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0. Introduction. Inrecent years, it has been shown that the family of rational maps
arising from singular perturbations of the simple polynomials z +— z" have some
interesting properties from a dynamical systems as well as a topological perspective.
In this paper we survey some of these results. In addition, we provide proofs of these
results in several special and illustrative cases. While the cases we describe here are
by no means the most general, they do serve to illustrate the types of techniques that
can be used in the general cases.

By a singular perturbation of z”, we mean a map of the form z+ z" + A/z"™ where
A is a complex parameter. Of primary interest is the Julia set of these maps. From an
analytic viewpoint, the Julia set is the set of points at which the family of iterates of
the map fails to be a normal family in the sense of Montel. From a dynamics point of
view, the Julia set is the set of points on which the map is chaotic.

As is well known, the Julia set of z” for n > 2 is just the unit circle. When we add the
term A /z™ for . € C, A # 0, several things happen. First of all, the degree of the rational
map suddenly increases from n to n 4 m. Secondly, the superattracting fixed point at the
origin becomes a pole, while co remains a superattracting fixed point. As a consequence,
an open set around the origin now lies in the basin of attraction of co. In between this
neighborhood of 0 and the basin at oo, the Julia set undergoes a significant transformation.

For example, if 1/n 4+ 1/m < 1, McMullen [13] has shown that, when |A| is small,
the Julia set explodes from a single circle to a Cantor set of simple closed curves sur-
rounding the origin. See Figure 1. When n and m do not satisfy the McMullen condi-
tion, the situation is quite different. In [2] it is shown that, in the cases n =m =2 or
n=2,m =1, there are infinitely many open sets of A-values in any neighborhood of
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Figure 1: The Julia set for z* +0.04/z* is a Cantor set of circles.

+ =0 for which the Julia set is a Sierpinski curve. See Figure 2. A Sierpinski curve is
an extremely rich topological space since this object is known to contain a homeo-
morphic copy of any one-dimensional, planar continuum, no matter how complicated
this continuum is. It is also known that any two Sierpinski curves are homeomorphic [20].
However, from a dynamical systems point of view, it turns out that there are infinitely
many dynamically distinct Sierpinski curve Julia sets in the sense that, if the parameters
are drawn from disjoint open sets in the A—plane, the corresponding maps are not topo-
logically conjugate on their Julia sets.

Whenn=2,m=2orn=2,m=1, there are many other interesting types of Julia
sets in these families. For example, it is known [8] that there are infinitely many Julia
sets in these families that have properties similar to a Sierpinski gasket. See Figure 3.
These sets are topologically very different from the Sierpinski curves and it can
be shown that, except for certain symmetric cases, these types of Julia sets are never
homeomorphic.

In addition, in these two cases, there is a fundamental dichotomy for these rational
maps that is similar in spirit to that for quadratic polynomials. This dichotomy states that
if the critical points for these maps lie in the immediate basin of oo, then the correspond-
ing Julia set is a Cantor set, whereas if the critical points do not lie in this immediate
basin, the Julia set is a connected set. The difference between the rational map case and
the quadratic polynomial case is that the critical points for the rational maps may escape
to co without lying in the immediate basin of oo, which is not possible for quadratic
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Figure 2: The Julia sets for (a) z* — 0.06/z°, and (b) z* 4 (—0.004 + 0.364i) /7 are
Sierpinski curves.

polynomials. As we show below, it is this situation that creates the Sierpinski curve Julia
sets.

With this variety of different types of Julia sets in these families, it is little wonder
that the parameter plane for these families is a rich topological object. Among other
things, these parameter planes include infinitely many copies of “baby’” Mandelbrot
sets as well as other topologically interesting sets such as Cantor necklaces [3], [4].
See Figure 4.
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Figure 3: The Julia set for z* + A /z where A & —0.5925 is a Sierpinski gasket.
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Figure 4: The parameter plane for 2% + 4 /z°.

In this paper we restrict attention to the family of rational maps given by

, A
FLo=+—=.
72

although occasionally we will discuss the family
~ A
F/\(Z) =7+ 'g :

Most of the results below hold for both families. though the proofs in the cases of F),
and F,, are often quite different due to the presence of quite different symmetries in
these two different families.

The authors wish to thank Pascale Roesch who made many fine suggestions con-
cerning the original version of this paper.

Dedication. We are pleased to dedicate this paper to Bodil Branner, who is one of
the finest mathematicians we have ever met. No, add to that: one of the finest people
we have ever met.

1. Preliminaries. In this section we describe some of the basic properties of the
family F, (z) =24 )\/z2‘ Observe that F, (—z) = F () and F; (iz) = — F)(z) so that
Ff(iz) = Ff(z) for all z € C. Also note that 0 is the only pole for each function in this
family. The points (—)"/* are prepoles for F; since they are mapped directly to 0.
The four critical points for F, occur at A4 Note that Fy (A4 =+2212 and
Ff(k”“) = 1/4 4 4A. so each of the four critical points lies on the same forward orbit
after two iterations. We call the union of these orbits the critical orbit of F;,.

Let J= J(F;) denote the Julia set of F,. J(F,) is the set of points at which the
family of iterates of F) fails to be a normal family in the sense of Montel. Equivalently,
J(F,) is the closure of the set of repelling periodic points of F;, (see [15]).
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The point at oo is a superattracting fixed point for F; . Let B; be the immediate basin
of attraction of co and denote by §, the boundary of B;. The map F, has degree 2 at
oo and so F), is conjugate to z 72 on B; if there is no critical point in B, . Otherwise,
this conjugacy is defined only in a neighborhood of co. The basin B, is a (forward)
invariant set for F;, in the sense that, if z € B;, then F}'(z) € B, for all n > 0. The same
is true for 3, .

We denote by K = K(F;) the set of points whose orbit under F; is bounded. In anal-
ogy with the situation for complex polynomials, we call K the filled Julia set of F).
K is given by C— U F, *(B;). Both J and K are completely invariant subsets in the
sense that if z € J (resp. K), then F7(z) € J (resp. K) for all n € Z. The Julia set J(F})
is the boundary of K(F;); the proof is completely analogous to that for polynomials
(see [15]).

Proposition (Four-fold Symmetry). The sets B;, B,, J(F,), and K(F,) are all invariant
under 7 — iz.

Proof. We prove this for B;; the other cases are similar. Let U ={z € B; |iz € B; }.
U is an open subset of B;,. If U £ B, there exists zg € 3U N B;,, where 3U denotes the
boundary of UU. Hence zp € B), but izg € 8, . It follows that F} (izg) € 8, for all n. But
since Ff (zo)= Ff(izo), it follows that zo¢ B, as well. This contradiction establishes
theresult. [

There is a second symmetry present for this family. Consider the map H, (z) = v/A/z.
Note that we have two such maps depending upon which square root of A we choose.
H, is an involution and we have F;, (H, (z)) = F,(2). As a consequence, H, preserves
both J and K. The involution H, also preserves the circle S, of radius |k|1/ * and inter-
changes the interior and exterior of this circle. We call S;, the critical circle. Note that S;,
contains all four critical points as well as the four prepoles, and each of the involutions
H, fixes a pair of the critical points of F; that are located symmetrically about the
origin.

Write A = pexp(iy) and z = o/ exp(i0) € S,. Then we compute

F3.(2) = p'/*(exp(2i0) + exp(i(y — 20)))
= p'2((cos(20) + cos(y — 20)) + i (sin(26) + sin(y — 20))).

If we setx = cos(20) + cos(yr — 20) and y = sin(26) + sin(yr — 26), then a computation

shows that
d (y
7 (5)=0

Hence the image of the critical circle under F; is a line segment passing through the
origin. F; maps S, onto this line in four-to-one fashion, except at the two endpoints,

which are the critical values 4 2+/.
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Note also that H, interchanges the circles centered at the origin and having radii
|A|Y4r and |2 |1/4 /r. Moreover, F;, maps each of these two circles onto an ellipse that
surrounds the image of the critical circle.

2. The Fundamental Dichotomy. We briefly recall the situation for the family of
quadratic polynomials Q.(z) =z>+c. Each map Q. has a single critical point at
0 and so, like F;, Q. has a single critical orbit. The fate of this orbit leads to the well
known fundamental dichotomy for quadratic polynomials:

L. If Q7(0) — oo, then J(Q,) is a Cantor set;
2. butif Q7(0) /> oo, then J(Q,) is a connected set.

The set of parameter values for which the quadratic Julia sets are connected is the well
known Mandelbrot set. Our goal in this section is to prove a similar result in the case
of F,. We remark that there is a more general form of this result called the escape
trichotomy that holds in the more genral case of maps of the form z” 4 % /7. We refer
to [6] for details.

Before stating this result, note that, unlike the quadratic case, there are two distinct
ways that the critical orbit of F; may tend to co. One possibility is that one (and hence
all) of the critical points lie in the immediate basin B;. The second possibility is that
the critical points do not lie in B), but eventually map into B,. For quadratic polyno-
mials this second possibility does not occur.

Theorem.

1. Ifone and hence all of the critical points of F) lie in By, then J(F,) is a Cantor set.

2. If the finite critical points of F, do not lie in By, then both J(F,) and K(F,) are
compact and connected. In particular, if the finite critical points do not lie in B;,
but are mapped to B) by I} for some n > 1, then J(F),) and K(F}) are compact,
connected, and locally connected sets.

Proof. The proof that J(F,) is a Cantor set when all critical points lie in B, is stan-
dard. See, for example, [15]. So suppose that no finite critical point lies in B; . Then
we may extend the conjugacy between F; and z? to all of B; and so Bj, is a simply con-
nected open set in C and we have F, | By, is two-to-one.

Since 0 is a pole of order two, there is an open, simply connected set 7, containing
0 and having the property that F) maps 7, in two-to-one fashion onto B,. This follows
since each of the two involutions H, interchange B; and 75 . One checks easily that 75,
possesses four-fold symmetry. Note that B, and 7), are necessarily disjoint open sets.
Note also that none of the critical points reside in 7. This follows since, if WMAeT,
then —(11/#) € T}, as well, and hence F; would be four-to-one on 7}

It is also true that none of the critical values lie in 7;. We will assume this fact for
now and provide a proof in the next section.
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Now let Ko=C— B,. Ko is compact and connected with boundary 8. Let
Ki=Ky— F[l (B)) = Ko — T,. Since B, and T, are disjoint, K is compact and con-
nected. Now consider F;l (7;.). By our assumption above, none of the critical points
of F; lies in F;l (T,). Hence each component of FA’I(TA) is mapped in one-to-one
fashion onto 7. Therefore, there are four disjoint components in this set, and each
component is open, simply connected, and disjoint from both 7}, and B;,.

We remark here that, if the critical points were to lie in F;l (T3), then FA’I(TA)
would be an annulus, not a collection of disks. This is the situation we will rule out
later.

Thus we have that K>, = K; — F. ;1 (7;.) is a compact, connected set. Now we continue
removing preimages of 7). Let K3 = K> — F. ;Z(TA). If the orbit of the critical points of
F;, do not escape to oo, then each component of F, 2(7;) is mapped one-to-one onto
a component of F. ;1 (T)) andso F. ;2 (7, consists of 16 simply connected open sets, each
of which is disjoint from the previously removed open sets. Hence K3 is compact and
connected. Continuing in this fashion, assuming that the critical points do not escape, the
components of F; " (7 ) (n > 2) are mapped one-to-one onto components of F, ;”*1 (1)
and so F,""(T),) consists of 471 simply connected open sets, each of which is disjoint
from the previously removed open sets. Hence, inductively, K,, = K,,_1 — F. ;"*1 (1) is
compact and connected for all n. Therefore K(F;) = N K, is compact and connected.
Since J is the boundary of K, J is also compact and connected.

If, on the other hand, one of the critical points lies in F. A’Z(TA), we claim that all of
the preimages of 7, under F? are still open, simply connected, and disjoint, and that
four of them are mapped two-to-one onto their images while the rest are mapped in
one-to-one fashion.

To see this, suppose that one of the critical points, say c;, lies in a component V of
F[Z(TA) that is mapped by F; onto a component of F[l (T;,). Call the image compo-
nent W. Then a second critical point, —c;,, is also mapped into W. Consequently, the
set —V containing —c;, is also mapped onto W. Now either V and —V are disjoint,
simply connected, and mapped two-to-one onto W, or else they form the same compo-
nent of the preimage of W. In the latter case, there can be no other critical points in this
component, for +ic, are mapped to —W, which is disjoint from W. Hence F) is
a degree four mapping onto a disk with exactly two critical points. This cannot
happen by the Riemann-Hurwitz formula. Therefore the former case holds, and + ¢,
lie in disjoint components of F, 2(73). Similarly, + ic; lie in disjoint components of
this set.

Thus, F, 2(T;) consists of a collection of non-intersecting, simply connected open sets
lying in K». Hence K3 is compact and connected. We now continue in the same fashion
to show inductively that K,, is compact and connected. Therefore K (F,) = N K, is com-
pact and connected, as is its boundary, J(F; ). This shows that J and K are compact and
connected if the critical orbit escapes to oo but the critical points do not lie in B;,. Also,
since no critical points accumulate on J, the map is hyperbolic and so it is known [15] that
J islocally connected.
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We emphasize once again that the critical points for /3 may not lie in B, yet the
critical orbits may eventually enter B;. As shown in the above proof, this implies that
the critical orbit passes through 7;, the disjoint preimage of B, that contains the origin.
We call T;, the trap door, since any orbit that enters 7, immediately “falls through™ it
and enters the basin at co. In this case we have a connected Julia set. In fact, we shall
show in the next section that J(F7) is a Sierpinski curve in the special case where this
occurs and |A| is sufficiently small.

We denote the set of parameter values for which J(F)) is connected by M; M is
called the connectedness locus for this family.

Proposition. The connectedness locus lies on or inside the circle of radius 3/16 +
V2/8 7~ 0.364 centered at O in the parameter plane.

Proof. The critical values are given by #2+/A. Consider the circle of radius 2[v/A|
centered at 0. If 7 lies on this circle, we have

1
[F ()= 4] = o

Note that

1
4|0 — e 21VA|
provided that

1
16|A)> —6|A| + —
6|17 — 6] |+16>0,

and this occurs if |A|>3/16+ \/5/8. Hence F, maps the circle of radius 2|v/A|
strictly outside itself for these A-values.

Now the involution H, takes this circle to the circle of radius 1/2 centered at the
origin, and we have 2|v/A| > 1/2 since |1| > 3/16 +/2/8. It follows that F; maps the
exterior of |z] =2|v/A| into itself in two-to-one fashion, so it follows that this entire
region must lie in B;. Hence the critical values lie in B, in this case. From the proof of
the fundamental dichotomy, the critical points cannot lie in the trap door and so they
too must reside in B; . Therefore A does not belongto M. O

Note that these estimates for the size of M are the best possible, for if A =1*=
—3/16 —+/2/8, then we have

1+2

Fle)=-—

1++2
2

= F}(c).

Fl ()=
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Hence the critical orbit lands on a fixed point for this particular A-value. In M, A* lies
at the leftmost tip of the connectedness locus along the negative real axis. We shall
deal with this particular A-value and other related values in Section 4.

In analogy with the situation for quadratic functions, we also have the following
escape criterion, though one can give significantly better estimates for this using the
previous result.

Proposition. Suppose |A| <2 and |z| >2. Then |F}(z)| > (1.5)"|zl, and therefore
zZ€ B)w

Proof. Wehave

A 1
@z - 2o p oL sy,
|zl 2

Inductively, we have
|F ()] > (1.5)"|z]

and the result follows.

3. Sierpinski Curve Julia Sets. In this section we describe the case where the criti-
cal points of I have orbits that tend to oo, but the critical points themselves do not lie
in the immediate basin of co. The main result here is:

Theorem. Suppose the critical orbit of F, tends to 0o, but the critical points do not
lie in the immediate basin of co. Then J(F)) is a Sierpinski curve.

A Sierpinski curve is an interesting topological space that is, by definition,
homeomorphic to the well known Sierpinski carpet fractal [12]. The Sierpinski
carpet is a set that is obtained by starting with a square in the plane and dividing it
into nine congruent subsquares, each of which has sides of length 1/3 the size of the
original square. Then the open middle square is removed, leaving eight subsquares
in the original square. Then this process is repeated: remove the open middle third
from each remaining square. This leaves 64 subsquares, each of which is 1/9 the size
of the original. Continuing, in the limit, the space that is obtained is the Sierpinski
carpet. See [3].

It is straightforward to show that the Sierpinski carpet is a compact, connected,
locally connected, nowhere dense subset of the plane. Moreover, each of the comple-
mentary domains (the removed open squares) is bounded by a simple closed curve that
is disjoint from the boundary of every other complementary domain. It is known [20]
that these properties characterize a Sierpinski curve: any planar set that is compact,
connected, locally connected, nowhere dense, and has the property that any two com-
plementary domains are bounded by pairwise disjoint simple closed curves is homeo-
morphic to the Sierpinski carpet. Hence any two Sierpinski curve Julia sets drawn
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from the family F; are homeomorphic. The interesting topology arises from the fact
that a Sierpinski curve contains a homeomorphic copy of any one-dimensional plane
continuum [17].

As an illustration of the proof of the theorem, we provide the details in the special
case where |A| < 3% /4%~ 0.1. For a proof for arbitrary A, we refer to [7].

Proposition. Suppose that |\| < 32 /4*. Then the boundary of By, is a simple closed
curve.

Proof. Suppose z lies on the circle of radius 3/4 centered at the origin. Then

A9 3
F@l<lzP+ 2 < = 4+ = =3/4
[F.(2)| <z +|z|2< 16+ 6 /

since |A| < 33/4* Hence F, maps the circle of radius 3/4 in two-to-one fashion onto
an ellipse lying inside this circle. Also note that all critical points of F; lie inside this
circle.

Let A, denote the annular region between the circle of radius 3 /4 and its preimage
that lies outside this circle. Note that F, has degree two on A, as well as in the entire
exterior region r > 3 /4 since all critical points lie in r < 3/4. Let U, denote the disk in
the complement of A, that contains the origin.

We now use quasiconformal surgery to modify F;, to a new map E; which agrees
with F;, in the region outside A; but which is conjugate to z— z2 in the interior of U,
with a fixed point at the origin. To obtain E,, we first replace [ in U, with the map
7>z on |z| < 3/4. Then we extend E; to A;, so that the new map is continuous and

1. maps A, two-to-one onto U, — E; (U,);
2. agrees with E; on the inner boundary of A,;
3. and agrees with I, on the outer boundary of A .

The map E,, is continuous and has degree 2 with two superattracting fixed points, one
at 0 and one at co. We define a new complex structure on C that is preserved by E; in
the usual manner. Hence E;, is quasiconformally conjugate to z> on all of C. Therefore
the boundary of the basin of attraction of oo for E, is a simple closed curve. Since E),
agrees with F;, in the exterior portion of A; containing oo, the same is true for F. This
proves that g, is a simple closed curve when |A| < 3%/4* O

In particular, when |A| < 33/4*, since all of the critical points lie inside the circle of
radius 3/4 centered at the origin, the only way the critical orbits can escape to co in
this case is by passing through the trap door. Therefore we have:

Corollary. The region |A| < 3°/4* lies in the interior of the connectedness locus.

Before moving on, we use the above technique to fill in the hole we left in the previous
section:
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Proposition. If the finite critical points are not in B, (so By # T,), then the critical
values of F; do not lie in T,

Proof. Let v, denote the critical values of F;. Recall that F;(v;) = F,(—v;).
Suppose for the sake of contradiction that the critical values of F; lie in the trap door.
Let y be a simple closed curve in B, that separates both co and F; (v;) from the
boundary of B, . Let I" be the closed disk in the Riemann sphere that is bounded by
y and contains both co and F; (v, ). Let A denote the preimage of I" in 7. A contains
0 and = v, in its interior.

Consider F. ;1 (A). We claim that F. ;1 (A) is an annulus that is disjoint from 7, and
also surrounds T;. We first observe that F;l (A) must be a connected set. If this were
not the case, then this set would consist of at most two components, since each preimage
of A necessarily contains at least two of the four critical points. So suppose F. ;1 (A)
consists of two disjoint components, C. and C_. If the critical point ¢, belongsto C_,
then —c,, belongs to C_ since both of these points are mapped to the same critical value.
Then the critical point ic, belongs to one of these sets, say C, so —ic, € C_.

Now apply the involution H,, to C . Recall that there are two such involutions, and
each fixes a pair of critical points. We choose the one that fixes ¢, and —c,. Since
FA (HA(Z)) = FA(Z), we have HA(C+) = C+ and HA(C,) =C_. But HA(iCA) = —iCA
and so we cannot have H, (C,)= C. This contradiction shows that F. ;1 (A) cannot
consist of two disjoint components.

So let C= F, !(A). Since C contains 4 critical points and is mapped with degree 4
onto a simply connected region, the Riemann-Hurwitz formula implies that C must be
an annulus. As in the previous Proposition, we may replace I; by a new map that agrees
with F;, outside C and is globally conjugate to z — z>. As before, this proves that the
boundary of B;, is a simple closed curve. So too is its preimage, the boundary of 7).

Now the region between B, and 7, is an annulus A that is bounded by these two
simple closed curves. Let O denote the preimage of 7) lying in A. As above, Q is an
annulus. A is then the union of three subannuli, A;,, O, and A,,;, where A;, is the
inner annulus between T3 and @, and A, is the outer annulus between @ and B; .
F, maps both A;, and A, two-to-one onto A. Therefore the modulus of A;, and A,
is one-half the modulus of A. But the modulus of the third annulus Q is positive, and
the modulus of A is the sum of the moduli of A;,,, A,, and Q. This yields a contradic-
tion. Hence the critical values cannot lie in 7}, as claimed. O

We now use this result to prove:

Theorem. Suppose |A| < 3 /4* and that the critical points of F, tend to oo but do
not lie in the the immediate basin B, of oo. Then J(F;) = K(F,) is a Sierpinski curve.

Proof. It suffices to show that J(F,) is compact, connected, locally connected,
nowhere dense, and has the property that any two complementary domains are
bounded by simple closed curves that are disjoint. The fact that both J and K are
compact, connected, and locally connected was shown in the previous section. Since
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all of the critical orbits tend to oo, it follows that J= K and hence, using standard
properties of the Julia set, J is nowhere dense.

It therefore suffices to show that all of the complementary domains are bounded by
disjoint simple closed curves. By the earlier Proposition, B, is bounded by a simple
closed curve B, lying strictly outside the circle of radius 3/4. Using the involution
H,,, the boundary of the trap door is given by H, (8, ), and so this region is bounded
by a simple closed curve disjoint from B, .

As in the previous section, the preimage of 7) consists of four simply connected
open sets whose boundaries are simple closed curves that are mapped onto the bound-
ary of 7,, which we denote by 7,. The boundaries of these components are disjoint
from B,, since this curve is invariant under F,. They are disjoint from 7, since the
boundary of the trap door is mapped to 8, whereas the boundary of the components
are mapped to 1;,, and we know that 7; N 8, = (). Finally, the boundary of each compo-
nent is disjoint from any other such boundary for a point in the intersection would nec-
essarily be a critical point. If this were the case, then the critical orbit would
eventually map to $,, contradicting our assumption that the critical orbit tends to co.
Hence the first preimages of 7, are all bounded by simple closed curves that are dis-
joint from each other as well as the boundaries of B, and 7. Continuing in this fash-
ion, we see that the preimages F, (7)) are similarly bounded by simple closed
curves that are disjoint from all earlier preimages of 8, . This gives the result. [

While these Sierpinski curve Julia sets are all homeomorphic, it is known that there
are infinitely many open sets of parameter values O; having the property that, if A,
and X, belong to distinct O;’s, then F; and F;, are not topologically conjugate on
their respective Julia sets. See [2]. The basic reason for this lack of topological conju-
gacy is the fact that, in different O;’s, the number of iterations for the critical orbit to
enter B, is different.

4. Sierpinski Gasket Julia sets. In this section we turn our attention to a different
type of Julia set that occurs for certain members of the family F,. We assume in this
section that the critical points of F;, all lie on the boundary of the immediate basin of
oo and that the critical orbit is preperiodic. We call such maps Misiurewicz-Sierpinski
maps, or MS maps, for short.

Since all of the critical points are preperiodic, the Julia set of an MS map is the com-
plement of the union of all preimages of B, just as in the Sierpinski curve case. Hence
we may construct this set inductively as in the proof of the fundamental dichotomy.
Let K¢ denote C — B, It is known that the boundary of K is a simple closed curve
(for a proof, see [6]). Let Ky = Ky — T}, and for k > 1 set

Kio =K — FNT).
Then

J(F) = ﬂ K;.
k=0
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This construction yields a very different type of Julia set in the case of MS maps.
To see this, note first that, using the involution H;, the critical points lie in the bound-
ary 7, of the trap door as well as in §,. It can be shown [6] that, in fact, the critical
points are the only points lying in the intersection of 8, and 7. Thus, when we remove
the trap door from Ky to form K, we are essentially removing an open generalized
square, a region bounded by a simple closed curve with four corners that are the four
critical points. The four corners divide the boundary of the square into four curves that
we call edges. In particular, if we remove the four critical points from K, then the
resulting set consists of four disjoint sets [, . .., I;. We assume that [} contains the
fixed point p;, that lies in B, and that the other I ; are indexed in the counterclockwise
direction. Let I; denote the closure of I }, so that [; is just I ; with two critical points
added. Then, by four-fold symmetry, I, maps /; in one-to-one fashion onto Kj.

Since there are no critical points in any of the preimages of the trap door, K is
obtained by removing 4* generalized squares from K. Each of these removed squares
is mapped homeomorphically onto the trap door by F’ f and hence each has exactly four
comers lying in the boundary of K. By definition, these corners are the preimages of
the critical points.

This process is reminiscent of the deterministic process used to construct the Sierpinski
gasket (sometimes called the Sierpinski triangle). To construct this set, we start with a
triangle and remove a middle triangle so that three congruent triangles remain, each of
which meets the other two triangles at a unique point. We then continue this process, remov-
ing 3 triangles at the k” stage. In the limit we obtain the Sierpinski gasket. In analogy with
this construction, and despite the fact that the removed sets are generalized squares rather
than triangles we call the Julia set of an MS map a generalized Sierpinski gasket.

If we consider the degree three family

~ A
FA(Z)ZZZ+ ;,

then there are analogous MS parameters for which J(F,) is a generalized Sierpinski
gasket where “triangles” are removed instead of squares. For example, when
% A~ —0.5925, the Julia set of F; is actually homeomorphic to the Sierpinski triangle. See
Figure 3.

We have the following result. See [8] for the complete proof.

Theorem. Suppose F, and F,, are two MS maps with , # p and the imaginary parts
of both i and | are positive. Then J(F,) is not homeomorphic to J(F)).

We make the assumption in this theorem that the imaginary parts of the parameters
are positive because the Julia sets of I, and F5 are easily seen to be homeomorphic.
The Julia sets of two MS maps in the family F; are displayed in Figure 5. In the first
example, the parameter value v=—3/16 — \/2/8 ~ —0.36428 lies at the leftmost tip
of the connectedness locus. The critical points can be clearly identified as the four
corners of the trap door and are mapped after three iterations onto the repelling fixed
point p,, that lies in 8,. The second example corresponds to p &~ —0.01965 + 0.2754i
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Figure 5: J(F,) for A =~ —0.36428 and A ~ —0.01965 + 0.2754i.

for which the critical points are mapped to p,, after four iterations. Rather than present
the full details of the proof of the above theorem, we will illustrate the principal ideas
using these two examples.

Note first that, in both of these images, every preimage of the boundary of the trap
door seems to have two corners lying in the boundary of a previous preimage. This
configuration holds true for every MS map as we show next.

Proposition. Let r’f be the union of all of the components of F. ;k(u) and let A be
a particular component in ¥ with k > 1. Then exactly two of the corner points of A lie
in a particular edge of a single component of 7! '
Proof. The case k=1 is seen as follows. Recall that J(F; ) is contained in the union
of four closed sets Iy, . ... I5 that meet only at the critical points and that are mapped
by F, in one-to-one fashion onto C— B,. Hence F), maps each /;NJ(F,) for
Jj=0,..., 3 in one-to-one fashion onto all of J(F; ). with F; (1;N B,) mapped onto
one of the two halves of #, lying between two critical values (which, by assumption,
are not equal to any of the critical points). Hence F; (I; N j, ) contains exactly two crit-
ical points. Similarly, F; (I; N 7,) maps onto the other half of 4, and so also meets two
critical points. The preimages of these four critical points are precisely the corers of
the component of 7} that lies in 7,. Thus we see that each component of 7; meets the
boundary of one of the /;’s in two points lying in £, and two points lying in 7, In par-
ticular, two of the comers lie in the edge of 7. that meets /;.

Now consider a component in 7% with k > 1. F¥ maps each component in =¥ onto 7,
and therefore F*~! maps the components in 7% onto one of the four components of ;.
Since each of these four components meets a particular edge of 7, in exactly two
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i . <

1

Figure 6: A topological representation of the boundaries 8, , 7,, the four components
of ! and the critical points. These curves satisfy the above configuration for every
MS map.

corner points, it follows that each component of ¥ meets an edge of one of the compo-
!'in exactly two corner points as claimed.

Figure 6 provides a caricature of B, . 7; and 7} which is valid for any MS x-value.
We seek a topological criterion that allows us to conclude that the Julia sets of two MS
maps are not homeomorphic. The following result provides a topological character-
ization of the critical points that is helpful in this regard (see [8] for the proof).

nents of rff

Proposition. Suppose F, is an MS map. The four corners of the trap door is the only
set of four points in the Julia set whose removal disconnects J(F),) into exactly four
components. Any other set of four points removed from J(F,) will yield at most three
components.

Suppose now that A and 1 are both MS parameters. If there exists a homeomorphism
h: J(F,) — J(F,).then it follows from the Proposition that:

1. h maps the corners of 7; to the corners of 7, and
2. the corners of each component of F, *(t;) are mapped to the comers of a unique
component of Fu’k(ru).

As we will show below, the configuration of the corners with respect to the curve
B, provides enough information to determine when two Julia sets are homeomorphic.
This configuration, on the other hand, is completely determined by the orbit of the
critical points.
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To specify such an orbit, we define the itinerary S(z) of a point z € J(F}) in the
natural way by recording how its orbit meanders through the regions Iy, ..., I3. That
is, S(z) = (598152 ... ) where each s; is an integer j between 0 and 3 that specifies
which I; the point FX(z) lies in. So that itineraries are unique, we modify the I |
slightly by removing one of the critical points from each I; (so this set is no longer
closed). In particular, let ¢y be the critical point of F; that lies in the fourth quadrant
and in Jy. Then let ¢; = icy, c2 = —cp, and c3 = —icy. We specify that only the critical
point ¢; now lies in /;. Using these I;’s, the fixed point p; lies in Iy so its itinerary is
givenby S(p;) = 0.1ts preimage g, € 8, liesin I5; hence S(g;) = 20. Since the critical
point ¢; lies in ; only, we have a well determined itinerary for each c;. For example if
A =va2 —0.36428, then one computes easily that the itinerary of the critical point
¢y is given by S(c1) = 1120. Using the symmetries of the map F;, it is easy to see that
S(co) =0320, S(c2) =2320 and S(c3) =3120. When A =u =~ —0.01965 4 0.2754i,
S(cy) = 11120 and thus S(c3) = 23120, S(c3) = 31120 and S(cp) = 03120.

For each MS A-value we define the k—skeleton of the Julia set, denoted by J(F3,, k),
as the union of §,, 7, and r{ for j=1, ..., k. The k—skeleton not only provides the con-
figuration of the first k preimages of 7, along §,, but if we define J = limy, _, o J(F;,, k),
then the closure of J is equal to the Julia set, J(F;).

We may construct a homeomorphism ¢ = ¢, that maps B, to the unit circle ' and
““straightens’” any other curve in J(F,, k) to a smooth curve, except at the images of
the corners. Let

M(F, ) =5"Up(m)UpT)U ... Up(th).

The set M (F,, k) represents a topological model in the plane of the k—skeleton of the
Julia set. Since F;, acts like 7 — z? when restricted to f;, the model inherits the dynam-
ics of the angle doubling map D(6) = 26 mod 27 in S!. Thus, to any point z € 8, we can
naturally associate an angle 6(z) € [0, 27r] given by the angle of ; (z) in S'. We may
assume that M (F;, k) satisfies the same symmetry relations as J(F;) and that the four
half-open regions {; are mapped to corresponding regions in M (F;, k).

To illustrate the construction of the model, consider our first example v~ —0.36428.
In this case, the critical point ¢; has itinerary (1120). Hence #(c;) = /4 and, by sym-
metry, 8(c;) =3m/4, 8(c3) =57m/4 and 0(cy) =T /4. Since every model inherits the
configuration of the Julia set for MS maps, each component of @(ri) has two corners
lying on an edge of (t,) and the two remaining corners must lie on S = (8,). We let
Xp= <,0(Fv’1 (co)) and x; = <,0(Fv’1 (c1)), so that xo and x; are the two corners that lie in
Ion ST, Similarly, we let x, and x3 be the corresponding corners in /o N @(7,). SO we
have 6(xy) = D! (Tm/4)=Tn/8 and O(x1) = D! (/4) =n/8. A rotation by a multi-
ple of /2 provides the angles of the corners lying on 7; N S 1. For example, if wo and
wy are the corresponding corners of 4,0('511)) lying in I; N !, then 6(wq) =37/8 and
6(wq) =5m/8. Figure A shows in fact the angles along Stin M(F,, 1).

To construct M (F,, 2), we will determine first the configuration of the corners of
a single component in 4,0('53) C Iy. Let U be the component of rf that is contained in
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Figure 7: The model M (F,. 2) for v~ —0.36428 is displayed to the left and M(F,,.,2)
with p =2 —0.01965 + 0.2754i is displayed to the right. Note that 6(cy(v)) =7/4 and
0c1 () =7/16,

the “triangle” 7, defined by x;. @2(c) and x». Label the corners of U by v, y1. y2 and
v;3 and assume y» and y; lie in the edge [x». x1] C rll). To compute the location of the
remaining two corners, we first note the arc [x, (c;)] C S' is mapped under D to an
arc y in I; N S'. Clearly 6(y) = [n/4. /2] and thus, the corner wy lies in y. Pulling
back y into Iy by D we obtain the corner yg € [x1, @(c1)].

A similar argument can be applied to the arc o= [ (c), x»] to obtain the location
of y1. Since D is not defined in this arc, consider first © Ny =|cq. F_fl(cz)] in
IpN J(F,). This arc is mapped by F, to [F.(c1).c2] C I N B,. Then, the homeo-
morphism ¢ sends F, (o' (a)) onto [D((c1)). @(c)]1 C 1N S'. This arc has angles
[7/2, 37 /4] and thus, the corner w; lies in it. Pulling back this point by the proper
composition of maps yields the point y; € c.

A similar process can be carried out to obtain M(F),,2) for our second example
where 1 &~ —0.01965 + 0.27544. See [8] for the details. Figure 7 shows the models for
the two MS maps discussed above. Both models display the configuration of the
corner points with respect to the angles of corners along S'.

To show the Julia sets of F, and F, are not homeomorphic, we proceed by contra-
diction. Assume there exists a homeomorphism # : J(F,) — J(F,). Recall that
a homeomorphism must send critical points to critical points and comers of compo-
nents in rk to corners of components in rﬁ. Without loss of generality, assume that
h maps cq(v) to ¢y (i) and Iy(v) onto Ty(u).

Restricting 4 to the 2-skeletons of the Julia sets, we can define a new homeo-
morphism h defined by the following diagram

J(Fy. 2) 2 M(F,.2)
nl |

I(F,, 2)— M(F,,2).
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WA 06,180

2,0 x® L) 00

Figure 8: The map h must preserve the configurations of the corners along the edges
of T, and 7,,.

Let T, denote the triangle in M (v, 2) with vertices x1 (v), ¢, (c1(v)) and x,(v). This
triangle contains a unique component U(v) C 'cll) that defines a configuration of its cor-
ners along the edges of T,,. Define 7, analogously (see Figure 8). Since there exists an
edge in 7}, that contains no corners of U(u), K cannot possibly send the configuration
given by U(v) to the configuration of U(u), and we have reached a contradiction.

The procedure to prove that any two MS maps have topologically distinct Julia sets
is similar in spirit to this construction, although in the general case one needs to pro-
ceed to the k-skeleton to show this where k may be large.

5. The Connectedness Locus. Recall that the connectedness locus M for the family
F, is the set of all A-values for which J(F)) is connected. In this section, we mimic the
Douady-Hubbard proof [11] to show that C — M is conformally equivalent to the open
unit disk I . See also [18].

As we have already noted, the point at infinity is a superattracting fixed point.
Consequently, the map F, is locally, analytically conjugate to the map z+ z> in
a neighborhood of co. In our case, there exists an analytic homeomorphism ¢, defined
in a neighborhood of oo such that

L. ¢, (00) =00
2. ¢ (00)=1
3. ¢, 0 Fu(2) = (4, ().

This homeomorphism is often called the Béttcher coordinate of F). For |z| >
max{|A|, 2}, one can use the triangle inequality to show that |F; (z)| > %|z|, and in
this case ¢, is given by the infinite product representation

00 5 1/2k+1
¢A(z)=zH(l+ )
k=0

et
where z; = Ff (2).
Let O~ denote the backwards orbit of the pole. That is,

0 (0)= 6 F50).
k=0



Sierpinski Carpets and Gaskets as Julia sets of Rational Maps 115

Associated to ¢, is the nonnegative rate-of-escape function
G, :C—0 (0)—>R
given by

) 1
Gi(z)= Jm —log, |2l

where log , is the maximum of log and 0. This function has the following properties:

Let A; be the entire basin of co. Then G;l O=C—-A4,.
Gy (zr41) = 2G5 (2r)-

G(i2) =Gy (2).

G,.(H,.(2)) = G.(2).

G, is harmonicon 4; — 0~ ©.

G, (z) =log|z| + bounded terms as |z| — oo.

G, (z) =log|¢, (2)| if ¢, (2) is defined.

Nk W=

The nonzero level sets of G, are called the equipotential curves for A;,.
We know that the immediate basin B, of oo assumes one of two topological types:

1. If the critical points are not in By, then B;, is simply connected, and the domain of
¢, can be extended to all of B, . Therefore, F;, : B, — B, is a two-to-one branched
cover with the branch point at co.

2. Ifthe finite critical points are in B;, then the Julia set of F; is a Cantor set, and B, is
the Fatou set.

In case 1, the involution H,, determines the remaining inverse image 7), of B;,. That
is, if ), = H, (B;,), then F, : T;,, — B, is also a two-to-one branched cover of B; with
branch point at 0, and

F ' (B))=B,UT,.

The distinction above results in a nice division of parameter space for the family
F, (z) into two disjoint subsets. We now focus on those values of A for which case 2
holds, i.e., those A for which the Julia set is topologically conjugate to the one-sided
shift on four symbols. Consequently, we call this subset C — M of parameter space the
shift locus. Given A € C — M, let L, denote the component of {z | G;.(z) > G, (A1)}
that contains co. Then ¢, extends naturally to all of L, . We mimic the Douady-Hubbard
uniformization of the complement of the Mandelbrot set by defining the map & :
C—M—->C—-Das

(W) =, G + 4x> .

There are three things that need to be verified to show that ® determines a conformal
equivalence between C — M and C — ID:
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1. The map & is holomorphic.

2. Ttextends to a holomorphic map from C — M U {oo} to C —D.
3. The extension is a proper map of degree one.

First, @ is holomorphic because }T 445 lies in L, for all A€ C— M and ¢, (z)
varies analytically in both z and A.
For step 2, we use the infinite product representation of ¢, . For |A| > % , we have
1 1 50 5 1/2k+1
—+4x ) == +4r 1+ —
ot (1) (3

where A, = Ff(% + 4A). From this expression, we see that

w—>4

as A — 0o, and we can extend ® to a holomorphic map from C — MU {oc} toC—D
by setting ®(00) = oc.

The map @ is proper if |P(X)]— 1 as A — dM. To show this, we compute
GA(AIT +41) as A — 9 M using two lemmas.

Lemma. The boundary 0M of the connectedness locus is contained in the annulus

3
3 << 3+2ﬁ.
44 16

The first inequality was proved in Section 3 and the second in Section 2.

Lemma. Let)\kzFf(% +4%) for k=0,1,2, ... .Then dM is a subset of
{A||Ag] <2 forall k=0,1,2,...}.

Proof. From the results of Section 2 we know that if [A| > 2, then A € C— M, so we
may assume that |A| <2.

Suppose |A| > 2 for some k. Then the escape criterion from Section 2 guarantees
that A € B,. Either A €C — M, or L € M with ;7). In the first case we have
A€M In the latter case, an open neighborhood of X also has A; € T;, and therefore
A is in the interior of M. O

For each . € C— M, let m,, correspond to the last iterate such that |A,,, | <2. Note
that the previous lemma implies that m; — oo as A — dM. For a fixed A € C — M,
we drop the subscript on m;, and we estimate G, (% +4) by considering

2\/n |Am + 1

forn=1,2,....Note that

zn\/ |)hm+n| = 2{/|k|km+n| I |)\'m+"*1| - |km+1||}hm|.

. |
ernfl|2 |)“m+n72|2 |)\m|2
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Assuming |A| < 1, we estimate all but the last two factors by

A 1
| m+k| 2k 1+ .
|)~m+k 1| =y

If k>1, we know that |, ;—1|>2, and we apply Bemoulli’s inequality
V14 x <14 x/kto obtain

k[ Aol ( 1 )
1+ .
|)‘m+k71|2 1624

|)“m+1|
o ?

The term

requires special attention because |, | < 2. For this part of the argument, it is conve-
nient to work within the disk |1 + 11—6 | < % Fix a A within this disk. Let Ay be the annulus
bounded by the circle of radius 2 centered at the origin and the ellipse that is its image
under F;.

Since the critical values of F, cannot be in Ag, Ap has two preimages. One pre-
image A; has the circle of radius 2 centered at the origin as one boundary component,
and the other preimage of Ay is H(A1). Note that A; lies outside the unit disk.

Similarly, the critical values of F; cannot be in A;, and therefore A; has two pre-
images. One preimage A, has a boundary in common with A and the other preimage
is H(Az).

Proceeding in this manner, we can produce annuli A, such that

1. F, maps A, onto A,_1 in a two-to-one fashion, and
2. one boundary component of A, is also a boundary component of A, ; as long as
the critical values of F donotliein A,,_4.

If the critical values do not lie in A,, for some n, then the Julia set of F;, is connected and

[o.¢]
{z]lz| = 2} U U A,
n=1

exhaust the immediate basin of infinity. Consequently, A,, € A1 and X, € Ay for
A € C — M. Therefore, we have

|)\.m+1 | \% 265

=
|)“m2|

Combining these two estimates with the fact that |A,,| <2, we obtain

» 265 1 1 265 1 1
Vil = B2 (14 505) < 221 (14 1031
k=2 k=2

4 16 - 2k 4 16- 2%
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Since the right-hand side of this inequality converges to some number C (independent of
those A within the annulus under consideration), we have

im V| rman] < C.

This inequality implies that G, (%,,) <logC. Consequently,

1
2" G, (Z + 4k> <logC.

Since m — oo as A — M, we conclude that

1
GA(Z +4)u> -0

as A — oM, and @ is a proper map.
We see that ® has degree one by noting that ! (0c0) = {oc}. We have proved:

Theorem. The complement C — M of the connectedness locus is conformally equiva-
lent to a disk in the Riemann sphere.
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