Bλ by Fλ and that ∂Tλ lies in W0. Thus there
is a point z0 in ∂Tλ that is mapped into ∂W0.
Then there is a neighborhood of z0 in W0 mapped
to a neighborhood of Fλ(z0), and hence there are
points in this neighborhood that are mapped inside
W0. We arrive at a contradiction since we have
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Checkerboard Julia Sets for Rational Maps

found points in W0 that have more than n + d
preimages.

For the case of the connecting Fatou compo-
nents, consider a parameter drawn from the main
cardioid M0. As mentioned above, we always have
an attracting fixed point for such a parameter. Since
the pole does not lie in this basin, it follows that the
immediate basin of this fixed point is simply con-
nected. By hyperbolicity, the boundary of this basin
is again locally connected. Hence, all internal rays
extending from the fixed point to the boundary of
this basin land at a single point.

The question is whether two (or more) rays land
at the same point on the boundary. If this were the
case, then portions of the Julia set would protrude
in towards the attracting fixed point in the region
between these rays. In fact, we would necessarily
have infinitely many such protruding regions. Let
U be the closure of the basin of this fixed point
together with all of the protruding regions (and the
Fatou components that they surround). So U is a
closed disk. By symmetry, none of the protruding
regions or the basin can surround the origin, so
there are no poles in U . Therefore none of the pro-
truding regions can be mapped outside of U . But
these regions contain points in the Julia set, and
neighborhoods of these points must eventually be
mapped over the entire Julia set and, in particular,
outside U . This gives a contradiction and shows that
there cannot be any such protruding regions. Hence
each internal ray lands at a unique point and so the
boundary of this Fatou component is also a simple
closed curve. By symmetry, the same holds for the
other connecting Fatou components.

Thus the Julia set is the complement in
the Riemann sphere of infinitely many open, dis-
joint disks, and so the Julia set is compact and
connected. �

3. Checkerboard Julia Sets

In this section, we present an algorithm for con-
structing the Julia sets for parameters in the main
cardioids of the principal Mandelbrot sets. This
algorithm gives an alternate proof of Theorem 1.

First, consider M0 and let [a, b] denote the
interval of intersection of M0 with the real axis.
By considering the graph of Fλ |R for λ ∈ (a, b), we
see that each such map has an attracting fixed point
that is real and positive. Hence, for each λ ∈ M0,
the map Fλ also has an attracting fixed point. We
denote this fixed point by p0

λ and its immediate

basin of attraction by C0
λ. As shown earlier, ∂C0

λ
is a simple closed curve. Furthermore, if λ ∈ (a, b),
the graph of Fλ |R shows that C0

λ extends from ∂Bλ

to ∂Tλ. Consequently, C0
λ extends from ∂Bλ to ∂Tλ

for all values of λ ∈ M0. If λ ∈ (a, b), the intersec-
tion ∂Bλ ∩ ∂C0

λ contains a repelling fixed point q0
λ

that is real and positive. Using the fact that ∂C0
λ is

invariant and the fact that the map is conjugate to
z �→ zn on ∂Bλ, it follows that q0

λ is the only point
in the intersection. Similarly, the intersection ∂Tλ∩
∂C0

λ is also just one point that is real and positive.
We denote it by u0

λ. Note that Fλ(u0
λ) = q0

λ.
From the second symmetry, we obtain n+d−1

other Fatou components that are symmetrically
located around the origin. We denote these Fatou
components by Cj

λ with j = 1, . . . , n + d− 1. These
are ordered in the counterclockwise direction. Recall
that these are called the connecting (Fatou) com-
ponents since each of these components extends
from Tλ to Bλ. Some of these Fatou components
are immediate basins of attracting cycles, and oth-
ers are eventually periodic components. The exact
configuration of these components is determined by
Symmetry Lemma 2 with ω = exp(2πi/(n + d)).
For example, since Fλ(ωz) = ωnFλ(z), we have
Fλ(C1

λ) = Cn
λ, Fλ(C2

λ) = C2n
λ , and so forth. In par-

ticular, if n = d = 3, both C0
λ and C3

λ are fixed
basins, C1

λ and C5
λ are mapped to C3

λ, and C2
λ and

C4
λ are mapped to C0

λ.

Let pj
λ = ωjp0

λ, qj
λ = ωjq0

λ, and uj
λ = ωju0

λ.

Then both qj
λ and uj

λ lie on ∂Cj
λ. Also, pj

λ lies in the

interior of Cj
λ and is either periodic or preperiodic

(see Fig. 6).
For M1,M2, . . . ,Mn−2, we have a similar

structure due to the (n − 1)-fold symmetry in the

Fig. 6. The regions Ij
λ

if n = 3 and d = 2.
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P. Blanchard et al.

parameter plane. More precisely, if ν is an (n−1)th
root of unity, the orbits of the critical points of Fλ

and Fνλ behave symmetrically with respect to mul-
tiplication by some (fractional) power of ν, as was
shown immediately following Symmetry Lemma 3.
Consequently, the configuration of the basins for
Fνλ is similar to that of Fλ.

Recall that ∂Bλ and ∂Tλ are simple closed
curves. Since there are no critical points in ∂Bλ ∩
∂Tλ, these curves do not intersect. Let Aλ denote
the closed annulus bounded by ∂Bλ and ∂Tλ. Let
Ij

λ denote the closed set in Aλ that is contained in

the region located between the open disks Cj
λ and

Cj+1
λ . Note that the intersection of Ij

λ and Ij+1
λ is

the pair of points qj+1
λ and uj+1

λ . Thus there are four

points on the boundary of each Ij
λ that also lie on

the boundary of another such set: a pair of points
lies in Ij

λ ∩ Ij+1
λ and another pair in Ij

λ ∩ Ij−1
λ . We

call the points qj
λ the outer junction points and the

points uj
λ the inner junction points (see Fig. 6).

Proposition 2. Fλ maps each Ij
λ univalently

(except at the junction points) over the region that

is the complement of the three sets Bλ, Fλ(Cj
λ), and

Fλ(Cj+1
λ ).

Proof. Since Fλ is conjugate to z �→ zn on ∂Bλ, the
portion of ∂Bλ that meets Ij

λ, i.e. the arc in ∂Bλ

connecting qj
λ to qj+1

λ , is mapped to an arc in ∂Bλ

that passes through exactly n + 1 outer junction
points. Similarly, the portion of ∂Tλ that meets Ij

λ

is mapped to the complementary arc in ∂Bλ. These
two arcs meet at a pair of outer junction points in
∂Bλ. Also, the portion of the boundary of Ij

λ that

meets ∂Cj
λ is mapped one-to-one onto the boundary

of Fλ(Cj
λ) except at the junction points. The junc-

tion points are both mapped to the same point. Sim-
ilarly the other boundary of Ij

λ that lies in ∂Cj+1
λ

is mapped onto ∂Fλ(Cj+1
λ ). Therefore, the bound-

ary of Ij
λ is mapped to the boundary of the three

sets Bλ, Fλ(Cj
λ), and Fλ(Cj+1

λ ). Since there are no

critical points in Ij
λ, the result follows. �

We call the two arcs in Ij
λ that lie in the bound-

aries of Cj
λ and Cj+1

λ the internal boundary com-

ponents of Ij
λ. By Proposition 2, there must be a

preimage of Tλ in each Ij
λ. Moreover, the boundary

of this preimage must meet each internal boundary
component of Ij

λ in exactly one point, namely the
preimage of the inner junction points lying in the
portions of the boundary of Fλ(Cj

λ) and Fλ(Cj+1
λ )

that lie in Ij
λ. Thus the preimage of Tλ in each Ij

λ
is an open region whose boundary meets exactly
one point in each of the boundaries of the connect-
ing Fatou components that are adjacent to Ij

λ (see
Fig. 7).

The preimage of Tλ separates Ij
λ into two

pieces: an external piece that abuts ∂Bλ and an
internal piece that abuts ∂Tλ. The external piece is
mapped by Fλ over the portion of Aλ that stretches
from Fλ(Cj

λ) to Fλ(Cj+1
λ ) in the counterclockwise

Fig. 7. The regions Ij
λ

if n = 3 and d = 2.
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Checkerboard Julia Sets for Rational Maps

direction. Since Fλ(ωz) = ωnFλ(z), this region is
mapped over exactly n of the Ii

λ and n−1 of the Ci
λ.

Similarly, the internal piece is mapped over exactly
d of the Ii

λ and d−1 of the Cj
λ. So each of Ij

λ can be
further subdivided as shown in Fig. 7. The portion
of Ij

λ lying outside the preimage of Tλ has n − 1
preimages of the connecting components, and the
internal portion has d− 1 such preimages. Between

each preimage including Cj
λ and Cj+1

λ , there is a
region that is mapped univalently onto one of the
Ik

λ’s. Hence there is a preimage of each of the sets
just constructed in each of these smaller regions (see
Fig. 7).

Continuing in this fashion, we always find the
same picture in each region bounded by kth and
earlier preimages of Tλ and kth and earlier preim-
ages of the Cj

λ’s. It is a central (k + 1)th preimage
of Tλ flanked by n − 1 (k + 1)th preimages of the
connecting components on one side and d− 1 other
(k + 1)th preimages on the other side.

However, this construction does not give the
entire Julia set of Fλ. Indeed, the portion of the
Julia set produced thus far contains only preim-
ages of the boundaries of Bλ and Cj

λ. None of
these preimages contain any periodic points; the

only periodic points here lie in ∂Bλ and ∂Cj
λ. So

there must be more to the Julia set.
To complete the construction of the Julia set,

note that each closed region Ij
λ is almost mapped

univalently over the union of all of the Ik
λs. The

map is univalent except at the four junction points.
One pair of junction points is mapped to an outer
junction point in the image, and the other pair
is mapped to a different outer junction point. We
can use symbolic dynamics to identify each point
in the Julia set. Let Σ denote the set of sequences
(s0, s1, s2, . . .) where each sj is one of the integers
0, 1, . . . , n + d − 1. We identify each point in J(Fλ)
with a point in Σ by assigning to each z ∈ J(Fλ)
its itinerary S(z) = (s0, s1, s2, . . .) where sk = j

if F k
λ (z) ∈ Ij

λ. However, infinitely many points
are assigned to a pair of sequences. The points
qj
λ and uj

λ each have a pair of sequences attached
to them since these points reside in two of the
Ij

λ’s. For example, S(q0
λ) = (0) = (n + d − 1) and

S(u0
λ) = (0, n + d − 1) = (n + d − 1, 0). Similarly,

any point that is eventually mapped onto a qj
λ or a

uj
λ also has a pair of itineraries, e.g. the itineraries

(s0, . . . , sk, 0, n + d − 1) and (s0, . . . , sk, n+d−1, 0)
correspond to the same points.

We let Σ′ denote the sequence space with the
above identifications and endow Σ′ with the quo-
tient topology. Since each Ij

λ is mapped univalently
(except at the junction points) over the union of
the Ik

λ and the Julia set is contained in this union,
standard arguments then show that the Julia set
is homeomorphic to Σ′. The subsets Σ′

j of Σ′ con-
sisting of all sequences that start with the digit j
correspond to points in Ij

λ ∩ J(Fλ), and they are
homeomorphic to Σ′

k. It is important to note that
the dynamics on these sets are not the same even
though they are homeomorphic. We have described
the topological structure of each Ij

λ∩J(Fλ), and this
description implies Theorem 1 (see [Çilingir et al.,
2010] for a similar argument).

4. Dynamical Invariants

In this section, we prove Theorems 2 and 3. Let
ν = exp(2πi/(n − 1)). We show that two maps
drawn from the main cardioids of different principal
Mandelbrot sets are conjugate on their Julia sets if
and only if the cardioids are located symmetrically
under either the maps z �→ νj(d+1)z or z �→ νj(d+1)z
for some integer j (see Proposition 4).

We first observe that it suffices to prove this
result for the special maps whose parameter is the
center of these main cardioids. The set of critical
points is invariant under the map, so the critical
points are either periodic or preperiodic. The fol-
lowing proposition follows from the work of Mañé
et al. [1983].

Proposition 3. Suppose λ lies at the center of an

Mj and µ ∈ Mj . Then Fλ and Fµ are quasiconfor-

mally conjugate on their Julia sets.

Remark. It is not true that Fλ and Fµ are glob-
ally conjugate since Fλ has a superattracting cycle
while the attracting cycle for Fµ need not be
superattracting.

By Proposition 3, we need only consider param-
eters that lie at the centers of Mj . So for the
remainder of this section, we assume that λ and µ
are centers. Then µ = νjλ for some j ∈ Z. The proof
of one direction of Theorem 2 is straightforward:

Proposition 4. If µ = νj(d+1)λ or µ = νj(d+1)λ for

some integer j, then Fµ is conjugate to Fλ.
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P. Blanchard et al.

Proof. Let µ = νj(d+1)λ, then

Fµ(νjz) = νjnzn +
λνj(d+1)

νjdzd

= νj

(

zn +
λ

zd

)

= νjFλ(z).

So Fλ is conjugate to Fµ via the linear map z �→ νjz.
By Symmetry Lemma 1, Fλ and Fλ have con-

jugate dynamics. So if µ = νj(d+1)λ, then Fµ is
conjugate to Fλ and hence also to Fλ. �

From Proposition 4, we know that all cen-
ters whose parameters are of the form νkλ or νkλ
where k = j(d + 1) mod (n − 1) have conjugate
dynamics. That is, any two main cardioids that are
located symmetrically with respect to either rota-
tion by νd+1 or complex conjugation have conju-
gate dynamics. Note that νd+1 = νn−1νd+1 = νn+d,
so we can say that any two cardioids that are
located symmetrically with respect to either rota-
tion by νn+d or complex conjugation have conjugate
dynamics.

Using basic facts about the greatest common
divisor of two numbers, we can restate this relation-
ship among the centers with conjugate dynamics in
terms of the greatest common divisor g of d+1 and
n − 1. In fact, all centers whose parameters are of
the form νkλ or νkλ where k is an integer multiple
of g have conjugate dynamics.

Now we show that these symmetrically located
centers are the only centers with conjugate dynam-
ics. First we define the minimum rotation number
for parameters in Mj. For each such parameter we

have n+d connecting components Cj
λ with j-defined

mod n+d, and Cj
λ are ordered in the counterclock-

wise direction as j increases. Each of these connect-
ing components is mapped two-to-one onto another
such component since each contains a unique criti-
cal point (see Fig. 6).

Suppose Fλ(Cj
λ) = Ck

λ. We define the rotation

number ρj of Cj
λ to be the value of k − j that is

closest to 0 for any k mod n+d. Note that it is pos-
sible for k to be negative (see Fig. 8). For example,
if Fλ(C0

λ) = Cn+d−1
λ , then the rotation number of

C0
λ would be −1 since Cn+d−1

λ = C−1
λ . We say that

Cj
λ is rotated through k − j components, if ρj = k.

We then define the minimum rotation number ρ(λ)
for Fλ to be the minimum value of |ρj| over all j.
For example, if Fλ has an attracting fixed point in

Fig. 8. A Cj
λ

with ρj = −1.

some Cj
λ, ρ(λ) = 0. If there is no such attracting

fixed point, then ρ(λ) > 0.

Proposition 5. Let λ and µ be centers of Mj . Then

Fλ is conjugate to Fµ if and only if ρ(λ) = ρ(µ).
Equivalently, µ = νkλ or µ = νkλ where k =
j(d+ 1) mod (n− 1) for some integer j. The conju-

gating map is either a rotation about the origin or

a rotation followed by complex conjugation.

Proof. First suppose that two such centers λ and
µ have different minimum rotation numbers. Then
Fλ and Fµ cannot be conjugate on their Julia sets.
To see why, recall that the connecting components
each touch ∂Bλ at exactly one point. Now ∂Bλ must
be sent to itself by any conjugacy between Fλ and
Fµ since this set is the only invariant subset of the
Julia set that touches the boundaries of all of the
connecting components. Thus the ordering of Cj

λ is
either preserved or reversed by the conjugacy, i.e.
either the conjugacy rotates the connecting compo-
nents in one direction or the other, or the conjugacy
first applies complex conjugation followed by some
rotation. In either case, if the minimum rotation
numbers of Fλ and Fµ are different, then such a
conjugacy cannot exist.

To prove the converse, we consider the set of
critical points, c0

λ, . . . , cn+d−1
λ , of Fλ where λ is the

center of an Mj. The point cj
λ is the unique criti-

cal point that lies in the connecting component Cj
λ.

We note that this set of critical points is invariant
under Fλ.
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Checkerboard Julia Sets for Rational Maps

Suppose Fλ and Fµ have the same minimum
rotation number m. By assumption, there is at least
one critical point cj

λ for Fλ for which either Fλ(cj
λ) =

cj+m
λ = ωmcj

λ or Fλ(cj
λ) = cj−m

λ = ω−mcj
λ. (Recall

that ωn+d = 1.) There is also a critical point ci
µ

for Fµ for which either Fµ(ci
µ) = ci+m

µ = ωmci
µ or

Fµ(ci
µ) = ci−m

µ = ω−mci
µ.

We consider the first case for λ and µ, i.e. where
the rotation numbers m for both critical points are
positive. Since µ = νkλ for some k, Fµ is conjugate
to the map z �→ ωkFλ(z) by the rotation z �→ ηkz
where

η = exp

(

2πi

(n + d)(n − 1)

)

(see the paragraphs that follow Symmetry
Lemma 3). So there must be a critical point for
ωkFλ that corresponds to ci

µ and that is also rotated

by ωm when ωkFλ is applied to it. But any critical
point of ωkFλ must also be a critical point for Fλ.
Suppose that ωℓcj

λ is the critical point for ωkFλ that
corresponds to ci

µ. Then we have

ωkFλ(ωℓcj
λ) = ωmωℓcj

λ = ωℓωmcj
λ = ωℓFλ(cj

λ).

But

ωkFλ(ωℓcj
λ) = ωk+ℓnFλ(cj

λ).

Therefore we have ℓ = k + ℓn mod (n + d).
Consequently, ωℓFλ(z) = ωk+ℓnFλ(z), and

using Symmetry Lemma 2, we obtain

ωℓFλ(z) = ωkFλ(ωℓz)

for all z ∈ C. So Fλ is conjugate to ωkFλ via the
map z �→ ωℓz. Therefore Fλ is also conjugate to Fµ

via a linear map of the form z �→ ηωℓz and µ = νkλ
where k = j(d + 1) mod (n − 1).

The proof for the case when both rotation num-
bers m are negative is exactly the same.

To prove the second case, the case where the
rotations go in opposite directions, we simply con-
jugate Fµ to Fµ by complex conjugation and then
invoke the first case. �

As a consequence of Propositions 3 and 5,
this result extends to all parameters in M0,
M1, . . . ,Mn−2.

Corollary. Let λ and µ be any parameters drawn

from the main cardioids of any two prinicipal Man-

delbrot sets. Then Fλ and Fµ are conjugate on their

Julia sets if and only if ρ(λ) = ρ(µ).

Now we can determine exactly which Mj have
conjugate dynamics and the precise number of dif-
ferent conjugacy classes. We write Mj ≡ Mk if
the parameters at the centers of Mj and Mk have
conjugate dynamics. Let g be the greatest common
divisor of n− 1 and d+ 1. As we proved in this sec-
tion, the principal Mandelbrot sets with dynamics
conjugate to the dynamics of Mk are those obtained
by successive rotations in the parameter plane by
z �→ νjgz or by these rotations followed by complex
conjugation. In particular, we have M0 ≡ Mjg for
all integers j.

Theorem. If the greatest common divisor g is

even, there are 1 + g/2 different conjugacy classes

among Mj . If g is odd, there are (g + 1)/2 distinct

such conjugacy classes.

Proof. First suppose that g = 1. Then all maps
drawn from Mj have conjugate dynamics, so we
have 1 = (g + 1)/2 conjugacy classes.

Now suppose g > 1. We claim that Mk �≡ M0

for any k with 0 < k < g. If not, then maps at
the centers of M0 and some Mk would be conju-
gate by z �→ z followed possibly by a rotation. But
then Mk ≡ M−k via z �→ z. Also, Mg ≡ M−g by
z �→ z. Therefore, we have M−g ≡ M−k by a rota-
tion, which would imply that the greatest common
divisor is smaller than g. So none of the centers of
Mk with 0 < k < g have dynamics conjugate to the
center of M0.

If g is even, we consider Mk where 0 < k < g/2.
We have Mk ≡ M−k by complex conjugation.
Moreover M−k ≡ Mg−k since these sets are sym-
metric under the rotation z �→ νgz, so Mk ≡ Mg−k.
On the other hand, we cannot have Mk ≡ Mj for
any other j with 0 < j < g via rotation by z �→ νgz
or by complex conjugation coupled with a rotation,
so the principal Mandelbrot sets with dynamics con-
jugate to those in Mk are just the rotations of Mk

together with their complex conjugates. The num-
ber of such conjugacy classes is g/2 − 1. We have
Mg/2 ≡ M−g/2 by the rotation z �→ ν−gz as well
as by complex conjugation. So Mg/2 lies in a con-
jugacy class that is distinct from the classes of Mk

with 0 ≤ k ≤ g/2. The conjugacy class of M0

has not yet been counted. Combining all of these
classes, we obtain a total of 1 + g/2 distinct conju-
gacy classes.

If g is odd, we count in exactly the same way
except that we do not have a conjugacy class that
corresponds to Mg/2 in this case. �
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P. Blanchard et al.

Fig. 9. If n = 13 and d = 7, then g = 4, and consequently, there are three conjugacy classes. This figure contains one orbit
diagram for each of the three classes.

Fig. 10. If n = 11 and d = 4, then g = 5, and consequently,
there are three conjugacy classes. The parameters with con-
jugate dynamics are connected by segments of the same color,
e.g. the four Mandelbrot sets connected by white segments
all have conjugate dynamics.

See Fig. 9 for the three orbit diagrams that arise
if n = 13 and d = 7. In Fig. 10, we consider the case
where n = 11 and d = 4, and group the Mandelbrot
sets whose centers have conjugate dynamics.

5. A Group Action

Since the conjugacies among the Mk arise from
reflective and rotational symmetries, we can count
the number of conjugacy classes by viewing them
as orbits of the action of a dihedral group on
the set {Mk}, viewed as the vertices of a regular
(n − 1)-gon.

Let a = (n − 1)/g. We claim that the natural
group that produces these orbits is D2a, the group
of symmetries of a regular a-gon. Let s be the gen-
erator of D2a corresponding to reflection and r be
the generator corresponding to rotation. We define
the action of D2a on {Mk} by

sMk = M−k mod n−1

rMk = Mk+g mod n−1

These rules produce a well-defined D2a action,
and since the actions on {Mk} by s and r are
exactly complex conjugation and rotation by z �→
νgz, respectively, the orbits of this action cor-
respond exactly to the conjugacy classes among
the Mk.

By Burnside’s lemma, the number of orbits is

1

|D2a|

∑

x∈D2a

|fix(x)|

where fix(x) = {Mi ∈ {Mk} : xMi = Mi} (see
[Gallian, 2002]).

The group D2a has 2a elements, and each can
be written as rj or srj with 0 ≤ j < a. The identity
fixes all n − 1 elements of {Mk}, and rj fixes none
for 0 < j < a. Thus the number of orbits is

1

2a



n − 1 +
a−1
∑

j=0

|fix(srj)|



.

An element of the form srj rotates each Mk by
z �→ νjgz and then reflects it about the real axis.
Equivalently, it reflects the Mk through some axis
of symmetry of the set viewed as a regular (n − 1)-
gon. Thus, if n − 1 is odd, every such axis passes
through exactly one of Mk, and thus |fix(srj)| = 1
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Checkerboard Julia Sets for Rational Maps

for all j. The formula above then shows the number
of conjugacy classes is (n − 1 + a)/2a = (g + 1)/2.

If n−1 is even, half of the axes of symmetry pass
through two of Mk, and half pass through none.
Thus srj fixes either two or zero of Mk. There exists
a j such that srj fixes none of the Mk if and only
if there is some i such that srjMi = Mi+1 mod n−1,
i.e. the axis of reflection passes between Mi and
Mi+1 mod n−1 for some i. For such an i, rjMi =
s−1Mi+1 mod n−1 = M−i−1 mod n−1 which equals
Mi+jg mod n−1 by the definition of the action of r.
Thus −i − 1 ≡ i + jg mod n − 1, and hence,
2i + jg + 1 ≡ 0 mod n − 1. If either j or g is even,
this equality is impossible since n − 1 is even, and
therefore, srj must fix two of Mk. If j and g are
both odd, however, any i with i ≡ (−jg−1)/2 mod
n − 1 satisfies the congruence, and thus srj fixes
none of Mk.

Therefore, if n − 1 and g are even, then
|fix(srj)| = 2 for all j, and the number of conjugacy
classes is (n− 1 + 2a)/2a = 1 + g/2. If n− 1 is even
and g is odd, |fix(srj)| equals 2 if j is even, and 0 if
j is odd. Hence, there are (n−1+a)/2a = (g+1)/2
conjugacy classes.

Finally, if n − 1 is odd, g must be odd, so the
possible cases really depend only on the parity of g
and not of n − 1. Hence, the number of conjugacy
classes is (g + 1)/2 if g is odd and 1 + g/2 if g is
even.
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the Sierpiński curve,” Fund. Math. 45, 320–324.

1330004-13

In
t.

 J
. 
B

if
u
rc

at
io

n
 C

h
ao

s 
2
0
1
3
.2

3
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 6

9
.6

.1
0
3
.2

4
0
 o

n
 0

3
/2

5
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.


	1 Introduction
	2 Preliminaries
	3 Checkerboard Julia Sets
	4 Dynamical Invariants
	5 A Group Action

