CS 220

Instruction
Pipelines
Single Cycle MIPS Implementation

Clock

CPU Time = __________________________

Figures are © Morgan-Kauffman Publishers 2004
Pipelining speedup

• After the pipeline is full
 ➢ washer, dryer, folder, put-away are all doing something
 ➢ A load of clothes is being finished every time unit.

• assume there are k stages in the pipeline
 ➢ How long does first load take?
 ➢ How about next n - 1 loads?
 ➢ total time is _______________
Pipelining Speedup

• Sequential washing takes nk time units
 ➢ Speedup = (time before improve/time after improve)
 ➢ Speedup = ______________

• In our example k is 4 and n is 4
 ➢ Speedup is ______________

• What if the number of loads gets large
 ➢ n = 100
 ➢ Speedup is ______________
 ➢ As n gets large speedup goes towards ______
Is this realistic?

Does folding take as long as drying?

Lets assume drying takes \(\frac{1}{2} \) as long as washing.

How can we keep the dryer busy?
What steps are needed to execute a complete instruction?
Stages of Instruction Execution

- How many cycles does an integer ALU instruction take to execute?
- Visualizing pipelined instruction execution
- Space/time diagrams

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>t0, t1, t2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slti</td>
<td>s0, s1, 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mul</td>
<td>t4, t5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Its not as easy as it sounds

- Hazards - instruction conflicts
 - Structural Hazard
 - Control hazard
 - Data Hazard
Structural Hazards

```
add $s0, $s1, $s2
beq $s3, $zero, offset
addi $t0, $t1, -1
```

Imagine that we didn’t have separate adders for updating the PC but used the ALU instead.

How can we fix a structural hazard?
Control Hazard

Loop:
```assembly
addi $t0, $t0, -1
add $s0, $s1, $s2
bne $t4, $zero, loop
ori $v0, $zero, 9
```
Data Hazard

add $s0, $s1, $s2
addi $s3, $s0, 13

Solution?
Data Hazard

- With a little extra hardware we can **forward** the output of the ALU to the ID stage.