Abstract

HARCOURT, EDWIN ALAN. Formal Specification of Instruction Set Processors and the
Derivation of Instruction Schedulers. (Under the Direction of Jon Mauney and Thomas K.
Miller, III.)

We present two techniques for formally specifying an instruction set processor at the pro-
grammer’s view — the architecture view and the timing view. From the timing specification
we show how to derive an instruction scheduler for the processor.

One technique addresses architecture specification, that is, the information required to
write correct programs. At the architectural level we present a functional semantics that
captures the property that instructions are functions from processor state to processor state.

The second specification technique addresses the programmer’s view of the timing of the
processor, that is, the needed information required to write temporally efficient programs.
We present a technique for formally describing, at a high-level, the timing properties of
pipelined, superscalar processors. We illustrate the technique by specifying and simulating
a hypothetical processor that includes many features of commercial processors including
delayed loads and branches, interlocked floating-point instructions, and multiple instruc-
tion issue. As our mathematical formalism we use SCCS, a synchronous process algebra
designed for specifying timed, concurrent systems. Putting our specification to use, we
show how to construct an instruction-scheduler from the specification by deriving appro-
priate parameters needed for instruction scheduling. These parameters include instruction
latencies, illegal instruction combinations, resource constraints, and instructions that may

be issued in parallel.
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Chapter 1

Introduction

A specification of a system is a precise description of the desired behavior of the system
which any implementation should provide. Specifications have traditionally been expressed
in natural language which, unfortunately, can be vague and hence lead to imprecision and
ambiguity. To remedy this problem many specifications are now being expressed formally
(i.e., using some mathematical framework such as first-order logic or algebraic techniques).
Once a formal specification has been written, several tasks can be performed: the specifica-
tion may be used to help derive an implementation, construct a simulator for the system,
or aid in writing documentation.

This dissertation addresses the problem of specifying an instruction set processor in a
way that is useful for building compilers. An instruction set processor is what we normally
think of as a microprocessor or CPU. Specifically, we address formally specifying a processor
at two levels: the architecture level and the instruction timing level. Also, we show how a
timing specification can be used to derive an instruction scheduler for the processor.

Formal processor specifications are valuable for a variety of reasons.

e Formal specifications aid in the design process. They require the user to thoughtfully

plan and design the system.

e Processor verification requires a formal specification in order to carry out proofs of

correctness.

e If the specification language is executable (and both SML and SCCS are) then a

timing level simulator is automatically available.



e High-level synthesis (whether compilers or hardware) requires some form of a specifi-

cation.
e Formal specifications are used for precise documentation.

Instruction set processors are best viewed hierarchically at various levels of abstraction.

A common partitioning of the hierarchy is as follows:

e The instruction set architecture (or just architecture) level is a functional view that
represents the processor as seen by the assembly language programmer (or compiler
writer). This view only includes information needed to write functionally correct

programs.

e The organization level includes the general structure of the processor in terms of
functional units which include include integer and floating point pipelines, branch

units, caches, buses, internal latches, etc.
e The logic level contains the low level implementation details of the functional units.

When discussing or making an argument about a processor one has to be clear about
the level of abstraction at issue. The user of a processor is usually concerned with the

architectural level, since the user must have this information to write correct programs.

1.1 The Architecture Level

At its highest level, an architecture is an abstract data type where memory and registers
(i.e., the machine state) constitute the data and the machine instructions are the operations
defined on the data. At this level, instructions are essentially functions that map states to
states. Usually, a simple register transfer language, or RTL, notation suffices to describe
the computational effect(s) of an instruction. For example, the instruction

Add R;, Rj, Ry
may be described by the register transfer statement

Regl[i] := Regl[j]l + Reglkl.

Until recently, there has been no language available for specifying processors at the

architectural level. Cook [29] remedied this by designing a language specifically for designing
instruction sets. Since the architecture level provides a functional view, where instructions

are functions from processor state to processor state, it can be formalized using a functional



language. In Chapter 3 we present a functional semantics of a processor at the architecture

level using the language SML [78].

1.2 Organization Detail vs. Timing Detail

Besides writing correct programs, a user would also like to write efficient programs. Hence,
the user needs more information than is contained in an architecture specification. For

example, in some RISC architectures the following instruction sequence is not the most

efficient.

(1) Load R1, (R2) ;R1 := Mem[R2]
(2) Add R2, R2, R1 ;R2 := R2 + R1
(3) Add R3, R3, #1 ;R3 := R3 + 1

Instruction (2) will usually cause an interlock (because (2) needs to wait for R1 to be
loaded from memory by (1)), which wastes cycles and causes the pipeline to stall. On
some processors the sequence is illegal which causes the value of R1 to be undefined during
instructions (1) and (2). However, instructions (2) and (3) may be switched without altering
the meaning of the program, and this switch would reduce the number of stall cycles or
make the sequence valid.

When one instruction can interact with another and alter the computational effect
in undefined ways (e.g., the load instruction above) or when we wish to capture timing
information so that we can write efficient programs, then viewing instructions as functions
is no longer sufficient. We consider this point further in Chapter 2.

In many modern instruction set processors, the temporal and concurrent properties of
the instructions are visible to the user of the processor. Consequently, such properties should
be included in a behavioral processor specification. We present a technique for formally de-
scribing, at a high-level, the timing properties of pipelined, superscalar processors [76, 55].
We illustrate the technique by specifying and simulating a hypothetical processor that
includes many features of commercial processors including delayed loads and branches, in-
terlocked floating-point instructions, and multiple instruction issue (superscalar). As our
mathematical formalism we use SCCS (Synchronous Calculus of Communication Systems),
a synchronous process algebra designed for specifying timed, concurrent systems [68, 67].
After showing how to specify a processor we parameterize the instruction scheduling prob-

lem and demonstrate how to derive these scheduling parameters from the specification,



essentially yielding an instruction scheduler for the architecture.

1.3 Static Instruction Scheduling

Once a processor has been defined at the instruction timing level there are several ways in
which the specification can be used. A hardware designer could use the specification as the
requirements specification that any implementation must meet.

However, a particular level of abstraction is both a specification of a lower level and an
implementation of a higher level. For example, the organization level can be viewed as an
implementation of the architecture level and as a specification for the logic level. In a similar
vein our timing specification could also be viewed as an implementation of the processor
for a higher level, the compiler level. It is in this way that we use our timing specification:
by extracting scheduling information from the timing specification and putting it in a form
suitable for use with an “off the shelf” instruction scheduler.

A subsequent goal of this research, then, is to utilize our specification by generating
instruction scheduling information (e.g., latencies, resource requirements) directly from the
specification. We develop algorithms that analyze SCCS descriptions and yield the instruc-
tion scheduling information. The algorithms depend on the formal operational semantics
of SCCS, which is defined in terms of an abstract machine known as a labeled transition

system.

1.4 Outline of Dissertation

The rest of this dissertation is organized as follows:

e There have been a variety of methods used to specify low-level digital hardware, both
formal and informal. Chapter 2 reviews this related research and further motivates

our choice of using the synchronous process algebra, SCCS.

e Instructions at the highest level are, mathematically, state transformation functions.
Chapter 3 gives a functional semantics to an example architecture, using the functional

language SML.

e In Chapter 4 we motivate the need for expressing programmer level timing constraints

in processor specifications.



In Chapter 5 we introduce SCCS both formally (using structural operational seman-
tics) and informally (with several examples of using SCCS to describe some simple

combinational and sequential circuits).

Chapter 6 formally specifies, using SCCS, the instructions and the their timing con-
straints of a hypothetical, yet realistic, RISC style processor.

Chapter 7 shows how we can use SCCS to specify various Superscalar configurations

of our example architecture.

The operational semantics of SCCS maps SCCS programs to abstract machines. Our
SCCS specification is, therefore, executable, in terms of the abstract machine it rep-

resents. In Chapter 8 we discuss how the behavior of our architecture is simulated.

Chapter 9 gives a brief introduction to instruction scheduling and sets the stage for

deriving instruction scheduling information from the SCCS specification.

Chapter 10 describes how to derive instruction scheduling parameters, including in-
struction latencies, resource constraints, illegal instruction sequences (e.g., delayed

loads) and multiple instruction issue.
Chapter 11 concludes and discusses future research.

For purposes of introducing SCCS with some simple examples, Appendix A gives
the SCCS implementation (using the Concurrency Workbench) of some simple digital

circuits.

Appendix B gives an SCCS implementation of our example RISC architecture using

the Concurrency Workbench.



Chapter 2

Mathematical Specifications and

Related Research

At first, researchers hoped that there might exist some one unique ideal specification
language. But what could it be? Perhaps some kind of logic, say full first order
logic? Or perhaps Horn clause logic? Or equational logic? Or LCF? What about
the lambda calculus? Or perhaps we should take a state transition approach ...?
But none of these seemed to work.

(Joseph Goguen — One, None, a Hundred Thousand Specification Languages)

There are many formalisms available and currently being applied for specifying the in-
tended behavior and/or semantics of computer hardware and architectures. In this chapter
we review hardware description languages (e.g., Verilog and VHDL) [65, 3, 29, 5, 6, 40],
formal specification languages such as first-order logic [18], higher-order logic [47, 11, 91, 9,
61, 10], temporal logic [80, 94, 43], equational algebra [90, 42, 39|, relational algebra [85],
concurrency formalisms [53, 67, 68, 69, 66, 17, 34, 44, 8, 16, 83], the Z specification lan-
guage [13, 12, 87|, type theory [54, 48], and the lambda calculus [45, 46, 88, 75, 21]. We
also review compiler code generator generators which also provide specification languages

for describing processors [1, 37, 33, 81, 15].

2.1 Hardware Description Languages

The term “hardware description language” (or HDL) is not a well-defined term. Tradition-

ally it means “any language used to specify hardware”. But this definition is too broad as



this would include imperative programming languages such as C, Pascal, and Ada and ab-
stract formalisms such as Constructive Type Theory [54] and Category Theory [85]. Usually
an HDL refers to languages such as VHDL and Verilog which are imperative style program-
ming languages extended with primitives and libraries that aid in describing hardware.

There are a variety of HDL’s such as Verilog [92], VHDL [62], ISPS [5], and ELLA [72].
All of them suffer in that they lack a formal definition. HDL’s are extensions of imperative
programming languages and their problems can be traced to the problems of imperative
languages — such as aliasing and side-effects. It has also been suggested that HDL’s be
abandoned altogether and that imperative programming languages be used. Using Ada as
an HDL has been addressed in [6, 40]. Also, while HDL’s are useful for simulating low-level
digital hardware they are unsuitable for use in high-level processor specification as pointed
out by Cook [29].

VHDL is one of the more popular hardware description languages [62]; Figure 2.1 shows
the VHDL code that describes the behavior of a simple inverter. There is nothing too
surprising about this description other than that it is a lot of code for specifying a simple
inverter. A more serious problem, however, is that, since VHDL is not formally defined,
attempting to ascertain the behavior of even simple circuits (let alone more complicated
circuits) is dependent upon individual implementations of VHDL. For example, the key-
word, transport in the inverter specification specifies that the delay in the after clause
corresponds to the propagation delay associated with passing a value through a wire. If
the keyword transport is omitted then delay corresponds, not to a propagation delay in a
wire, but to the “hold time”, that is, the amount of time the signal must persist in order for
it to be considered as a signal. Other timing complications are introduced by the various
forms of the wait statement on processes — wait, wait on, wait for, wait until, wait
time-expression.

Another criticism frequently leveled at VHDL is that the timing primitives of VHDL are
low-level and overly concrete as the programmer is required to specify timing constraints
in nanoseconds or femtoseconds (one femtosecond is the smallest unit of time in VHDL). If
one wishes to view time more abstractly in terms of, say, clock cycles then a “clock process”
must be constructed that models a clock and every process must then perform their actions
based on a signal that this clock process emits. These same criticisms apply to Verilog, the

other most widely used HDL, as it is similar to VHDL.



— Define some enumeration types.
type Logic 1s (°0°,°1°);
type Delay_flag 1is (Zero_delay,Const_delay);

— The interface to the inverter.
entity INV 1is
generic (Time_flag: Delay_flag);
port (X: im Logic;Y: out Logic);
end INV;

— Specify the behavior of the inverter.
architecture Behavior of INV is

begin
p0: process
variable delay: Time := 0 Ns;
begin
if Time_flag = Const_delay then delay := 0.83 Ns;
end if;

if X = °0° then
Y <= transport ’1’ after delay;

else
Y <= transport ’0’ after delay;
end if;

wait on X;
end process;
end Behavior;

Figure 2.1: A VHDL description of an inverter.




2.2 Formal Specification Languages

A formal specification language is one that is based on some rigorous mathematical frame-
work. The specification then becomes amenable to analysis using the mathematical tools
of the framework. For example, if we specify a system using first-order logic we may then
be able to use resolution to perform proofs about the system.

Formal specification languages fall into two broad categories: functional (or relational)
and reactive. A functional view of a system is one that maps an initial state to a final state.
(Or in the relational view, mapping an input to a set of outputs). This view is appropriate
for programs that accept all of their inputs when the program begins executing and yields its
output when the program terminates [80]. For example, a compiler maps source programs
to target programs.

Some systems have no final output and termination is viewed as a catastrophe rather
than as a virtue. The behavior of these reactive systems is defined in terms of the ongoing
interaction with their environment. For example, an operating system should not terminate
and has no final output but has an ongoing interaction with users to service their requests.
Any concurrent system can be viewed as reactive because, even if its overall role is functional,
the system is composed of interacting components [80]. It is in this way that we view a
microprocessor: reactively as a system of interacting components (instructions, registers,
and functional units).

A recent overview of formal methods applied to the design and analysis of digital systems

can be found in [90].

2.2.1 Sequential Formalisms

We use the term sequential to mean a formalism that does not include primitives to specify
concurrency or time. Sequential formalisms include functional languages (based on the

A-calculus), algebraic theories, first-order logic, and higher-order logic.

Functional Specification

There has been some research into specifying hardware and architectures using functional
methods. Paillet [75] presents a functional semantics of a CISC-style microprocessor at
the instruction set level. No attempt was made to specify instruction timing properties or
instruction interaction; rather the intent of the research was to use the specification as a

basis to verify an implementation, although this was not done.



fun HalfAdder(a,b) = (a <> b, a andalso b)

fun FullAdder(Cin, a, b) =
let
val (Sum’’, Carry’) = HalfAdder(a,b)
val (Sum’, Carry’’) = HalfAdder(Cin,Sum’’)

in
(Sum’, Carry’ orelse Carry’’)
end

Figure 2.2: A full-adder specified in SML.

Charlton [21] presents a technique of introducing a clock into a functional specification
by using “lazy lists” to represent an infinite stream of clock pulses. The research was limited
to a consideration of how one could introduce a clock in a functional model; nothing was
subsequently done with the specification.

Gordon [45, 46] represents finite-state systems using the A-calculus. He then showed
how one could verify circuits in the A-calculus using fizpoint induction. As an example,
Figure 2.2 uses the functional language SML to specify a full-adder from two half-adders.

Of the various abstraction levels of a processor the functional view is appropriate if
we wish to view it at its highest level — the architecture. In this view, instructions are
functions from states to states. However, a function that represents an instruction specifies
final values of an instruction and not how this value was computed nor how long it took to

compute. This view makes it difficult to specify timing or instruction interaction.

HOL — Higher-Order Logic

Probably the most widely used formalism for formally specifying hardware is higher-order
logic; in particular, the logic embodied in the HOL system of Gordon. (See Gordon [47] for
an introduction to HOL and Melham [64] for using HOL in hardware verification.) Higher
Order Logic is an extension of first-order logic in which variables can range over functions
and predicates. HOL uses the lambda calculus to specify functions and, consequently,
subsumes functional methods.

HOL is very expressive and has been used to describe other formalisms such as a subset
of VHDL [11], CCS [68] (the asynchronous version of SCCS), the 7-calculus[70] (higher
order CCS), and Hoare’s CSP [53]. This suggests that HOL is a good meta-language and is
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useful for defining other formalisms within HOL. However, there is a sense in which HOL

is too expressive, according to Goguen [42]:

“most logics are too expressivel We need more restricted logics ... in order to get
executable specification languages that can be used for rapid prototyping and even
efficient programming. And we certainly want to avoid specifying systems that are

unimplementable because they involve uncomputable functions or relations”.

Higher order logic is undecidable. That is, it is undecidable whether a statement in
higher order logic is true. Consequently, the HOL system is not a theorem prover but a
proof checker and provides a “support environment” for carrying out proofs in HOL by
hand. Moreover, HOL can not directly be used to simulate the system being specified as
there is no notion of the operational behavior of an HOL statement [90].

As in functional methods, neither time nor concurrency are primitives in the logic but are
encoded. However, because of HOL’s expressiveness it is somewhat easier to represent both
time and concurrency than in a functional approach. For example, to represent concurrency
in HOL we do not need to talk about sets of final values but simply define two events a
and B to occur in parallel if @ and 3 are both true at time ¢, that is, if a(t) A B(¢) holds.
So logical conjunction is used to compose two elements in parallel.

Typically, time is represented using the natural numbers (0,1, 2, 3,... usually abbrevi-
ated w). Consider two ports, in and out. A port can be represented as a function from
time to booleans.

in, out € w — bool

We use HOL’s logical operations (the standard V,A,V, 3, =) to specify constraints on
the port values. For example, the invariant that the value at port out at time ¢ + 1 is the

same as the value on port in at time £ is specified as,
Vt € w.(out(t + 1) = in(t))

Equation 2.1 represents a one bit unit delay element where the output at time ¢ is the
same as the input at time ¢t — 1. Equation 2.1 also specifies that, at time 0 (power up), the

contents of the register is 0.

Reg(in, out € w — bool) ' Vt € w.out(t) = ((t = 0) = 0| in(t — 1)) (2.1)

The notation cond = true| false is a conditional expression.
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Equation 2.2 “connects” two registers together creating a delay circuit that inputs a bit
at time ¢ and outputs it at time £ + 2. The types of the ports in, out, £ are omitted for

readability but are functions from time to booleans as in Equation 2.1.

TwoRegs(in, out) def Vin.Vout.34.( Reg(in, £) A Reg({, out)) (2.2)

Equation 2.2 shows how, using conjunction, two registers are instantiated in parallel. Exis-
tentially quantifying the variable £ makes an internal connection between the two registers.

In [26] Cohn describes the Viper microprocessor using HOL. The Viper is a microcoded
processor that does not include any instruction-level parallel properties. Also, in [52], Her-
bert discusses specifying and verifying microcoded microprocessors using HOL in general.

Again, the techniques do not address instruction-level parallelism.

2.2.2 Formalisms of Concurrency and Time

There are well developed formalisms for explicitly dealing with reactive systems. The most

common formalisms are process algebras and modal and temporal logics.

Process Calculi

There are a variety of formalisms for specifying asynchronous and/or synchronous con-
current systems including Petri Nets [16], CCS [68, 69], SCCS [68, 67], ACP [4], CIR-
CAL [66, 34], HOP [44], ESTEREL [8], the 7-calculus [70], and CSP [53].

Process algebras have been used to give a semantics to a communications protocol
language, LOTOS [17]; a parallel object oriented language, POOL [4]; a computer integrated
manufacturing system [4]; to low-level digital hardware [66]; and biological ecosystems [95].
The various calculi can be divided into asynchronous and synchronous languages. The
synchronous languages can be considered “more expressive” as it is typically possible to
embed an asynchronous calculus within a synchronous one. For example, the asynchronous
calculus CCS is definable within the synchronous calculus SCCS [67].

In an asynchronous formalism parallelism is reduced to non-determinism (or interleav-

ing). For example, let
e A X B mean processes A and B execute in parallel;
e A + B mean non-deterministically execute either A or B;

e a.A mean execute the action a and then become the process A.
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In an asynchronous formalism if the process A can do some action @ and become the process
A" we will write A -2 A’; the process B can do some action b and become the process
B’ then the process A x B is equivalent to the process a.(A’ x B) 4+ b.(4 x B'). That is,
the process A X B can execute A for a step or B for a step but not both at the same time
(forgetting for the moment the possibility that A and B might wish to communicate).
This is not the correct way to view clocked hardware as a circuit does not operate by in-
terleaving the execution of the subcomponents of the circuit. This problem of asynchronous
formalisms has been pointed out by Berry [8]. For example, if we construct a half-adder
from an or-gate and an xor-gate the circuit does not operate by computing the result of
the or-gate and then computing the result of the xor-gate (or vice-versa) but by really com-
puting both the or and the zor at the same time. Consequently, we dismiss asynchronous
calculi (i.e., CCS, ACP, LOTOS, CSP, Petri Nets) as they can not directly represent the
global clock associated with hardware. They have, however, been applied for representing

asynchronous circuits, a current area of active research [19].

Synchronous Process Algebras

Several of the algebras cited above (SCCS, EsTEREL, CIRCAL, HOP) are designed for
specifying synchronous systems, in other words, systems that have a global clock where
events occur based on the clock and processes execute in lock step. Given the above example,
the process A X B is equivalent to the process a x b.(A' x B') where “x” is some binary
operation on actions. This means that both A and B perform their actions on the same
clock cycle. Here, x is now being used as a synchronous parallel operator rather than an
interleaving one.

The synchronous languages are all related in that SCCS is the father of them all. Qur

choice of using SCCS over the other synchronous formalisms is largely pragmatic. SCCS:

e is the most widely used and known

is the most mature and formally developed

has a large body of research to draw upon for doing formal analysis

has tools available for carrying out analysis [25]

has a simple syntax

has a clear and concise operational semantics
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e is compositional, allowing larger systems to be composed of smaller ones.

No one has yet applied SCCS to the problem of hardware specification.

Modal and Temporal Logic

There are some logics that deal explicitly with time and concurrency [43, 94, 80]. Modal
logic extends classical propositional or first-order logic by by including two operators O and
<& that represent “necessity” and “possibility”. (Really, the logic only need include one
of the operators as one can always be defined in terms of the other using negation.) In a
temporal context these operators are usually interpreted as “henceforth” and “eventually”.

For example, the temporal logic of Pnueli [80] has a temporal operator O that means
“henceforth” and an operator () that means “next”. Consider the example from the dis-
cussion on HOL where we wished to represent the invariant that the value on a port in at

time ¢t appeared at port out at time £ + 1. This can be represented in temporal logic by
O((Qout) < in).

This says that “from now on, the next output is equal to the current input.”

It turns out that there is a strong connection between modal (temporal) logics and
process calculi. In fact we will use a particular modal logic, the u-calculus, to check whether
our microprocessor, specified in SCCS, has certain properties. This connection between
modal/temporal logic and process algebra was first established by Pnueli [80]. Briefly, the
relationship is this: the operational semantics of SCCS is defined in terms of a labeled
transition system (defined in Chapter 5). In turn, the labeled transition system is used as
a model for formulae in the modal logic [94]. That is, the abstract machine generated by
the operational semantics of one language (SCCS) is used as a model of another (the modal

p-calculus). In Chapter 10 we will discuss this in more detail.

2.3 Compiler Code Generator Generation Languages

The compiler research area of retargetable code generation offers another method of specify-
ing an architecture. A retargetable code generator uses a general code generation strategy
(often some type of pattern matching as in Twig [1]) parameterized by the properties of
the architecture which are encapsulated in a machine description. However, the term “ma-

chine description” is misleading as the machine description does not describe a machine
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as much as it describes an intermediate language (IL). A better term would be “code
generator description” as one would expect that a machine description describe an architec-
ture’s instructions directly by mapping them to some other language. But what a machine
description describes is how the compiler’s intermediate language maps to the machine’s

instructions. That is, we would expect

Machine Description: Instructions — IL
but what we really have is

Machine Description: IL — Instructions

This problem has been remedied by Giegerich [41] who proposes a way of inverting the
machine description. Until recently, these retargetable code generation systems have dealt
only with instruction selection and not instruction scheduling. That is, they have not dealt
with instruction timing properties.

There has been some work by Bradlee [15] and Proebsting and Fraser [81] (called PF
from here on) in compiler code generator description languages where instruction timing
properties are inserted into the machine description to try and address the appropriate
user-level view of instruction timing. Bradlee was the first to propose extending machine
descriptions with instruction timing properties. The specification language, Marion, was
subsequently used to perform retargetable instruction scheduling and as a basis for integrat-
ing register allocation with instruction scheduling. The goal of PF was to generate, from
a specification of the resource requirements of a processor, a space-efficient state transition
graph that can be used for instruction scheduling. Consequently PF’s machine descrip-
tion only includes a method of specifying resource requirements and is not as expressive
as Bradlee’s. Since our primary interest is on specification and because Marion is more

expressive than PF’s description language we only consider Bradlee in detail.

2.3.1 Resource Requirements

From the time an instruction is fetched to the time it has completed typically takes sev-
eral cycles. On each cycle, an instruction uses a subset of the processor’s resources. The
specification languages of PF and Bradlee specify these resource requirements directly. For
example, the MIPS/R4000 processor’s [56] floating-point unit has as its resource set an un-
packer, shifter, adder, rounder, two-stage multiplier, divider, and two exception resources.

These are abbreviated by Bradlee as U, S, A, R, M1, M2, D, E1, and E2 respectively.
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Using Marion’s syntax the resource constraints of the MIPS R4000 processor’s single
precision floating-point divide instruction, div.s, is specified as
[U; S,A; S,R; S; D*13; D,A; D,R; D,A; D,R; A; R]

which means that the div.s instruction uses the
e unpacker on the first cycle
e shifter and adder on the second cycle
e shifter and rounder on the third cycle
e shifter on the fourth cycle
e divider only for thirteen consecutive cycle starting on cycle five

and so on.

There are two main criticisms of Marion. The first criticism is that it is not formal
as we only have intuitive notions of what the operators “;”, “”, and “*” mean. This
precludes Marion from being used for anything except for use with Bradlee’s own algorithms.
That is, in order to use Marion for other tasks, which we expect from a specification
(i.e., verification, simulation, documentation) the specification language needs to be given
a formal definition.

The second criticism of Marion and this approach is that it is sometimes a too low-
level way of specifying the timing constraints of an instruction. For example, the Marion
specification of the resource requirements for the MIPS/R3000 processor single precision
integer addition instruction, add, is given as:

[IF; RD; ALU; MEM; WB]
which specifies that the instruction uses a different resource on each clock cycle, cycles 1
through 5. More specifically, IF, RD, ALU, MEM, WB represent the instruction fetch, register
read, execute, memory access, and register write back stages of the integer pipeline respec-
tively (though this information can only be inferred by the reader from already knowing
how instruction pipelines are usually structured).

Yet, there are no timing constraints on the MIPS’s add instruction and, in a program,
the add instruction can be used in any context. This is impossible to ascertain from the
description because we do not know precisely what the description means. As it turns out,
the reason that there are no constraints is that there are other resources — forwarding

hardware — which are left unspecified. It is not possible to specify these extra resources
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as it does not suffice to just enumerate the forwarding hardware as resources in the spec-
ification language. One must specify how the forwarding resources are connected to the
other resources and how they interact. This capability is currently beyond the specification

languages of both PF and Bradlee.

2.3.2 A Marion Extension

To remedy the situation where Marion’s resource vector does not accurately reflect the
timing properties of the instruction, Bradlee associates a delay value with the instruction.
In his notation, the add instruction is now specified as:
[IF; RD; ALU; MEM; WB] (1)

Here, the (1) represents the latency of the instruction, or how many cycles need to pass
before a subsequent instruction can use the result produced by the add. Since the latency is
only one, the very next instruction may use the result. Now, in this case, the resource vector
does not yield any useful information about the instruction’s timing constraint, which is
contained in the extra parameter — the delay value (1). So sometimes specifying resources
is unnecessary as the timing constraints of the instruction do not depend on them. However,
if an instruction’s timing constraints do depend on resource constraints then resources need
to be included in the instruction specification. While omitting unproblematic resources is
not possible in Marion, we will see that our specification technique using SCCS will allow
us to specify latency values with or without resource information depending on whether it
is needed or not.

The situation is actually more complicated. Bradlee also associates with each instruc-
tion a value that represents the number of delay slots for the instruction, which, for most
instructions is zero. For example, the statement

[IF; RD; ALU] (2,1)
represents the timing constraints of a delayed branch instruction. The tuple (2,1) rep-
resents the latency and the number of required delay slots respectively. Furthermore, a
negative value for the number of delay slots indicates that the instructions in the delay
slots are only executed if the branch is taken. A positive value indicates that the instruc-

tions are always executed.
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2.3.3 Other Processor Features

Some processors use priority schemes to resolve resource conflicts For example, the Motorola
88000 uses gives priority of certain instruction over others if they both require the data bus
on the same cycle [2]. Expressing this is not possible in the framework of Bradlee and PF
but is in SCCS (and process algebras in general) [20].

Also, superscalar processors execute more than one instruction on each cycle. Specifying

this will be possible in SCCS but is not within the frameworks of Bradlee and PF.

2.4 Summary — The Specification Language Zoo

In this chapter we have reviewed two areas of processor specification each adopting a partic-
ular viewpoint: 1) hardware description languages (HDLs) and 2) compiler code generator
machine descriptions. We argued that the language we require should be formal and be
able to explicitly specify the temporal and concurrent properties of instructions. We then
argued that no one has addressed formally specifying instruction timing at the appropriate
user level.

In the compiler code generation view we indicated that, while there were attempts
to specify architectures at the correct user’s timing level, the attempts were ad hoc and
informal and were only partially successful at hitting the correct level of abstraction. With
these criticisms at hand we then justified our choice of using SCCS as our specification
language.

Figure 2.3 shows a classification of the various languages and formalisms from the point
of processor specification as discussed in this chapter. From our perspective, every language
is a processor specification language which is categorized as either a hardware description
language or a code generator description language (Marion and Twig). VHDL, Verilog, and
ELLA are informal hardware description languages. SML and Haskell are two particular
implementations of the A-calculus. HOL is an implementation of higher-order-logic. CTL
(Computational tree logic, a particular temporal logic) and the p-calculus are two particular
modal logics that are related to process algebra in that they are used to describe reactive
systems. SCCS, CIRCAL, and ESTEREL are synchronous process algebras while CCS,
Petri Nets, and CSP are asynchronous process formalisms. The tree diagram represents
the current situation and does not mean to imply that there will never be such a thing as
a formal code generator description language. Also there has been some work at giving

VHDL a formal semantics [74] (currently only subsets of VHDL) which could move it into
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Figure 2.3: The classification of specification languages.




the realm of a formal hardware description language.
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Chapter 3

Functional ISA Specification

In this chapter we present a methodology for formally specifying a denotational (or func-
tional) semantics of an instruction set architecture. More specifically, since there are basic
architectural operations common to all architectures (e.g., reading and writing registers
and memory) we create an abstract data type of primitive architectural operations suit-
able for representing a wide variety of architectures. This functional view specifies final

computations of instructions and not instruction timing properties.

3.1 Denotational Semantics

A denotational semantics of a programming language represents each syntactic construct of
the language in terms of mathematical objects (e.g., sets, functions, relations). We can view
an architecture as a low-level programming language (but a high-level view of a processor)
in which each instruction is a syntactic object that represents an operation on the state of

the processor. That is, an instruction is a state transformation function
T : State — State

and State is the type of a function from locations (register numbers or memory addresses)

to values (integers).

State = Locations — Values
Locations = RegNums + Addresses
Values = integer
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If p is the state function then p(z) is the value stored at location z. A new state can be
built from an old state p with the state update function p[z — d] which means “the state p
with z updated to d”. Given this definition of state we can begin to describe the semantics

of individual instructions. For example, the MIPS Add instruction is defined by
I[ 2dd R;, Rj, B [p = p[Ri > p(R;) + p(Rs)]

The notation I| - ] represents the valuation function. The metabrackets “[ - ]” sur-
round the syntax of an instruction and separate the language being defined from the defining
language. The state function p is an argument to the valuation function and an updated
valuation function is returned. This coincides with our definition of instructions being
functions from state to state.

The advantage of a denotational semantics is that it provides a facility to reason about
specifications and to mathematically prove properties about the specification. For example,
consider the definition of an instruction that increments by one the value stored in the
register

I[ Inc B; Jlp=p[Ri— p(Ri)+ 1]

Given the definitions of Add and Inc it is now an easy matter to prove that
Inc R; = Add3 R;, R;, 1

by checking that
I[ Inc R; | =1I[ Add3 R;, R;, 1 ]

“—"

By substituting each side of the with its definition we see that

p[Ri — p(R;) + 1] = p[R; — p(R;) + 1]

This property of being able to substitute equals for equals is known as referential trans-
parency and is a property of functional specifications not shared by traditional imperative

programming languages and some hardware specification languages such as VHDL or Ver-
ilog [9].
3.2 Semantic Algebras

We make our denotational specifications more readable and easier to work with by creating

a library of architectural primitives. This library is essentially an abstract data type and is
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sometimes called a semantic algebra [84]. The operations defined by the semantic algebra
are called semantic actions. Rather than specify the architecture directly as a denotational
semantics we first translate it into semantic actions defined by the semantic algebra. The
semantic algebra is a register transfer language, or RTL, which is then specified denotation-
ally.

This specification technique is unique in that:

e Specifying the semantic actions occurs once. When this is done, many architectures

can be specified using the predefined actions.

e The semantics of the actions need not be specified denotationally, but could be speci-
fied using any formal semantic method (e.g. operational or algebraic semantics). This
gives our semantic specification an abstractness and modularity that is absent from
other semantic specification methods. This style of semantics is called a separated

semantics [60].

3.3 The Semantics of ISA’s

The denotational semantics of an ISA will comprise the three parts of a semantics: a

syntactic domain, a semantic domain, and a valuation function.

e Syntactic domain — The syntactic domain is the instruction formats of the archi-

tecture being specified.

¢ Semantic domain — The semantic domain is a set of semantic actions. In this

paper we use actions that implement a register transfer language (RTL).

e Valuation function — A valuation function specifies how an item in the syntactic
domain maps to an item in the semantic domain. In this case, the valuation function

formally describes an instruction in terms of semantic actions.

To illustrate the process we use the PDP-11 as an example ISA.

3.3.1 Notation

It is common to use a modern functional language to specify a denotational semantics [60],
and in our case we will use Standard ML. While SML is not completely referentially trans-
parent, due to its imperative features, its semantics is formally specified. Also, if we restrict

ourselves to the purely functional subset we keep referential transparency.

23



Traditionally, the syntactic domain is specified with a context-free grammar. Since the
syntax of instructions is simple, SML’s algebraic data type constructor (datatype) is used
to specify the abstract syntax.

The semantic domain is a set of semantic actions that represent basic architectural
operations and, as was mentioned before, is RTL. The semantic actions constitute a language
with a syntax and a semantics and, to be complete, both must be specified.

The valuation function in a traditional denotational description will be described us-
ing SML functions. Since our semantics is directly coded into SML, a simulator for the

architecture is immediately available.

3.3.2 The Syntactic Domain

The syntactic domain consists of the ISA’s instruction formats. Figure 3.1 shows the SML
definition of the syntax of the PDP-11 instruction formats. For example, the PDP-11
instruction Add RO, (R1)+ is represented by the SML construct,

TwoOp1(ADD, RegDirect(0), AutoInc(1))

and the instruction Add 10(R2), #10 is represented by,

TwoOp1(ADD, Indexed(10,2), Immediate(10))

Here, TwoOp1, RegDirect, AutoInc, Indexed, and Immediate are type constructors (or

tags).

3.3.3 The Semantic Actions

This section describes the syntax of the language of semantic actions (RTL). We defer their
implementation until Section 3.4. The choice of the semantic actions is important: they
must be capable of specifying the low-level semantics of a machine instruction and also be
suitable as an intermediate representation for the front end of a compiler. Register transfer
language (RTL) satisfies both criteria[32]. Figure 3.2 shows the SML representation of the
RTL syntax. The RTL semantic actions constitute an abstract data type that separates
the RTL syntax from its semantics. Now, the syntax can be used effectively for pattern
matching. This keeps the low-level implementation details of the RTL operators hidden.
The RTL actions are of two kinds — wvalues and imperatives. Value actions produce
values (e.g., memory fetching, register access, addition, etc.) and imperative actions alter

the state (e.g., assignment and statement sequencing). A valid RTL program is a sequence
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type Regllum = int
type Offset = int
type ImmediateValue = int

(* Instruction formats *)
datatype Instruction =

TwoOpl of (TwoOpInstrl * Operand * Operand) |
TwoOp2 of (TwoOpInstr2 * int * Operand) |
OneOp of (OneOpInstr * Operand) [
Branch of (BranchInstr * int)

(* Instructions allowed for each format *)

and TwoOpInstri = ADD | MOV | MOVB
and TwoOpInstr2 = XOR | MUL | DIV
and OneOpInstr CLR | CLRB | INC
and BranchInstr = BR | BNE | BEQ

SUB | CMP | CMPB

ASH | ASHC

EC

BGT | BGE | BLT | BLE

=]

(* Operand formats and addressing modes *)

AutoIncIndirect of int

and Operand = RegDirect of int |

RegIndirect of int |
AutoInc of int |
AutoDec of int |
Immediate of int |
Indexed of (int * int) |

|

|

AutoDecIndirect of int
IndexedIndirect of (int * int)

Figure 3.1: Syntactic domain that specifies PDP-11 instruction formats.
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datatype

Mode = CC | Address | Int8

¥ O K X K ¥ X ¥ *

*
*
*
*
*
*
*

Int16 | Int32 |

Value)

int)

Value * Value)
Value * Value)
Value * Value)
Value * Value)
Value * Value)
Value)

int)

Value * Value)
Value * Value)
Value * Value)
Value * Value)
Value * Value)
Value * Value)
Value * Value)

If_Then_Else of (Value * Value * Value)

(* Program counter and condition codes. *)

of (Imperative list) |
of (Imperative list) |
of (Value * Value) |

and
Value =

(* Arithmetic operators *)
Mem of (Mode
Reg of (Mode
Add of (Mode
Sub of (Mode
Mul of (Mode
Div of (Mode
Mod of (Mode
Uminus of (Mode
Integer of (Mode
(¥ Comparison operators *)
Compare of (Mode
Eq of (Mode
Neq of (Mode
Gt of (Mode
Gteq of (Mode
Lt of (Mode
Lteq of (Mode
PC
N
N
Z
C

and

Imperative =

Sequence
Parallel
Assign
Call of Value |
Nop |
Return
Figure 3.2:

Int64 | Float

| DoubleFloat

Syntax of semantic actions that specify RTL.
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of imperatives. The Parallel operator specifies that an instruction has multiple effects
on the state that occur simultaneously. For example, an instruction ADD Dest, Source
performs the operation Dest = Dest+ Source and, in parallel, assigns condition codes based

on Dest + Source.

3.3.4 The Valuation Function

The valuation function maps syntactic objects (instructions) to semantic actions (RTL).
We specify the valuation function in two parts, addressing modes and instructions. The
valuation functions build prefiz operator terms (or abstract syntaz trees) that represent the
effect of the operations. It is these terms that can either be given a semantics (as we will
do in the next section), matched for code selection [1, 32], or analyzed for code optimizer
generation [36].

In the following discussion, for the sake of clarity, and adhering to common notational

conventions, we have strayed slightly from strict SML syntax.

Addressing Modes— A valuation function for an addressing mode returns a Value
(figure 3.2) that describes how an operand is accessed. Some addressing modes (e.g., auto-
increment /decrement modes) cause side effects on the processor state. Consequently, an
addressing mode also returns an Imperative that specifies this side-effect. Where no side-
effects take place, the imperative Nop is returned. The type for the addressing mode valu-

ation function Op is:
Op: Operand — Mode — (ValueXx Imperative)

Where the type Operand (figure 3.1) represents an operand including its addressing mode
and Mode (figure 3.2) is the size of the data being accessed. Function Op is higher-order: Op
takes Operand and returns a function from Mode to a tuple.
For example, consider the auto-increment addressing mode. The valuation function Op
is
Op [ AutoInc(Reglium) ]| Mode =
let
val r = Reg(Addr, Reglium)
in
(Mem(Mode, r),

Assign(r,Add(Addr,r,Int (Int8,Sizeof (Mode)))))
end
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Op returns a tuple, the first item of which is how the operand is accessed and the second item
is the side-effect of the auto-increment addressing mode. “AutoInc(RegNum)” is abstract
syntax and Reg, Mem, Assign, Add, and Integer are semantic actions. The remainder of

the PDP-11’s addressing modes are similarly defined and are shown in figure 3.3.

Instructions— A valuation function for an instruction constructs an Imperative by
combining the actions of the operands with the action that represents the semantics of the

instruction. The function Instr has type
Instr: Instruction — Imperative

For example, the PDP-11 MOV instruction is specified by the following valuation function,
Instr:

Instr [ (TwoOp1(MOV, DestMode, SrclMode)) | =
let
val (Dest, S’) = Op | DestMode ]| Int16
and (Src, S’’) = 0p [ SrcMode ] Inti6
in
Sequence ([
Parallell
Assign(Dest,Src),
Assign(Z,Eq(Int16,Src,Integer(Int16,0))),
Assign(N,Lt(Int16,Src,Integer(Int16,0)))],
Parallells’, S°°11)
end

Two subtrees, S’ and S”, are constructed that represent side-effects from both operand
accesses. These subtrees are combined with the subtree that represents the effect or meaning

of the operation.

An instruction can alter the state in three ways.
e Explicitly
e Through a side effect of the addressing mode.

e By setting condition codes.

The remainder of the PDP-11 instructions are similarly defined and are shown in figures 3.4,

3.5, and 3.6.
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fun Op (RegDirect(RegNum)) Mode = (* Register Direct *)
(Reg(Mode, Reglium), Nop)

| Op (RegIndirect(RegNum)) Mode = (* Register Indirect *)
(Mem(Mode, Reg(Address, Reglium)), Nop)

| Op (AutoInc(ReglNum)) Mode = (* Auto-increment *)
let
val r = Reg(Address, Reglium)
in

(Mem(Mode, 1),
Assign(r, Add(Address, r, Integer(Sizeof(Mode)))))

end
| Op (AutoDec(ReglNum)) Mode = (* Auto-decrement *)
let
val r = Reg(Address, Reglium)
in

(Mem(Mode, 1),
Assign(r, Sub(Address, r, Integer(Sizeof(Mode)))))
end

| Op (Indexed(Offset, Regllum)) Mode = (* Indezed *)

(Mem(Mode, Add(Address, Reg(Address, ReglNum),
Integer(0ffset))), Nop)

| Op (Immediate(ImmediateValue)) Mode = (* Immediate *)

(Integer(ImmediateValue), Nop)

| Op (AutoIncIndirect(Reglum)) Mode = (* Autoincrement indirect *)
let
val r = Reg(Address, Reglium)
in

(Mem(Mode, Mem(Address, r)),
Assign(r, Add(Address, r, Integer(Sizeof(Address)))))
end

Figure 3.3: The Semantics of the PDP-11 Addressing Modes
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(* Add instruction *)
fun Instr (TwoOp1l(ADD, DestMode, SrcMode)) =

let
val (Dest, S’) = Op(DestlMode) Int16
and (Src, S’’) = 0p(SrcMode) Int16

in
let
val Result = Add(Int16, Dest, Src)

in
Sequence([ Parallel[ Assign(Dest,Result),
Assign(Z, Eq(Int16, Result, Integer(0))),

Assign(N, Lt(Int16, Result, Integer(0)))],

Parallel[S’, S’°]1])

end
end

(* Compare instruction *)
| Instr (TwoOpl(CMP, DestMode, Srclode)) =

let
val (Dest, S’) = Op(DestlMode) Int16
and (Src, S’’) = 0p(SrcMode) Int16
in
let

val Temp = Sub(Inti16, Dest, Src)

in
Sequence( [Parallel[Assign(Z, Eq(Int16, Temp, Integer(0))),
Assign(N, Lt(Int16, Temp, Integer(0)))],

Parallel[S’, S’°]1])

end
end

(* Move instruction *)
| Instr (TwoOp1(MOV, DestMode, Srclode)) =

let
val (Dest, S’) = Op(DestlMode) Int16
and (Src, S’’) = 0p(SrcMode) Int16

in
Sequence([ Parallel[Assign(Dest,Src),
Assign(Z, Eq(Int16, Src, Integer(0))),
Assign(N, Lt(Int16, Src, Integer(0)))],
Parallel[S’, S°’11)

end

Figure 3.4: Semantics of PDP-11 Instructions.
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(* Branch on not equal to zero *)
| Instr (Branch(BNE, Offset)) =
Assign(PC, If_Then_Else(Eq(CC, Z, Integer(0)),
Add(Address, PC, Integer(Offset)), PC))

(* Divide. Dest « Dest /| Src. Dest must be an even numbered register *)
(* The dividend is put in Dest and the remainder in Dest + 1. *)
| Instr (TwoOp2(DIV, RegNum, SrclMode)) =

let
val (Src, S’) = Op(SrcMode) Int16
in
let
val Quotient = Div(Int16, Reg(Int16, RegNum), Src)
and Remainder = Mod(Int16, Reg(Int16, Reglium), Src)
in
if even(RegNum) then
Sequence([ Parallel([ Assign(Reg(Int16, RegNum), Quotient),
Assign(Reg(Int16, Reglum+1), Remainder),
Assign(Z, Eq(Int16, Quotient, Integer(0))),
Assign(N, Lt(Int16, Quotient, Integer(0)))]1), S°1)
else Nop
end
end

(* Multiply. *)
| Instr (TwoOp2(MUL, RegNum, SrcMode)) =
let

val (Src, S’) = Op(SrcMode) Int16
val Result = Mul(Int32, Reg(Int16, Reglium), Src)

in
let
val LoBits = Assign(Reg(Int16, Reglium), LoPart(Int16, Result))
and HiBits = if even(Reglium) then
Assign(Reg(Int16, Reglium+1), HiPart(Int16, Result))
else Nop
in
Sequence([ Parallel([ LoBits, HiBits,
Assign(Z, Eq(Int16, Result, Integer(0))),
Assign(N, Lt(Int16, Result, Integer(0)))1), S°1)
end
end

Figure 3.5: Semantics of PDP-11 Instructions (continued).
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(* Clear *)
| Instr (OneOp(CLR, SrcDestMode)) =

let
val (SrcDest, S’) = Op(SrcDestMode) Int16
val Result = Assign(SrcDest, Integer(0))

in
Parallel([Result, S’1)

end

(* Increment *)
| Instr (OneOp(INC, SrcDestMode)) =

let
val (SrcDest, S’) = Op(SrcDestMode) Int16
val Result = Assign(SrcDest, Add(Int16, SrcDest, Integer(1l)))

in
Parallel([Result, S’1)

end

(* Decrement *)
| Instr (OneOp(DEC, SrcDestMode)) =

let
val (SrcDest, S’) = Op(SrcDestMode) Int16
val Result = Assign(SrcDest, Add(Int16, SrcDest, Integer(-1)))

in
Parallel([Result, S’1)

end

Figure 3.6: Semantics of PDP-11 Instructions (continued).
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3.4 Action Implementation

This section outlines a denotational semantics of the RTL semantic actions used in the
previous section. The implementation of the semantic actions that describe the RTL only
needs to be done once, the point being that once the RTL is implemented we can easily
describe a variety of architectures.

We do not have room here to present the semantics of the actions but we will briefly
outline the type signatures of the actions and the kinds of values that they operate on. We

first define an abstract notion of state.

The State— Our state consists of memory (byte addressable), registers (32-bit), and a
status register (for the condition codes C, N, V, and Z) that operate on the data types given

by Mode.
Mode = Addr + Int8 + Intl16 + Int32 + Int64 + Float + CC

State = Memory X Registers X StatusReg

Each of Memory, Registers, and the StatusReg are stores. Abstractly, a store is a
function from locations (addresses, register numbers, condition codes) to data. This suggests

the following definition for the three stores:

Memory = Address — Int8
Registers = Regllum — 1Int32
StatusReg = Flags — Bit
Action Signatures— The Mem action takes two parameters: a mode (Mode) that specifies

how many bytes to fetch, and a value producing action (Value) that yields an address. Mem

itself is a value producing action. Its signature is given by the following equation.
Mem: Mode X Value — Value

An example of an imperative action (Imperative) is Assign. Assign takes two value
actions, the first of which must be an L-value that will be assigned the data the second

action produces (the R-value). The signature of Assign is:

Assign: Value X Value — Imperative
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A value action is consequently a function from a state to a denotation. An imperative action

is a function from a state to a state.

Imperative = State — State
Value = State — Denotation
Denotation = CC of Bit + Address of int

+ Int8 of int 4+ Int16 of int + 1Int32 of int

To be complete, we must specify the semantics of individual actions. We only note that
there is an SML function for each of the actions in figure 3.2. For example, there is an SML

function Assign that has the following signature.

Assign : Value X Value — Imperative

Simulation — SML is, essentially, an implementation of the call-by-value typed A-
calculus. The simulator for the architecture is the SML interpreter. The simulation should
be viewed as computational; that is, we model the computation of the individual instruc-

tions as functions described in the A-calculus.

3.5 Code Generation

A retargetable code generator operates by matching portions of the intermediate language
(IL) produced by the front-end to the language that describes instructions in the machine
description. This of course assumes that the IL generated by the front-end is the same as
the language that describes instructions. Fortunately, the RTL presented in this chapter
suffices for both. (Using RTL for an IL was first proposed by Davidson [32] and is embodied
in the popular retargetable C compiler GCC [89].)

Our specification can be used in a code generator because the RTL used to describe
instructions can also be used as an intermediate language. For example, the instruction Add
R1, (R2)+ determines the RTL syntax tree (linearized) in figure 3.7. (Recall that Int16
and Address are types that describe the kind of value in the register or memory cell.)
Pattern matching code generators work by matching portions of the intermediate language
generated by the front-end with patterns that represent instructions (figure 3.7). Twig [1]

is one such system that could be used here.
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Sequence ([
Parallel([
Assign(Reg(Int16,1), Add(Int16,
Reg(Inti6,1),
Mem(Int16,Reg(Address,2))))
Assign(Z, Eq(Int16, Mem(Int16, Add(Int16,
Reg(Inti6,1),
Mem(Int16,Reg(Address,2))))))
Assign(N, Lt(Int16, Mem(Int16, Add(Int16,
Reg(Inti6,1),
Mem(Int16,Reg(Address,2))))))]1)
Parallel([Nop,
Assign(Reg(Address,2),
Add(Address,
Reg(Address,2), Integer(2)))]1)])

Figure 3.7: RTL Syntax tree corresponding to the instruction A4dd R1, (R2)+.

3.6 Discussion

An instruction set architecture is, in a sense, a programming language and can be treated
as such. Using denotational semantics we have specified, formally, the semantics of an
instruction set architecture which allows for the design of modular, readable, and usable
architectural specifications. We have implemented the semantics using the functional lan-
guage SML which makes our specification executable, automatically providing a simulator

for the instruction set architecture.
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Chapter 4

Instruction Timing

In this chapter we motivate our thesis that the timing-properties of instructions that are
needed for program efficiency (to perform instruction scheduling) should be included in a
high-level processor specification. We have refrained from using the the term “architecture”

as this level contains only information required to write correct programs.

4.1 Architecture and Organization

The distinction between the levels of abstraction of a processor are ill-defined and somewhat
artificial. Consider the architecture and organization levels; it is often difficult keeping the
details of organization from creeping into the architecture. As an extreme example, the Intel
i860 processor [63] makes no such separation and one can even argue that the organization
is the architecture. Consequently, in order to program the i860 properly it is necessary that
the user understand the structure of the pipelines and how the internal latches are used.
Ideally, an architecture specification describes final values that the instructions compute
and the organization describes how those values are computed. That is, the architecture is
an abstraction whereas the organization is an implementation. To this end, the architecture
level does not contain timing information but the organization level does. However, when
considering the efficiency of a program, the organization level does contain information that
is of use for the programmer. Yet the organization also contains a considerable amount of
other detail that is of no concern to the user. For example, a floating-point multiply may
have a latency of six cycles due to the structure of the pipeline. However, to use the

multiplication instruction efficiently we need only be concerned with the latency itself, not
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the cause. There are many such examples of this complex instruction interaction which we

now describe.

4.2 Delayed Instructions

Some instructions have an architecturally defined delay. The most common examples are
delayed loads and branches. In a delayed instruction the effect of the instruction always
occurs n instructions (cycles) after the instruction begins, where n represents the number of
required delay slots. For example, some memory load instructions have an architecturally
defined delay to them (it is not reasonable to expect a word from memory be fetch in a single
cycle without slowing the processor clock speed) as in the following instruction sequence,

where n = 1);

(1) Load R1, (R2) ;R1 := Mem[R2]

(2) Add R2, R2, R1 ;R2 := R2 + R1

On some processors, the use of register R1 in (2) is illegal and sends the processor into
an undefined state. For delayed load instructions, program correctness depends on the
programmer who must ensure that the instruction executing immediately after a delayed
load instruction does not reference the register being loaded.

Another situation arises with a delayed branch. For some processors, in the following

instruction sequence,

Locn:

BZ R1, Locn
Add R2, R2, #-1

the Add instruction after the branch (BZ) is always executed before a jump to Locn. If
the branch is not taken a couple of different behaviors can be defined. One is to always
execute the Add instruction whether the branch succeeds or fails. The other is to skip the
Add instruction when the branch fails and execute the instruction immediately below the
Add (This is sometimes called nullification of the delay-slot). Another constraint is that a

branch instruction may not be immediately followed by another branch instruction.
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4.3 Multicycle Instructions

Some instructions take several cycles to execute. In this situation, an instruction may have
to wait until a previous instruction finishes. This “wait” or data-dependent delay occurs in

the following instruction sequence,

(1) Fmul FR1, FR2, FR3

(2) Fadd FR4, FR4, FR1

where the Fadd instruction has to wait until the Fmul instruction finishes due to the data
dependency on register FR1. The delay suffered in this instruction pair is not the same
as that encountered in the delayed load instruction as the delay in the load instruction is
“architecturally defined”. That is, the delay is constant across implementations whereas
the delay in the above instruction pair is dependent upon a particular implementation of

the processor.

4.4 Resource Constraints

A processor has a limited set of resources. When one instruction needs a resource that is
currently being used by another instruction a structural hazard results and an interlock (or
delay) occurs. For example, if a processor has only one floating-point adder then, in the

following sequence,

(1) Fadd FR1, FR2, FR3
(2) Fadd FR4, FR5, FR6

the second Fadd instruction will have to wait for the first Fadd to finish using the adder,

even though the two instructions are data independent.

4.5 Multiple Instruction Issue

On some processors, when instructions have no data dependencies nor resource conflicts the
processor will execute the instructions in parallel. For example, integer and floating-point
instructions typically use mutually exclusive portions of the hardware and the following

instructions
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(1) Fmul FR1, FR2, FR3

(2) Add R1, R2, R3

can execute in parallel.

4.6 Motivation

All of the timing constraints described above arise because instructions overlap in execution.
This overlap is called instruction-level parallelism (or ILP). These constraints constitute the
programmers view of instruction timing. The architecture level generally does not contain
timing information but the organization level does. However, the organization level also
contains many more details of implementation that are irrelevant to the user. Consequently,
we are interested in a new level of abstraction that describes the programmer’s view of
instruction timing. This new level abstracts away from implementation details which we
simply call the instruction timing view.

The main motivation for describing a processor at the timing level is that, in general,
we should not expect that the user of the processor infer the existence of timing constraints
by examining the organization. One of our goals then is to develop a mathematical model

of instruction timing that hides irrelevant details of implementation.

4.7 Functions Don’t Work

Given the above discussion on the various ways instructions can interact, the behavior of an
instruction can no longer be specified in isolation of other instructions. Consequently, the
typical technique of using register-transfer statements can no longer be applied. However,
as we have mentioned, on some processors it is vital that the compiler know the timing con-
straints and the concurrent properties of the processor to use the processor efficiently and,
in some cases, correctly (e.g., architecturally defined delayed loads/branches and instruction
latencies).

It is well-known that functional methods do not extend well to include timing constraints
or concurrency. In fact, it is widely known in the programming language community that
functional methods and concurrency are at odds, as has been pointed out by Milner [69],
Hoare [53], and Pnueli [80]. This is because a concurrent system does not necessarily have

a functional behavior as concurrency can introduce non-determinism into a system. The
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definition of being a function implies that an input has only one corresponding output.
Consider again the delayed-load instruction of the MIPS R3000 [56]. On the MIPS, for

the following instruction sequence,

(1) Load R1, (R2) ;R1

Mem[R2]
2) Add R2, R2, R1 ;R2

R2 + R1

the contents of register R1 is undefined at instruction (2). That is, the value of R1 is non-
deterministic. The above load instruction, then, is can not be described by a function as

R1 can receive one of two values:
1. The correct value stored at the memory location in R2 or
2. some undefined value.

Consequently, since R1 is undefined R2 will also be undefined, possibly causing a ripple-effect
of undefined registers. This implies that if the contents of any register becomes undefined
then the entire processor state must be considered to be undefined.

Even if a concurrent system does have an overall functional behavior it may be more
appropriate to model the system using a concurrency-based formal method rather than a
functional one. This is because the concurrent system is composed of interacting compo-
nents which can yield irregular, yet deterministic behavior which can be difficult to specify
functionally. For example, if the load instruction above did not include an architecturally
defined delay but was interlocked instead (i.e., if the processor stalled and waited for R1 to
be loaded), as is done on the newer MIPS R4000, then we have to model the stall also. But
modeling the stall is cumbersome using functional methods as one would have to somehow
include a stall-value in the output. This is, as we will see, straightforward using a calculus of
concurrency. So we will forego using a functional language in favor of a particular calculus

of concurrency, SCCS.
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Chapter 5

SCCS: A Synchronous Calculus of

Communicating Systems

SCCS, or Synchronous Calculus of Communicating Systems [67, 68], is a mathematical the-
ory of communicating systems in which we can represent systems by the terms or expressions
in a simple language given by the theory. SCCS allows us to directly represent the temporal

and concurrent properties of the system being specified.

5.1 A Small Example

In this section we introduce SCCS through a small example involving a pipeline. Consider
a two stage pipeline where each stage adds one to its input; such a pipeline is depicted in
figure 5.1.

Each stage is modeled using an agent (process) in SCCS, which may have one or more

Figure 5.1: A two stage “Add 2” pipeline constructed from two “Add 1” agents.
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communication ports. In SCCS, each agent must perform an action (that is, use one or more
of its ports) on each clock cycle, or execute the idle action, written as 1. Communication
between two agents occurs when, at time ¢, one agent wants to use a port o and the other
wants to use complementary port a.

One stage in our example pipeline is represented in SCCS by,
S(z) % in(y)out(z): S(y+1) (5.1)

Equation 5.1 specifies that on clock cycle ¢, § is an agent with current output # and input
y and that at time £ 4+ 1, § becomes an agent with current output y + 1. In Equation 5.1,

[17%4]

° is the prefix operator. The expression a : P represents the process that, at time

t, can do the action a and become the process P at time ¢ + 1.

e in(y)out(z) is a product of actions specifying that the two particulate actions, in and
out, occur simultaneously. This action can also be thought of as reading y on port

in and sending = on port out.
e S is defined recursively allowing for the modeling of non-terminating agents.

e § is parameterized by the arithmetic expression ¥ + 1. An important characteristic
of SCCS is that the parameter of an output action may be any expression, using

whatever functions over values we need [68].

The semantics of SCCS is given formally in [68].

5.2 SCCS Syntax

Systems specified by SCCS consist of two entities, actions and agents (or processes). A
process is an SCCS expression (Figure 5.2 gives the syntax for SCCS expressions). Actions
communicate values and can either be positive (e.g. in) or negative (e.g. out). Positive
actions input values and negative actions output values. Two actions a and & associated
with two agents running in parallel are connected by the fact that they are complements of

the same name.

5.3 Connecting Processes

The X combinator models parallelism. The agent A X B represents agents A and B executing

in parallel. If two agents joined by product contain complementary action names then these
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P(z1,22,...,2,) = E Parameterized agent definition

1, Done Idle agent

0 Inactive agent

ExF Parallel composition. £ and F execute in parallel.

F+F Choice of E or F

EpF E or F with preference for E

ai(z1)az(z2) - an(zn): E Synchronous action prefix with values
if b then FE; else FE, Conditional

Yicr Ei Summation over indexing set

[Licr E: Composition over indexing set 1

ETL Action Restriction

E\\L Particle Restriction

E[f] Apply relabeling function f

Figure 5.2: Syntax of SCCS expressions
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agents are joined by what may be thought of as wires at those ports. Hence these agents
may now communicate.

Given Equation 5.1 we can now construct a two stage “add 2” pipeline from two “add
1” agents. There is a problem though, the agent § X § does not contain complementary
action names (that is, the pipeline stages are not connected), yet the output of the first §
stage must be fed into the input of the second § stage. To model this kind of connection,
SCCS provides a mechanism for relabeling actions. Relabeling out to @ in the first S and

in to a in the second occurrence of § provides the desired effect.

Add2(z,y) = (8(2)[g1] x S(y)[g2]) T {in, out} (5.2)

¢ =out ma, ¢;=in— «
In Equation 5.2,

e ¢ is a relabeling function that means change the port name out to a. ¢s changes in

to a.
e S[¢] means apply relabeling function ¢ to agent S.

e S 1T {in, out} is the restriction combinator applied to agent S. Restriction serves
the purpose of “internalizing” ports (or “hiding” actions) from the environment and
exposing others. Hence in and out are made known to the environment and « is

internalized.

Combining restriction and relabeling is a way of achieving scoping in SCCS.

The net effect Equation 5.2 is to construct a pipeline of two stages where each stage
adds 1 to its input.

In SCCS the agent A + B represents a choice of performing agent A or agent B. Which
choice is taken depends upon the actions available within the environment. The agent

A1+ Ay + --- + A, is abbreviated to > ;- A;.

5.4 An Algebra of Actions

Agents interact with their environment through “ports” that are identified with labels.
“Port” and “label” are synonymous and every port (and label) is also an action, but as we

will see the converse is not true. Actions have the following properties:
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e There is an infinite set A of names and a set of conames A. The set of all labels is

L=AUA.

e There is a binary operator - used to form a new action that is a “product of actions”.

This, a; - as, is the product of actions a; and as € L.
e - is commutative and associative: -8 =f-a and (a-8)-y=a-(8-7).

e Often, when clarity allows, a product of actions, a; - g, is written using juxtaposition

(e.g. ajay) rather than with -.

e A product of actions, @ = ajas - - a, denotes simultaneous occurrence of ay, as, ...,

ay,.

e The idle action, 1, is a left and right identity on - such that la = al = «.

“—>

e The unary operator is an inverse operation: a-a = 1.

With this information at hand we conclude that there is an algebra of actions that form an

abelian (commutative) group generated by A, the set of particles.

(Act, 1, -, ~ ) is an Abelian Group

Therefore, every a € Act can be expressed as a unique product of particulate actions

— 2l Zn
a=aoa; ...,

up to order.

5.5 Extensions to SCCS

In this section we introduce two extensions to SCCS that will aid us in writing processor
specifications.

Frequently, we wish to execute two agents A and B in parallel, where B begins executing
one clock cycle after 4 (e.g., issuing instructions on consecutive cycles). This can be modeled

by 4 x 1: B. We define the binary combinator Nexzt to denote this agent.
A Next B= A x (1: B) (5.3)
Next is right-associative. That is,

A Next B Next C = A Next (B Next C)
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Intuitively, the agent A Next B Next C should begin executing A at time £, B at time £ 41,
and C at time £ + 2. We can see that this is the case by expanding it using Equation 5.3.

A Next B Next C = A Next (B Next C)
= AX1:(B NextC)
= Ax1:(Bx1:0C)
= Ax1-1:(Bx1:C) (1is identity)
= Ax1:Bx1:1:C (by5.9)

Another useful operator is the priority sum operator, [> [20]. Intuitively, if in the agent
A+ B both A and B can execute, then it is non-deterministic as to which is executed. Often,
we would like to prioritize + so that if both A and B can execute, then A is preferred. Thus,
A > B denotes the priority sum of A and B, where A has priority over B.

5.6 Transition Graphs

The operational semantics of SCCS is defined in terms of a labeled transition system.

Definition 1 A labeled transition system (LTS) is a triple (P, Act,—) where P is
a set of states, Act is a set of actions, and — is the transition relation, a subset of

P x Act x P.

When p,q € P and a € Act and (p,a,q) €— we write p — ¢ to mean that “state p
can do an a and evolve into ¢.” States p and ¢ represent the state of the system at times
t and t + 1 respectively. Figure 5.4 gives the inference rules for SCCS that map an SCCS
term to a labeled transition system, where states correspond to SCCS expressions. In the
transition p — ¢, q is called an “a-derivative” of p or just a “derivative” of p.

A state t is reachable from state s if there exist states sq,..., s, and actions ai,...,a,
such that

_ (2 4] (2 4] [0 77% _
§=8) —— 8 — o+ — 8, = 1.

In this case we call ay,...,a, a trace of s.

The transition graph of an agent p is a graphical representation of the LTS induced by
p. For example, the SCCS agent defined in Equation 5.4 has the transition graph shown in
figure 5.3.

Ed:'Sfa:b:O—l—c:(d:O—l—e:O) (5.4)
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Figure 5.3: Transition graph of agent defined in Equation 5.4.

The transition graph of an agent represents its dynamic nature as it represents an agent
“executing” through time. The LTS itself is a structure that represents all possible traces
of the system. For example, the LTS in figure 5.3 of the SCCS process in Equation 5.4
identifies the set {(a,b),(c,d),(c,e)} as the possible traces of E of length two. Analysis of
SCCS processes (e.g., simulation, equivalence testing, model checking) is carried out on the

LTS rather than SCCS terms directly.

5.7 The Operational Semantics of SCCS

In general, an operational semantics of a language maps terms of the language to some
abstract machine. A structural operational semantics (developed by Plotkin [79]) uses syntax
directed rules to map terms of the language to a transition system (or labeled transition
system in our case). The structural operational semantics (or SOS [79]) for SCCS is given
in figure 5.4.

Each rule in figure 5.4 is an inference rule structured on the syntax of an SCCS term.

The following conveys the intuition behind the rules:
Action — In the process a : 0 the rule Action says that a: 0 250

Product — If P can do an action a and @ can do an action 3 then P X ¢} can do an action

a - B. For example, consider the process a: 0 X b:b: 0. The rule Product says that

1. sincea: 0 > 0 and
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PSP

Suml — Sum2 ———*—
P+Q->P P+Q—=Q
Action a: P - P
o ’ B ’ a ’
Product P—P Q—0 Restriction P — P, ac A
PxQ 5 pxo P1A—=PTA
. P2, p @ e
Relabeling # Definition P_THP: A¥Pp
P[f] = P'[f] A—P

Figure 5.4: Operational semantics of SCCS.

2. sinceb:b:O—b—>b:0then
3. thena:0><b:b:032>0><b:0.

Sum — The Sum1 rule says that if P can do an action a and become P’ then P + @) can

do an o and become P’. The rule Sum?2 handles the other case.
Relabeling — If P can do an « then the process P[f]| can do an f(a).

Restriction — If P can do an a then P T A can do an a provided a € A. The predicate
a € A is called a side condition.

Definition — The definition rule allows us to bind a process to an identifier. It says that

if P can do an a then so can any process identifier A where A 4 p,

The inference rules define all possible transitions for any SCCS term.
SCCS is an algebra that satisfies many equational laws (figure 5.5). The equational laws
are based on the definition of bisimulation equivalencein SCCS which is defined in [67]. We

will not pursue this here.
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If P,QQ,R € P and a,b € Act then,

Px1~P

P+0~P

P+P~P

Px0~0
a:Pxb:Q~ab:(PxQ)
Px(Q+R)~PxQ+PxR
P+Q~Q+P
PxQ~QxP
(PXxQ)XR~Px(QxR)
(P+Q)+R~P+(Q+R)
a(b:P+c:Q)~ab: P+ac:Q
a:(P14) ifac A

0 ifad A
PTATB~PT(ANB)

(a:P)TAN{

Figure 5.5: Equational laws of SCCS
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5.8 Examples

Here we present some examples using SCCS to specify various simple circuits. More ex-
amples and their implementation in the Concurrency Workbench are given in Appendix B.
The purpose of this section is to familiarize the reader with SCCS and how it is used. Since
we will eventually be specifying the timing properties of a RISC-style microprocessor we

use digital hardware in our examples.

5.8.1 A Zero-Delay and a Unit-Delay Wire

The simplest circuit is a wire. One end is the input and the other is the output which we
label with the actions in and out.
In all of the examples, variables range over booleans 0 and 1. Equation 5.18 represents

a zero-delay wire. At all times ¢ the current input at in is equal to the output at out.
Wire0 % in(¢)out(s) : Wire0 (5.18)

The process Wirel below represent a wire that has a unit-delay which means it has a
current state 7. At the time ¢ the input ¢ on in becomes, at time ¢ + 1, the output j on

port out. (Compare the HOL equation for this same circuit, Equation 2.1.)
Wire1(5) % in(i)out(j) : Wire1(s)
We can also implement a wire that has a delay of two clock cycles:
Wire2(i, 7) &ef in(a)out(j) : Wire2(a,1)
We could have also specified the two-delay wire by hooking together two unit-delay
wires:

Wire2Impl(i, 7) &ef ( Wirel(i)[alpha/out] x Wirel(j)[alpha/in]) T {in, out}

One important aspect of SCCS is that now we can prove that the agents specified by Wire2
and Wire2Impl are equivalent. In fact, the Concurrency Workbench can establish this for

us automatically.

5.8.2 Logic Gates

A unit-delay inverter is specified in Equation 5.19.

Not(0) % in(0)out(0) : Not(1) + in(1)out(0) : Not(0)

Not(1) %' in(0)out(1): Not(1) + in(1)ous(1) : Not(0) (5.19)
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Using a little notational freedom for specifying the functionality of an agent we can abbre-

viate Equation 5.19 with Equation 5.20.
Not(j) %" in(i)out(j) : Not() (5.20)
Connecting two inverters together we get Equation 5.21.
TwoNots(i,j) % (Not(i)[alpha/out] x No#(j)[alpha/in]) 1 {in,out} (5.21)

Connecting two inverters together cancel each other out, except for the delay. We should
expect that agent TwoNots be equivalent to agent Wire2 (and consequently Wire2Impl).
Indeed, this is the case.

Other logic gates are similarly defined (of course all we really need is a nand or a nor

and we can define all of them in terms of this operation and prove that they meet their

specification).
And(j) % ini(a)in2(b)out(j): And(a A b) (5.22)
or(j) %' ini(a)in2(b)out(j): Or(aV b) (5.23)
Xor(j) %' ini(a)in2(b)out(j): Xor(a & b) (5.24)
Nor(j) def ini(a)in2(b)out(j) : Nor(a nor b) (5.25)

These processes are all unit-delay with j being the “default” initial state.

5.8.3 Flip-Flop

A flip-flop is easily constructed by connecting together two Nor gates (figures 5.6 and 5.7).
Each Nor gate has an output that feeds back into the other Nor gate. In order to make the
desired connections we have make two copies of a Nor gate and suitably relabel some ports.

Finally the restriction operator internalizes the two feedback connections.

FF(m,n) def

(Nor(m)[s/in1, g-ini/out] X Nor(n)[r/in2, in2-d/out]) T {s,r,g,d}
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I N2

Figure 5.6: A nor gate.

Figure 5.7: A flip-flop constructed from two nor-gates (Figure 5.6).
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Chapter 6

Specifying a Processor

In this chapter we present a specification of the programmer’s timing view for hypothetical
RISC-style processor, based on DLX and the MIPS from Patterson and Hennessy [76, 77,
56].

6.1 Owur example microprocessor

In this RISC, instructions, memory word size, registers, and addresses are thirty-two bits.
Figure 6.1 gives the instruction syntax and computational semantics of our processor. What
follows is an informal description of some of our RISC instructions that we subsequently

describe with SCCS.

e Add R;, R;j, Ry addsregistersj and k and puts the result in register . The instruction

executing immediately after an Add may use register <.

e Load R;, R;, #Const is a delayed load instruction. Register i is being loaded from
memory at the base address in register 7 with offset #Const. The instruction executing

immediately after Load cannot use register <.

e BZ R;, #Locn is a delayed branch instruction that branches to Locn if register 7 is
zero. The instruction immediately after the branch is always executed before the
branch is taken. If the branch is not taken then instruction after the branch is not

executed. Another BZ instruction may not appear in the branch delay slot.

e Fadd FR;, FR;, FR; is an interlocked floating-point add with a latency of six cycles.

If another Fadd instruction tries to use the result before the current Fadd is finished,
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Instruction Syntaz

Add R;, R;, BRg

AddI R;, R;, #Comst
Mov R;, R;

Mov.f FR;, FR;
MovFPtoI R;, FR;
MovItoFP FR;, R;
Nop

Cmp R;, R;, R

CmpI R;, R;, #Const
Fadd FR;, FR;, FRy
Fmul FR;, FR;, FRy
Fdiv FR;, FR;, FRy
BZ R;, Locn

Load R;, R;, Offset
Load.f FR;, R;, Offset
LoadI R;,#Const
Store R;, R;, O0ffset

Store.f FR;, R;, Offset

Computational Semantics

R; — Rj+ Ry
R; < R;+ #Const
R; < R;

FR; — FR;

R; — FR;

FR; — R;

No operation

R; — R; 7 Ry

R; <~ R; 7 #Const
FR; — FR;j+ FRy
FR; — FR;jX FRy
FR; — FR;/ FRy

if R; = 0 then PC «— Locn
R; «— Mem[R;4 O0ffset]
FR; < Mem[R;+ Offsetl]
R, «— #Const

Mem[R;+ O0ffset] « R;

Mem[R;+ O0ffset] « FR;

Figure 6.1: RISC instruction set.
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then instruction execution stalls until the result is ready.

The table in Figure 6.1 gives the entire instruction set along with the RTL statement
describing the functional semantics of each instruction. This functional semantics can be

easily represented using the techniques from chapter 3.

6.2 Timing Constraints

There are three types of constraints that alter the programmer’s view of the timing of a

processor.

delayed instructions — The effect of an instruction can be delayed (e.g., as in our

RISC’s load and branch instructions) making certain instructions sequences illegal.

multicycle instructions — An instruction that takes more than one cycle to calculate
its result may cause the processor to interlock when a subsequent instruction needs the
result before the previous instruction has finished. These are known as data hazards

and will be discussed in more detail later.

limited resources — Often, two or more instructions may compete for the same resource
(e.g., floating-point adder) and one will have to wait. This situation is known as a

structural hazard.

We will discuss all three types of timing constraints as we encounter them.

6.3 The SCCS Specification

A processor is a system in which registers and memory interact with one or more functional

units. Equation 6.1 represents such a system at the highest level in SCCS.

Processor % (Instruction Unit x Memory X Registers) T I (6.1)

Where I is the set of all instructions.

Equation 6.1 says that the only visible actions are instructions. That is, the labels on the
labeled transition system generated by 6.1 are entities like 4dd R1, R2, R2, BZ R1, Locn,

etc.
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6.4 Instruction Formats as Actions

We will represent the syntax (format) of each instruction as an SCCS action. The in-
structions described in Figure 6.1 determine a set of actions, one for each instruction. For
example, the instruction Add R;, Ry, Rg3 is represented in SCCS by the action AddR;RsRs.
More generally, the instruction Add R;, R;, R; determines a set of actions, Ipq4, given by

Equation 6.2.

31
Inaa & ndd Ry, Ry, Bj= |J AddRR;R, (6.2)
1,J,k=0
The set, I,, can be determined for each opcode, op € Opcodes, yielding the set I of all

instructions (Equation 6.3).

I (il:ef U Iop (63)
op € Opcodes

For readability, we continue to comma separate an instruction’s operands, always keep-
ing in mind that an instruction is represented by an action. (We could also use the bit

representation of the instructions but this would only make the specification less readable.)

6.5 Defining the Registers

Before we proceed in specifying instructions and their interaction, it is necessary to develop
an appropriate model of registers and memory. In this section we develop an abstract
model of storage in which storage cells are modeled as agents. Equation 6.4 defines one
cell, Cell(y), holding a value y, such that an action putc(z) executed at time ¢ stores z in
Cell which is available for use at time ¢ + 1. The action getc(y) retrieves the value stored
in Cell and assigns this to y. If no agent wants to interact with Cell using putc or getc

actions then Cell executes the idle action 1.

Cellly) & gotc(y): Cellly) + putc(e): Celi(z) + 1:Cell(y) (6.4)

This model of a storage cell is simple but inadequate because Cell can only perform
one getc or putc at a time. Consider the instruction Add R;, R;, R; which accesses
R; twice and also writes R;. On most processors this instruction can effectively execute
in a single cycle because registers are read and written in different pipeline stages and
there is appropriate forwarding hardware, renaming registers, etc.. But we do not need
to model pipeline stages and all of the other organization that goes with them. What

we need to do is augment the agent Cell so that it can handle parallel reads and writes.
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For example the action getc(a)getc(b) means read Cell twice putting the result into a
and b. The action getc(a)putc(b) means read and write Cell in parallel. The action
getc(a)getc(b)getc(c)putc(d) means read Cell three times with the cell’s value placed in
a, b and, and ¢ and also write d to Cell. Only one putc is allowed for each action.
Equation 6.5 defines an agent Reg that is a new version of Cell that can accommodate

parallel reads and writes.
def 2 —_— i
Regi(y) = detr(y)J(l : Reg(y) + putr(z): Reg(z)) (6.5)
=0

Notice that we can change the upper bound on the summation to allow an arbitrary number
of readers of the registers (i.e., getr’s)

If we expand the summation in Equation 6.5 we obtain Equation 6.6.

Regi(y) = gevx(y

+ + + 4+ +
o
(]
ot
H

: Reg(z) (6.6)

Applying the equational law that states that for any particulate action a € A, a® = 1

and a' = a Equation 6.6 reduces to Equation 6.7.

def
Regl(y) =

+ + + + +
o
(]
ot
H

(6.7)

In further sections, we will not continue to expand summations like this; it was done
here to indicate how summations are used and manipulated. In fact, the algebra allows
the use of infinite sums, that is, sums over a countably infinite indexing set, which would

prohibit us from expanding them completely anyway.



6.5.1 Register Locking

The actions getr and putr are atomic. It may be that a register is going to be updated
some time in the future (e.g., delayed loads) and any attempt to read or write the register
by another agent (instruction) should result in an error. We will augment Equation 6.5 by
allowing an agent to reserve a register for future writing using the action lockreg and then,
at some point in the future, by writing the register (with putr) and releasing it with the
action releasereg. Equation 6.8 modifies Reg! so that when an agent locks a register the
register goes into a state Locked_Reg where the only allowable action is putr(z)releasereg.
All other combinations of getr and putr in the locked state lead to the inactive agent 0.
This need to trap all of the other illegal action sequences complicates matters so we have
factored this out and put them in Equation 6.10. Notice again, that the upper-bound of the
summation in equations 6.8 and 6.10 can be arbitrarily increased to include any number of

readers.

2
Reg(y) def Regl(y) + detr(y)jlockreg:Locked_Reg(y) (6.8)
7=0

Locked_Reg(y) &ef

Illegal_Access(y) + putr(z)releasereg: Reg(z) + 1: Locked_Reg(y) (6.9)

Illegal_Access(y) def

2
detr(y)j (getr(y): 0 + putr(z):0 + putr(z)releasereg:0) (6.10)
j=0

Figure 6.2 shows the state transition graph of Reg (Equation 6.8) which is the labeled
transition system generated by the operational semantics of SCCS. The figure shows that,
from the state Reg, any number of getr’s (including zero) and zero or one putr’s will leave
us in the state Reg. However, any number of getr’s and a lockreg action will put us in
the Locked_Reg state. Figure 6.2 also shows that any action other than a putr-releasereg
will put us in the deadlocked state 0.

Given the definition of one register, a family of registers (Reg1, Rega, etc.) is now defined
by subscripting each of the actions by a register number. For example, the action putr;(z)

represents writing = to register 7. Thirty-two registers are constructed by

Registers % Rego(y) X - -+ X Regs1(y) (6.11)
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getr I!)ekreg

getr J_.putr ,
getr J 1

putr releasereg

gewr /.
ger J . putr

getr ) e putr releasereg

Figure 6.2: State transition graph of agent Reg in Equation 6.8.

which we abbreviate to

31
Registers def HRegZ-(y) (6.12)
=0

(we have not changed SCCS at all, this is just a shorthand notation).

6.6 Defining Memory

The definition of an agent Memory is exactly analogous to that of Registers except that
memory cells do not have locks associated with them. For brevity we omit the definition of

Memory and just note that the actions getm; and putm; read and write memory cell <.

MEM;(y) def putm,(z) : MEM;(z)
+  getmi(y) : MEM;(y)
+ getm(y)putm(z) : MEM(z)
+ 1: MEM;(y) (6.13)
2321
MEMORY ¥ T[] MEM(y) (6.14)
1=0
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6.7 Instruction Pipeline

Instruction pipelines are usually described in terms of their stages of execution. For example,

the agent IPL (for instruction pipeline)
IPL & IFx ID x EX x MEM x WB

defines a five-stage instruction pipeline, where IF, ID, EX, MEM, and WB represent in-
struction fetch, decode, execute, memory access, and write back stages.

This is a reasonable and obvious representation, but since we are interested only in
external timing behavior, it is over-specified. We should resist attempting to specify an
architecture’s timing behavior in terms of individual stages as this commits us to describe
the detailed operation of each individual stage. Since our interest is simply timing behavior
a more abstract specification will suffice.

We should also point out that it is very useful to be able to specify a processor at this
lower organizational level as this would count as an “implementation” of the processor. In
fact, one of SCCS’s major benefits is its ability to specify systems at various levels and

compare and analyze them. This robustness is one of the reasons we chose SCCS.

6.8 Instruction Issue

Given our previous definitions of Registers and Memory and using a program counter, PC,
we now describe an agent Instr(PC) (Equation 6.15) that specifies the behavior of our
processor’s instructions. Instr(PC) partitions instructions into two classes, Branch and
Non_Branch. Non_Branch instructions are further divided into three classes, arithmetic

(Alu), load and store (Load_Store), and floating-point ( Float).

Instr(PC) &ef (Non_Branch(PC) Next Instr(PC + 4))
+  Branch(PC)
> Stall( PC) (6.15)
Non_Branch(PC) &ef Alu(PC) + Load_Store(PC) + Float(PC) (6.16)
Stall(PC) %' 1: Inste(PC) (6.17)

There are three possible alternatives of Instr(PC).

e A non-branch instruction may execute in which case the next instruction to execute

is at PC + 4. The first line of Equation 6.15 describes this situation.
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e A branch instruction may execute, in which case the next instruction cannot be deter-
mined until it is known whether the branch will be taken or not. Hence, the decision

on what instruction to execute next is deferred (see Equation 6.22).

e If no instruction can execute then the processor must stall (Equation 6.17). The >
operator (section 5.5) is used here because the processor should stall only when no

other alternative is available.

6.8.1 Arithmetic Instructions

Like most processors, ours fetches instructions from memory using a program counter, PC.
The action

getmpg (Add R;,R;, Rk)

represents fetching an Add instruction from memory. (Recall the slight abuse of notation
with the comma separated operands.)
From a user’s view, the instruction Add R;, R;, Ry appearsto take one cycle to execute.

In the following instruction sequence,

Add R1, R2, R3

Mov R2, R1

the Add instruction executes at time ¢ and the Mov executes at time ¢ + 1. From a behav-
ioral view there is no problem with writing R1 and reading R1 in consecutive instructions.
Normally, a user would expect this instruction sequence to be legal and the user should not
need to understand the details of the instruction pipeline that might make the sequence
illegal nor the bypass hardware that makes the sequence behave as originally expected.

The agent
Alu(PC) ef getmp(Add R;,R;,Ri)getr;(z)getry(y)putr;(z + y) : Done (6.18)

represents the execution of the Add instruction. At time ¢, source registers 7 and k are read
(by the actions getr;(z)getrr(y)) and the result is written to destination register ¢ (by the
action putr;(z + y)).

In fact, Equation 6.18 describes the same computation as the register transfer statement

Regl[i] « Regljl + Reglk]
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except that the SCCS equation specifies that registers are accessed and the result is written
atomically (i.e., executes in a single cycle). The agent Done is the idle agent and represents

termination of the instruction (agent). The other arithmetic instructions are analogous.

6.8.2 Integer Load and Store Instructions
The following instruction sequence,

Load R1, R2, #8

Mov R3, R1

is illegal in our processor because of the use of R1 immediately after the Load. The Load
instruction accesses memory at time ¢ and the result of the load is available at time ¢ + 2.

The computational behavior of the load instruction is the following RTL statement.
Load R;, R;, Offset = Reg[i]l « Mem[Reg[j] + Offset]

This is represented by,

Load(PC) &ef

getmpg(Load R;, R;, A)getr,(B)getmp, s (V)lockreg; :

putr,(V)releasereg, : Done (6.19)

Equation 6.19 specifies that, at time ¢ three things happen.

1. The base register j is accessed and the base address is placed in the variable B (by
action getr,(B)).

2. Memory is fetched with the value placed in the variable V' (with action getmg, A (V')
where A is the offset value).

3. The destination register ¢ is locked (using the action lockreg;).

At time £ + 1, two actions occur.
1. The value V is written to destination register ¢ (with the action putr,(V)).
2. The destination register 7 is released (with the action releasereg;).

In the event that an instruction attempts to read or write a locked register the processor
reaches the deadlocked state 0. This is because our process that represents a register traps

any such operations.
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The Store Instruction

The store operation effectively takes one cycle to execute. For example, the following code

segment is legal.

Store R1, R2, #8

Load R3, R2, i#8

The computational behavior of the store instruction is given by the following RTL statement.
Store R;, R;, Offset = Mem[Reg[i] + 0ffset] « Regljl

It is unlikely, however, that R1 has finished being written to memory. The hardware
takes care of the difficulties allowing the next instruction to access the memory location

just written. Equation 6.20 represents the store instruction.

Store(PC) &ef
getmpg(Store R;, R;, A)getr;(B)getr,(V)putmg (V) : Done (6.20)

The important characteristic of Equation 6.20 is that it specifies that the Store instruction
effectively takes one cycle to execute. Equation 6.21 combines the two agents Load and

Store for Equation 6.15.

Load_Store( PC) ef Load(PC') + Store(PC) (6.21)

6.8.3 The Branch Instruction

In the following instruction sequence,

Locn:

BZ R1, Locn

Add R2, R2, #-1

the Add instruction after the branch is always executed before the jump to Locn. If the

branch is not taken then the Add instruction is skipped and the instruction below Add is
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executed. A BZ instruction may not be immediately followed by another BZ instruction.

Equation 6.22 specifies the behavior of the BZ instruction.

Branch(PC) def getmp(BZ R;, Locn)getr;(V):

if V=0 then
Non_Branch(PC + 4) Next Instr(Locn))
+ getmpg, ,(BZ R;, Locn):0

else

Instr(PC + 8) (6.22)
The BZ instruction has the effect that
e at time ¢, a BZ instruction is fetched and register R; is accessed.

e at time ¢+ 1, if the value of R; is not zero then execution continues with the instruction

after the branch delay slot.

e at time ¢ + 1, if the value of R; is zero then a non-branch instruction is executed in the

branch delay slot and execution continues with the instruction at Locn at time ¢ + 2.

e If another BZ instruction is in the delay slot then we reach the inactive agent 0, which

represents an error state.

6.9 Interlocked Floating-Point Instructions

The floating-point add instruction Fadd takes six cycles to compute its result. For instruc-
tions that have a large latency, it is generally unreasonable to expect the scheduler to find
enough independent instructions to execute until the Fadd is complete. As inserting Nop
instructions would significantly increase code size, therefore, floating-point instructions are

typically interlocked.

6.9.1 Floating-Point Registers

One method of keeping instructions ordered properly is to associate a “lock” with each FP-
register (as we did in the case of the integer registers). The difference here is that accessing
a locked integer register is illegal while accessing a locked FP-register causes the processor

to stall.
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getir J. lockfreg

. Locked 1
getr J , Freg

putfr -releasefreg

Figure 6.3: State transition graph of a floating-point register, Freg.

Our processor has a separate set of thirty two floating-point registers that are de-
fined similarly to the integer registers, except that we add two new actions, lockfreg
and releasefreg. Actions putfr and getfr are the two actions that write and read a

floating-point register.

Freg,(y) def Z getfr,(y) lockfreg, : Locked Freg

+ ) getfr;(y)’ : Freg(y)

b1t Freg(y)
Locked_Freg, def putfr,(z)releasefreg; : Freg(z)
+ 1: Locked_Freg;

Thirty-two FP-registers are constructed analogously to the integer registers.

FP_Registers def 13_1[ Freg;(y) (6.23)

j=0
Figure 6.3 shows the state transition graph for a floating-point register. For the case of the
integer registers, it was illegal to access a locked register, and trying to do so was trapped by
directly putting the processor in the deadlocked state. But, for the floating-point registers,
there is no deadlocked state. A process (instruction) is still not able to read a locked
floating-point register, but trying to do so causes the processor to stall as the only possible

transition will be the Stall process (Equation 6.17).
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6.9.2 The Fadd instruction

Now that interlocked registers are defined we can define the behavior of the floating point

add instruction. The Fadd instruction must,
1. access its source registers and
2. lock its destination register
3. compute the addition
4. write the result in the destination register
5. release the destination register

Equation 6.24 specifies our processor’s Fadd instruction.

def

Floa(PC) = getmpg(Fadd, FR;, FR;, FRy)lockfreg;getfr (z)getfr,(y):
(1:)°
putfr,(z + y)releasefreg; : Done (6.24)
n times
——
The abbreviation (1 :)™ represents the n-cycle delay, 1:1:...:1, which is interpreted

as n-cycles of internal computation. The processor stalls when an instruction wishes to
access a locked FP-register. This happens because the instruction will not be able to access
the FP-register and the only other option is to execute the agent Stall (Equation 6.15).
(Remember in the definition of Instr(PC) in Equation 6.15 that our processor continues

executing instructions after the Fadd instruction has started.)

6.10 Structural Constraints

Processors often reuse functional units. For example, a floating-point unit may have only one
adder that is used by the addition, multiplication, and division instructions. This “failure”
to fully replicate the resource for each instruction that needs it gives rise to structural hazards
which can alter the timing characteristics of the instructions that require the resource.
Moreover, an instruction may require a resource several times for various lengths of time
during its execution making the resource constraints complex to describe.

As an example, the MIPS/R4000 floating-point unit has a floating-point adder, divider,

rounder, and shifter (it also has several other functional units in the FPU such as an
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exception checker, but we omit for the sake of simplicity). The single precision divide

instruction, FDIV, requires the:
e floating-point adder and shifter on clock cycle 2
e rounder and the shifter on cycle 3
e shifter on cycle 4
e divider on cycles 5 through 36
e divider and adder on cycles 37 and 39
e divider and rounder on cycles 38 and 40
e adder on cycle 41

e rounder on cycle 42.

6.10.1 Modeling Finite Resources

We need a way to include resources in our model. We could leave them out — doing so
would still give us a good “approximation” of the timing behavior of our processor (that
is we could still model delayed load, branches, and latencies) but if we wish to be more
accurate then we should include resources. Also, instruction schedulers consider resource
constraints.

To model limited resources, we introduce a generic agent Resource that models a re-
source that instructions can acquire and release. When an instruction acquires a resource
that is being used by another, the processor stalls. Equation 6.25 defines a generic agent
Resource that can be acquired (with the action get_resource) and released (with the action
release resource). This agent will be replicated however many times is needed, once for

each resource, and suitably relabeled.

def
Resource = get_resource: Locked_Resource

+ get_resource-release resource: Resource

+ 1: Resource (6.25)
Locked_Resource = release resource: Resource

+  1: Locked_Resource (6.26)
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Figure 6.4: State transition graph of a Resource in Equation 6.25.

Figure 6.4 shows the transition graph for the agent Resource.

Notice that the functionality of a resource is not being modeled; only an instruction’s
capability to use the resource exclusively. Hence, at this level, modeling a floating-point
adder is exactly like modeling a floating-point multiplier. Alternatively, we could specify
the (pipelined) floating-point unit in detail if we desired, but this would mire us in irrelevant
organizational detail.

In our processor, the floating-point unit has three resources that must be shared: an
adder, multiplier, and a divider. Equation 6.27 specifies this by replicating Resource three

times and relabeling its actions appropriately.

FPU %« Resource[¢p] x Resource[yp] x Resource[d] (6.27)

where ¢ = get _resource — get multiplier,
release _resource — release multiplier
1 = get_resource — get_adder,
release_resource — release_adder
0 = get _resource — get_divider,

release_resource — release_divider

We assume that an agent acquires a resource on the first cycle that it needs it and releases
the resource on the last cycle that it needs it. For example, if an instruction needs the adder

for one cycle only, then it will perform the action product get_adder-release_adder. If an
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instruction needs the adder for two consecutive cycles then the instruction should specify
this with the agent get_adder:release_adder. The instruction should not acquire and

release the adder on each cycle as in the following.
got_adder - release_adder : get_adder - release_adder

By requiring that resource requirements be specified this way we are imposing a normal
form on the specification. However, this normal form is reasonable and we justify it by

noting that:

e processor manuals indicate resource requirements in this fashion (for example see this

MIPS processor manual [56]);

e the instruction scheduling problem, as presented in the literature defines resource

requirements in this manner.

6.10.2 Multi-cycle Floating-point Instructions

Now that there are several floating-point instructions competing for shared resources the
Fadd instruction defined in Equation 6.24 needs to be altered. We redefine the agent
Float(PC) to the following.

Float(PC) ' FADD(PC)+ FMUL(PC) + FDIV(PC)
The Fadd instruction requires the adder for two cycles after the operands are accessed.

FADD(PC) ef getmp(Fadd, FR;, FR;, FRi)lockfreg;getfr (z)getfr,(y):

get_adder : (1:)°release_adder :

putfr,(z + y)releasefreg; : Done (6.28)

The Fmul and Fdiv can now similarly defined. The Fmul instruction requires the adder

for one cycle, then the multiplier for two cycles, then the adder again for one cycle.

FMUL(PC) &ef getmpc(Fmul, FR;, FR;, FRi)lockfreg;getfr (z)getfr,(y):

got_adder - release_adder :

get multiplier: release multiplier:

got_adder - release_adder :

putfr,(z x y)releasefreg; : Done (6.29)
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After its operands are accessed, the Fdiv instruction requires the adder for one cycle,
the divider for eight cycles, and then the adder again for two cycles.

FDIV(PC) &ef getmp(Fdiv, FR;, FR;, FRi)lockfreg;getfr (z)getfr,(y):

got_adder - release_adder :

get_divider: (1 :)°release divider:

got_adder : release_adder:

putfr,(z/y)releasefreg; : Done (6.30)

Essentially, we are modeling a resource as a binary semaphore. This technique can
be used to handle any kind of resource that needs to be accessed exclusively (e.g., regis-
ter/memory ports, busses, etc.).

A processor may have more than one copy of a particular resource. For example, there
may be two independent floating-point adders that can be used by any of the floating-point
instructions. In this case we duplicate the resource using the same label for each. For

example, two adders would be specified as

Resource[¢] x Resource[¢]

where ¢ = get_resource — get_adder
(6.31)
and when an agent wishes to acquire one of them then there are three possibilities:

1. Both adders are free and one of them is non-deterministically chosen.
2. If one adder is being used and the other is free, then the free adder is acquired.

3. If both adders are busy then the instruction cannot continue and the pipeline stalls

(as in the case for the interlocked floating-point registers).

Non-determinism is an important aspect of specification. The potential non-determinism
introduced above, while not implementable at the hardware level, helps keep a description
from being over specified. For example, if a processor has two identical adders, at the

specification level, we may not want to dictate which of the two adders the instruction uses.

6.11 A Normal Form

This chapter has demonstrated a method of specifying the timing properties of instructions.

Our approach requires that instructions be specified in a certain manner so we present the
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following normal form for the specification. As we will see the restrictions are reasonable.

6.11.1 Register Locking

An instruction that locks a register must eventually unlock that same register. That is,
a process that describes an instruction that lockes a register ¢ must execute the following
sequence:

lockreg; releasereg; ,
. — O “ e O ——> oo

6.11.2 Resource Requirements

An instruction that needs a resource will eventually release that same resource. That is, a
process that describes an instruction that acquires a resource r must execute the following
sequence:

get, release, |,
. — O “ e O —> e

Moreover, if an instruction needs resource r for one cycle then it has the sequence:

get,.-release, |,
. — O O -

6.11.3 Undefined Instruction Sequences

Two situations arose in our processor definition where instruction sequences were undefined;
1) a branch instruction followed by another branch or 2) an instruction referencing a register
that was currently being loaded by a load instruction. In both of these situations we trapped
the offending sequence by having a transition to SCCS’s undefined state, 0. If an instruction
sequence ; - - - i, is illegal then executing that sequence should cause a transition to 0. That
is the following transition must occur:

7 7
._1_>..._n_>...__)0

The general way of specifying an illegal sequence is to have the instructions communicate
through an intermediate process. This was the technique we used when specifying illegal

Load - Store combinations where the intermediate process was a lockable register.

6.12 Summary

In this chapter we have presented a technique for specifying the “programmer’s timing

view” of RISC-style architectures. We handled architecturally defined delayed loads and
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branches, interlocked floating-point instructions, and resource constraints. The technique
for specifying resources is very general and can be used to specify a variety of constraints.
For example, if we had a dual-ported register file and if, for some reason, two ports were
not enough and could lead to a structural hazard, we could model a port as a resource.
As another example, the Motorola 88000 has a structural hazard on a write-back data bus
in which it is possible that up to three instructions can try to use the write-back bus on
the same cycle (as explained in [2]). The hazard is resolved by giving priority to integer
instructions over floating-point instructions. In this situation we could model the write-back
bus as a resource and use our priority-sum operator, > to correctly model how the hazard

is resolved.
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Chapter 7

Multiple Instruction-Issue

Processors

7.1 An Integer x Float Superscalar

This section describes a superscalar (multiple instruction-issue) version of our processor
that can issue one floating-point and one integer instruction per cycle. If two instructions
can be issued in parallel, then we have either an integer instruction followed by a floating
point instruction or a floating-point instruction followed by an integer instruction. This

situation is specified by Equation 7.1.

(Float(PC) x Aly(PC + 4))
+ (Al(PC) x Float(PC + 4)) (7.1)

We can rewrite this sum as Equation 7.2.

Y (Al(PC + i) x Floaf( PC + j)) (7.2)
i,j€{0,4}
Assuming an instruction is not both an integer and floating-point, Equation 7.2 represents
a folding of Equation 7.1.

Equation 7.2 is a sum of four terms,

(Alu(PC + 0) x Float(PC + 0))
+ (Alu(PC +0) x Float(PC + 4))
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+ (Alu(PC + 4) x Float(PC + 0))
+ (Alu(PC + 4) x Float(PC + 4)) (7.3)

However, when ¢ = j then Alu(PC +1) and Float(PC + j) refer to the same memory location
and it is impossible for a memory location to contain both an Alu instruction and a Float

instruction. We can conclude then that
Alu(PC + i) X Float(PC + j)~ 0 where i = j

and only two terms remain (Equation 7.1). We use the summation notation because it
enables us to succinctly specify n-way instruction parallelism.
Equation 7.4 extends Equation 7.2 to continue execution at PC + 8.

Do_Two(PC) &ef

( Y (Al(PC + i) x Float(PC + ]))) Next Instr(PC + 8) (7.4)
i,j€{0,4}

There are no data dependencies to worry about because each instruction accesses separate
register files. That is, because processes Alu and Float use disjoint register files, and the
only way data dependencies arise is when two or more instructions use the same register,
then it follows that an integer instruction and a floating-point instruction can not have a

data dependency between them.

7.1.1 Instruction Issue

Our top-level instruction issue equation (Equation 6.15) must now be modified to take this
new two-issue capability into account. For reference, we restate Instr (Equation 6.15), and
rename it Do_One.

def

Do_One(PC) = (Non_Branch(PC) Next Instf(PC + 4))
+  Branch(PC) (7.5)
The processor can execute two, one, or zero (i.e., stall) instruction(s) per cycle, which we
capture by,
Instr(PC) ef Do_Two(PC) > Do_One(PC) > Stall(PC) (7.6)

Notice here the use of the priority choice operator, > (section 5.5) instead of +; whenever
it is possible to do Do_Two, it is also possible to do Do_One, and issuing two instructions
should take priority over issuing one when possible. Similarly, if we can not execute any

instruction then the processor must stall.
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7.2 An Integer x Integer Superscalar

In this section we specify a version of our processor that can execute two integer ALU

instructions in parallel. At first glance it would seem that
Aly(PC) x Alu(PC + 4) (7.7)

specifies the ability to execute two integer instructions in parallel. However, because both
instructions use the same register file we now have the possibility of data hazards existing
between the two integer instructions. Hence, sometimes parallel execution is thwarted.

Before we continue, we need to introduce the various types of data hazards that can arise.

7.2.1 Data Dependencies (or Data Hazards)

The instructions in Figure 7.1 represent all of the possible dependencies that can exist
between any two instructions?.

The instructions in 7.1a can be executed in parallel because they are data independent
while those in 7.1b cannot be executed in parallel because of the read-after-write (or RAW)
hazard on R1. In 7.1c parallel execution is possible if the processor can do register renaming
to eliminate the write-after-read (or WAR) hazard. However, we can specify that the
instructions must be executed in parallel without having to specify the renaming hardware
as we don’t wish to overspecify. The instructions in 7.1d present a rare (but possible) write-
after-write (or WAW) hazard. Here, the final value of R1 must be R3 + R3. Two solutions
are possible. First, since the hazard is rare, execute the instructions sequentially. Second,

execute them in parallel and insure that R1 gets the result of the second instruction. For

simplicity, we will choose the first option.

7.2.2 Specifying Data Hazards

Using restriction, we can force Equation 7.7 to apply only to legal integer instruction se-
quence of length two. If the first integer instruction writes register 7 then the second integer
instruction cannot write or read register <. For example, given two integer instructions, if the

first instruction writes register 0 then Equation 7.8 represents the legal integer instruction

!There is a confusion in terminology with regards to data hazards. Computer engineers refer to them
as RAW, WAR, and WAW hazards, while compiler writers refer to them as forward, anti-, and output

dependencies respectively. Forward dependencies are sometimes referred to as true dependencies.
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Add R1, R1, R1 Add R1, R1, R1

Add R2, R3, R4 Add R2, R1, R3
(a) No dependencies (b) Read-After-Write hazard
Add R2, R1, R1 Add R1, R2, R3
Add R1, R3, R3 Add R1, R3, R3
(c) Write-After-Read hazard (d) Write-After-Write hazard

Figure 7.1: Possible data dependencies in instruction sequences.

sequences.
Alu(PC)\\4o x Alu(PC +4)\\B, (7.8)
where Ao = {putry, getr,,...,getrs; }
By = {putr,,...,putry,,getr,,...,gotry }

Here, the agent P\\S represents particle restriction on the agent P where § is a set of
particles that P may execute [67]. In Equation 7.8 the restriction on the first instruction
by the set A specifies that only register zero is a possible destination register while the
restriction on the second instruction by the set B specifies that register zero cannot be a
source register nor a destination register.

Summing over all possible destination registers of the first instruction yields the desired

result.
P
Do_Two(PC) = Z(Alu(PC’)\\Ai x Alu(PC + 4)\\B;) Nezt (PC + 8)
1=0
where A; = {putr;, getr,...getry }

B; = {getr,...getry, putr,...putry, } — {putr;, getr;} (7.9)

Equation 7.9 represents all of the allowable integer instruction sequences of length two that

may execute in parallel.
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7.3 An Integer x Integer x Float Superscalar

In this section we describe a version of our processor that can execute three instructions in
parallel, two of which can be integer instructions and the other of which may be a floating-
point instruction. Now that we have already specified two dual-issue versions (sections 7.2
and 7.1) the three issue version follows nicely.

In this case, however, the easiest way to write the equation is as a sum of three terms,
one for each possible position of the floating-point instruction (ignoring data hazards, for

the time being).

(Alu(PC) x Alu(PC + 4) x Float(PC + 8))
+ (Al(PC) X Float(PC + 4) x Alu(PC + 8))
+ (Float(PC) x Alu(PC + 4) X Alu(PC + 8)) (7.10)

Adding data hazard constraints to Equation 7.10 as in Equation 7.9 gives us Equa-
tion 7.11.

Do_Three(PC) def

L Al(PC)\\4; x Al(PC+4)\\B; x Float(PC +8)
S| + AW(PC)\\4 x Floa(PC+4)  x AW(PC+8)\\B; | Nezt Instr(PC +12)
"\ 4 Fla(PC)  x AW(PC+4)\\A4 x AW(PC +8)\\B;

where A; = {putr;, getr,...getr, }

B; = {getr,...getr,,,putr,...putry, } — {putr;, getr;} (7.11)

The top-level issue equation now allows executing three, two, one, or zero instructions

each cycle.
Inst(PC) ' Do_Three(PC) > Do_Two(PC) 1> Do_One(PC) 1> Stall(PC)  (7.12)

As an example, the instruction sequence in Figure 7.2a can be executed in parallel
according to Equation 7.11 while the sequence in Figure 7.2b cannot because of the hazard.

The situation is much the same for specifying four-issue, five-issue, etc.
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Add R1, R1, R1 Add R1, R1, R1

Add R2, R3, R4 Fadd FR1, FR2, FR3
Fadd FR1, FR2, FR3 Add R2, R1, R3
(a) No dependencies (b) RAW hazard

Figure 7.2: Possible three-issue instruction sequences.
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Chapter 8

Simulation

In this section we show how our SCCS specification of our example processor is simulated.
The simulation occurs within the framework of the Concurrency Workbench [25] which

allows us to experiment with, simulate, and analyze SCCS specifications.

8.1 The Reactive View

A reactive system is one that interacts with its environment. This is opposed to the func-
tional view in which a system is viewed extensionally as a mapping of initial inputs to
final outputs. A common way to think of a reactive system is to view it as a black box
with buttons, where the buttons represent the actions that the user (or environment) can
perform.

The reactive view of our SCCS processor description is one where instructions represent
the buttons. Initially, at time ¢y, any button can be pressed (i.e., any instruction can be
executed). At time ¢; some buttons can be pressed and some cannot. The instructions
that can’t be executed (the button representing the instruction can’t be pressed) must be
“waiting” for something from the instruction that was initiated at time ¢,.

For example, if the Fadd FRy, FR;, FRy button is pressed at time tg, then at time ¢,

any button that uses FRy cannot be pressed.
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t: ‘ Instr(PC) x Registers X Memory x F P_Registers‘

[4dd Ry, Ry, Rsl{[getr,(z)][getz;(y)][putzy(z + y)])

t +1: | Instr(PC + 4) x Registers X Memory x FP_Registers

[Mov Ry, Ri]{[getr;(z)][putz,()])

t+2: ‘Instr(PC’ + 8) X Registers X Memory x FP_Registers‘

Figure 8.1: Derivation of program executing on the processor.

8.2 Simulation

A simulation of our processor specification amounts to loading a program into memory

(with putm actions) and then running the agent that represents the processor. That is, we

can observe the behavior of the program by calculating the transition graph of an agent.
Recall from Section 5.6 that the transition graph of an agent P consists of transitions

of the form 4 = B.
e A represents the state of the system, at time £.
e a is the action performed (transition).
e B is the new state at time ¢ + 1.

Because our processor represents such a large system, it is not feasible to write down the
entire graph so we will abbreviate by only showing pertinent states.

In our transition graphs, each node is surrounded by a box and represents the current
state of the processor at a particular moment in time. Each edge is labeled with the set of

actions that execute on that transition (e.g., instructions, getr, putr, lockreg, etc.). For
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readability, individual particles are enclosed with “[ |” (e.g., [getr,(z)][putry(z)]). Also,
the particles that appear between the {---) do not really appear on the transition because
each particle has synchronized with either a register or a resource. We label the transitions
with these particles anyway just to show all of the internal details. To simplify the graph
many actions and processes have been omitted. At the nodes, unchanged register and

memory cells have been replaced by an ellipsis.

8.3 A Simple Example

Figure 8.1 shows the transition graph of the following program.

Add R2, R2, R3
Mov R2, R1

We assume that the program is loaded into memory (with putm actions) starting at PC.

In the graph in Figure 8.1:
e Time ¢ is the initial state of the processor.
e Time ¢t + 1 is the state of the processor after executing the Add instruction.

e Time t + 2 is the final state of the processor after the Mov instruction is executed.

8.4 Example: An Illegal Instruction Sequence

Executing an illegal instruction sequence on our specification should lead to the inactive

agent 0. Figure 8.2 traces the following illegal instruction sequence.

Load R1, R2, #8
Mov R3, R1

On the second transition the particle getr,(z) causes the agent Locked_Reg, to change to

the agent 0 (see Equation 6.10).

8.5 Example: A Floating-Point Vector Sum

For a more complete example, we trace our processor’s behavior on a program that

calculates the vector sum of a floating-point array (Figure 8.3). For this example, we
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t: Instr(PC) x Registers X Memory X FP_Registers

[Load Ri, Ry, #8|{[getr,(Base)|[getmp, .. o(V)|[Lockreg; |}

t+ 1 Instr(PC + 4) x (putr,(V)releasereg; : Done) x Locked_Reg,(y) X - --

[Mov Rz, Ri]{[getr;(z)][putzs(z)][putz,(V)][releasereg;])

trn [0

Figure 8.2: Derivation of illegal program executing.

LoadI RO, #0

LoadI R1, #0

LoadI R2, #Vec

MovItoFP FRO, RO
Loop: Load.f FR1, R2, i#0

AddI R2, R2, #4

AddI R1, R1, #1

Fadd FRO, FRO, FR1

CmpI RO, R1, #10

BZ RO, Loop

Nop

Figure 8.3: Program that calculates a vector sum.
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t+1:

t+2:

t+ 3:

t+4:

t+ 5:

t+ 6:

t+7:

‘Instr(PC’) X ‘

[LoadI Ry, #0]{[lockreg,])

Instr(PC + 4) x putr,(0)releasereg, : Done X Locked_Regy(y) X - - -

[LoadI Ry, #0]{[lockreg,][putr,(0)][releasereg,|)

Instr(PC + 8) x putr,(0)releasereg, : Done X Locked_Reg; X ---

[LoadI Ry, #Vec|{[lockreg,|[putr,(0)][releasereg,]|})

Instr(PC + 12) x Locked_Reg,(y) x putr,(#Vec)releasereg, : Done X - -

[MovItoFP FRg, Rol{[getry(z)][putfry(z)][putr,(#Vec)|releasereg,|)

| Instr(PC +16) x - - |

[Load.£ FRy, By #0]{[lockfreg,|[getz,(B)|getmy(V)])

Instr(PC + 24) x putfr,(V)releasefreg, x Locked_FP_Reg; X - - -

[AddI Ry, Ry, #4]{[putfr,(V)][releasefreg, |getr,(z)][putr,(z + 4)])

| Alu(PC + 28) x Float(PC + 32)---|

[4ddI Ry, Ry, #1]{[getr,(z)][putr,(z +1)])

[Fadd FRo, FRo, FR;|{[gefr,(z)] [gefr,(y)][lockfreg,])

Inst(PC 4+36) x (1:1:1:1:1: putfryreleasefreg, : Done) x Locked_FP_Reg, X - - -

Figure 8.4: Transition graph of vector sum from Figure 8.3.
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use the superscalar version of our processor defined in Section 7.1. Note that there are
instructions in Figure 8.3 which we have not specified. LoadI, AddI, and CmpI are load,
add, and compare instructions where the third operand is an immediate constant. LoadI’s
timing properties are the same as Load, and AddI and CmpI take one cycle to execute (as
in Add). MovItoFP moves data from an integer register to a FP-register and takes one cycle
to execute. Load.f is a delayed floating-point load instruction.

Figure 8.4 shows a partial transition graph of the vector sum program up to the first

execution of the Fadd instruction. We can see from the transition graph that,

e at least one new instruction is issued every cycle. That is, on every transition there

is an action that represents an instruction.

e at time ¢t +1,¢f+ 2, ¢t + 3, and t + 5 we can observe the effect of the delayed load
instructions by observing a left-over agent that writes and releases the destination
register. At these nodes we can also see that the destination register of each load is

in its locked state Locked_Reg.

e From time ¢+ 6 and {47 we can observe that two instructions are executing in parallel,

one integer and one floating-point.

In conclusion, since the operational semantics of SCCS maps SCCS terms to abstract
machines (i.e., labeled transition systems) we have a direct way of examining the behavior

of an SCCS specification.
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Chapter 9

Instruction Scheduling

This chapter gives a brief overview and formalization of instruction scheduling. As an
example, we present an algorithm for the most common form of instruction scheduling, List
Scheduling. We need a formal definition of the instruction scheduling problem so that we
can deduce what information an instruction scheduler requires. Knowing what to look for
then leads us into extracting this information from our specification.

Instruction scheduling is primarily carried out on RISC/Superscalar style architectures

that have the following characteristics:

e Load/Store architecture. Only two instructions, load and store, are allowed to access

memory. All other instructions operate on registers.

e Instructions are fixed format. That is, every instruction is encoded in the same number

of bits. A typical RISC has 32-bit instruction formats.

e A new instruction can, potentially, be issued every cycle.

9.1 Instruction Scheduling

Given a sequence of instructions, 5, instruction scheduling is the problem of reordering S

into S’ such that §' has two properties:
1. the semantics of the original program § is unaltered, and

2. the time to execute S’ is minimal with respect to all permutations of S that preserve

the semantics of §.
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The instruction scheduling problem is NP-complete in general [59, 38].

Before we proceed we need a definition.

Definition 2 The length of an instruction 7 is the minimum number of cycles needed to

execute 2.

In our case, length(i), is the number of cycles needed to execute ¢ in the absence of all

hazards. Intuitively, one way to compute length(z) is to execute ¢ in isolation.

9.1.1 Constraints

We introduce a machine model that has two types of scheduling constraints—precedence

and resource.

Precedence Constraints

A precedence constraint (or data dependency) is a requirement that a particular instruction
i execute before another instruction j due to a data dependency between ¢ and j. As
mentioned in Section 7.2.1, data dependencies are of three types — true or forward, anti-,
and output — which correspond to RAW, WAR, and WAW hazards.

The objects to be scheduled are individual instructions of a program. If I is the set of
instructions in a program, then the precedence constraints induce a partial order, Prec, on
P such that, Prec C I x I. If there is a precedence constraint between two instructions, %
and j, such that ¢ must execute before j then (¢,7) € Prec.

The partial order, Prec, is usually represented graphically by a directed acyclic graph
(DAG) G. G is composed of a set of vertices V' and a set of edges F, G = (V, E). Each
vertex of the graph is an instruction, and if (¢, j) € Prec then there is a directed edge, (%, 7),
from vertex 7 to vertex j. As an example, Figure 9.1 shows the dependency graph for the
loop body (a basic block) of the vector sum program in Figure 8.3.

If instruction ¢ must execute before j we do not usually require that ¢ run to completion
before j can begin. Hence, we augment the DAG by labeling each edge, e, with a minimal
latency (delay), d(e). This latency represents the least amount of time, in cycles, that must

pass after ¢ begins executing before j can begin.

Definition 3 The latency between two instruction ¢ and j is the least number of cycles

that must pass between initiating ¢ and then initiating j.
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V1 V3

Addl R1, R1, #1 Load.f FR1, R2, #O

V4 V5

Fedd Fr0,_Fo.
V2

Figure 9.1: Dependency graph of vector sum program from Figure 8.3.

Resource Constraints

An architecture consists of a multiset', R, of resources. On each clock cycle that it is
executing, each instruction uses a subset of resources from R, intuitively, the resources
being used by the instruction at that time. If an instruction ¢ executes for length() cycles
then the resource usage function for instruction %, p;, maps clock cycles to subsets of R.
That is, p; : t - Pow(R) s.t. t € w where w represents the set of natural numbers. When
t > length(z) then p;(t) = 0. For example, ppqa(2) represents the multiset of resources used
on clock cycle 2 by the Add instruction.

The scheduling constraint on resources then is that, at any particular time £, the re-
sources needed by the instructions executing at time ¢ do not exceed the available resources.

As an example, recall the description of the MIPS/R4000 floating-point unit from Sec-

tion 6.10. The resource set R is
{divider, shifter, adder, rounder, mult _S1, mult_S2, unpacker, exception }

and the partial resource usage function for the FDIV instruction is given in Figure 9.2.

9.1.2 Instruction Scheduling Algorithms

We now define what an instruction schedule is and formalize the instruction scheduling

problem.

! A multiset is a set that allows duplicate elements. For example, there might be two or more floating-point

adders. Multisets are also known as “bags”.
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prorv(2) = {adder,shifter}
prowv(3) = {rounder,shifter}
prorv(4) = {shifter}
prorv(p) = {divider}

Figure 9.2: Part of resource usage function for MIPS/R4000 FDIV instruction.

Definition 4 An instruction schedule, o, for a program DAG is an injective function that
assigns each node v € V an integer that represents its position in the list of instructions

(0 : V — w). That is, o is a topological ordering to G.

For example, consider the DAG from Figure 9.1. One possible instruction schedule

would be:
o(Vs) =1, o(V1) =2, o(Va) =3, o(V5) =4, o(Va) =5
which we could abbreviate as Va; Vi; Va; Vi; V. Another possible schedule is Vi; Va; Va; Vy; V.

Definition 5 The instruction scheduling problem is to find the shortest schedule, o, such

that both precedence (Equation 9.1) and resource (Equation 9.2) constraints are met?.

Ve = (u,v) € E,(o(v) — o(u)) > d(e) (9.1)
Vt € w, U po(t—o(v))C R (9.2)
veV

Intuitively, if Equation 9.1 is true then distance between any two dependent instructions
is greater than or equal to the required minimum latency. If Equation 9.2 is true then the
schedule o has not overcommitted the available resources. A schedule is not overcommitted
if, at any time ¢, the union of all the resource requirements of all the instructions still
executing at time ¢ (those that started at ¢ — 1,¢ — 2,...) is a subset of R, the available

resources of the machine.

2In Equation 9.2, U and C refer to multiset union and subset.
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The above characterization of instruction scheduling is the basis for all instruction
scheduling methods, including list scheduling, trace scheduling, and software pipelining [73,
14, 15, 57, 58, 82, 7, 55, 35].

At this point we have defined the instruction scheduling problem and we know what
information we need to do instruction scheduling. To make the definition more concrete we

discuss the most common instruction scheduling algorithm, List Scheduling.

List Scheduling

To see what information is needed to parameterize instruction scheduling, we now describe
List Scheduling, which we have taken from Lam’s thesis [58].

The main idea of list scheduling is straightforward. There is a list of “ready to execute”
instructions called the ready list which is, initially, the root nodes of V, that is, the nodes
that have no incoming edges. Instructions are selected from the ready list, using some type
of priority scheme, until the ready list is empty. After each instruction is scheduled, new
nodes are added to the ready list. Altering the priority heuristic produces many different
types of scheduling algorithms. Figure 9.3 gives the list scheduling algorithm.

We need not go into the details of function List_Schedule but only note that it is a

function of three things:
e the program DAG G
e the table of latencies, d, used in Satisfy Precedence_Constraints
e the resource usage function p used in Satisfy_Resource_Requirements

Scheduling algorithms work on a section of straight-line code, called a basic block. Trace
scheduling and software pipelining are two techniques that schedule instructions beyond
basic blocks. Without going into the details, we mention that both trace scheduling and
software pipelining use list scheduling as a basis.

Figure 9.4 depicts a canonical view of the phases of compilation and shows where this
research fits in (highlighted in the dotted box). In the figure, each bold-faced node not
enclosed in a box is “data” for some portion of the compilation system. In our case, the
timing specification is input to a program that generates parameters for a generic instruction

scheduler.
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function List_Schedule(G as (V, E),d, p)
let
Ready = root nodes of V and
Scheduled = ()
in
while Ready # 0 do
v := highest priority node in Ready;
Lb := Satisfy Precedence_Constraints(v, Scheduled, o, d);
o(v) := Satisfy Resource_Constraints(v, Scheduled, o, p, Lb);
Scheduled := Scheduled U{v};
Ready := Ready—{v}U {u|u ¢ Scheduled AV (w,u) € E,w € Scheduled };
end while
return(o);
end let
end List_Schedule

function Satisfy Precedence_Constraints(v, Scheduled, o, d)

return(maxy,cscheduled(o(¢) + d(u, v)))

function Satisfy Resource_Constraints(v, Scheduled, o, p, Lb)
for t = Lb to o do

if V0 < -7 < length(”)‘((UuGScheduledpu(i + -7 - O'(U))) U pv(])) < R then

return(t)

Figure 9.3: Generic list scheduling algorithm.
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Chapter 10

Deriving Instruction Scheduling

Parameters

This chapter describes how instruction scheduling information is derived from a timing
specification, written in SCCS. The general idea is that the parameters d and p from the
previous chapter are derivable, automatically, from the specification yielding an instruction

scheduler for the processor.

10.1 Preliminaries

Recall, from chapter 9, that the length of an instruction 7 is the minimum number of cycles
required to execute ¢. Intuitively, one way to compute length(Z) is to execute ¢ in isolation.
In SCCS this amounts running the SCCS agent that describes ¢ and counting cycles. Un-
fortunately, in general, SCCS agents do not have to terminate. For example, our SCCS
processor description may not terminate. However, termination is a reasonable assumption
to make about our SCCS agents that describe individual machine instructions. Moreover,
so we can “observe” this termination, each instruction will indicate its termination with a
special action, done.

We will require that each instruction, of our SCCS description, indicate its termination
using the action done. To do this we redefine the agent Done to the following:

Done % Gone: 1

The action done is a termination signal — no other agent should do a done and synchronize
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with done.

In addition, we borrow the notion of a well-terminating agent from Milner [68].

Definition 6 An agent P is well-terminating if,

1. for every P -2 P’ a # done.

2. if P' 9™ P’ then P’ ~ Done.

The first part of the definition, (1), says the action done is reserved to indicate termination
and that no other agent can execute the action done and synchronize with done. The
second part of the definition says, that, if any agent does perform a done, it is the last
action it performs before changing to the idle agent 1. The definition does not require that
P terminate, only that, if it does terminate, then it indicates its termination with the action
done.

Now we can precisely compute length(z) inductively on the structure of SCCS terms for

any agent that is well-terminating.

length(0) = 0
length(Done) = 0
length(a : P) = 1+ length(P) o # done
length( P + = max(length(P),length(Q))

)

Q)
length(P x Q) = max(length(P),length(Q))

5)

)

length(P T = length(P)
length(P[f]) = length(P)
length( A L py = length(P)

For example,

length(a:b:c:0+d:0) =3

10.2 Derivation of Scheduling Parameters

Given the definition of the instruction scheduling problem from chapter 9, there are two

tasks:
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e Given a program dependence graph G = (V, E) label each edge e € E with d(e), the

minimal latency.
e For each instruction, ¢, construct the resource usage function, p;.

We first present an algorithm for deriving the delay function d from our processor
specification. Essentially, the delay for an instruction pair (¢, 7) is calculated by initiating ¢
and then observing how long until j can begin. Most architectures resolve WAR and WAW
hazards and schedulers only have to deal with RAW hazards. We will be more general and
calculate the delay for every instruction pair (¢,7) in the presence of a hazard h, where
h € {RAW, WAR, WAW}. Now that we have a table of latencies we can correctly label a program
DAG.

10.2.1 The Algorithm

The algorithm to calculate instruction latencies from the SCCS processor description is
given in Figure 10.1. Construct_Latency_Function works by executing an instruction ¢ and
counting how long until a subsequent instruction j can begin after ¢ starts. It does this for
all possible pairs of opcodes for each data hazard. Recall that the instruction latency is the
amount of time between initiating ¢ and initiating j (definition 3). Notice, however, that it
is still possible that after j begins it may stall for some other reason (which will most likely

be a resource hazard).

Equivalence With Respect to Hazards

In order to decrease the number of instruction pairs that we need to calculate latencies for
we do not generate all possible pairs of instructions but all possible pairs modulo the three
types of hazards. That is, we consider two instruction pairs to have the same latency if they
are the equivalent up to hazards. For example, we expect that the two instruction pairs
below have the same latency even though they use different integer registers.

Add R1, R1, R1 Add R2, R1, R1

Mul R2, R1, R1 Mul R3, R2, R2
Both instruction pairs have a RAW hazard; the pair on the left on R1 and the pair on the
right on R2. The assumption is that the register file has a reasonable amount of orthogonality
as we would expect that the time it takes to access register 7 is equal to the time it takes

to access register j. If the architecture does not possess this orthogonality then we could
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inspect all register pairs for all combinations of registers. But the search space is reduced
considerably if we treat all registers equivalently.

To see this, if an architecture has ten 3-operand instructions and 32 registers, the number
of possible instruction pairs is (10-323)? = 1,073,217, 600. Examining instruction pairs up

to hazards equivalence only requires that we check 3 - 102 = 300 pairs.

Definition 7 Let I be the set of instructions, let function Opcode(i € I) return the opcode
of instruction ¢, and function Hazard(%, j) return the hazard occurring between instruction ¢
followed by instruction j. Two instruction pairs (41, 42) and (j1, j2) are said to be equivalent

up to hazard, written

haz

(i1,%2) = (J1,52)
if
e Opcode(i;) = Opcode(j1) and Opcode(iz) = Opcode(jz)
e Hazard(iy,i2) = Hazard(j1, j2)

h . . .
Theorem 10.1 = is an equivalence relation.

Proof: We need to show that = is reflexive, symmetric, and transitive.

(reflexive) Clearly (i1,13) has (%1,42) as the Opcode(i;) = Opcode(é;) and Hazard(z;) =
Hazard(i;).

(symmetric) Show that if (¢q,42) hez (j1,72) then (j1,J2) hez (31,82). If (41,12) hez

(71, J2) then Opcode(i;) = Opcode(j;) and Hazard(é;) = Hazard(j1), which is all we

need to show.

(transitive) Show that if (iq,15) has (71, 72) and (41, j2) has (k1,k2) then (i1,12) hoe

(k1, k2). By the antecedent of the “if” Opcode(i;) = Opcode(j;) and Opcode(j1) =

Opcode(k). Then it follows that Opcode(i;) = Opcode(k;). Also by the antecedent

of the “if” Hazard(¢;) = Hazard(j;) and Hazard(j;) = Hazard(k;). Then it follows that
Hazard(i1) = Hazard(k;). This is all we need to show.
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Algorithm Construct Latency Function

Algorithm Construct_Latency_Function requires, as input, the labeled transition system
(P,00, Act,—) (see Section 5.6) of the processor specification. Consider an instruction
pair (¢,7) having hazard h between them. Essentially, we initiate instruction ¢ and execute
Nop instructions until we reach a state o” such that the transition o” I oM s possible.
That is, if we execute ¢ at time ¢ then we subsequently try to execute j at time ¢ + 1, and
if we cannot then we try executing j at time ¢ + 2 and so on. Eventually 7 will be able to
execute at some future time ¢ + n and we can conclude that the latency, d(z, h, 7), is n.

If we let (—>»)* mean zero or more consecutive occurrences of the action a then we can

visualize the latency between two instructions, ¢ and 7, in terms of the transition system:

first cycle of 7 first cycle of 7
—_—— —_——~

oo -5 o' () 0" o s (10.1)
——

latency

We now prove two theorems about algorithm Construct_Latency_Function. For all of
the remaining theorems we assume that the processor is specified in the normal form laid
out at the end of chapter 6 — that when an instruction acquires a register or resource it

eventually releases the same register or resource.

Lemma 10.1 Algorithm Construct_Latency_Function terminates.
Proof: Clearly, the outer for-loop terminates as the set, Opcodes x Hazards x Opcodes is
finite.

Consider an arbitrary instruction pair (¢, j'). The only way for the while-loop to not

terminate is if instruction j' is blocked forever. That is, no o' exists for which o"/. Since
the only thing that can block j' is a locked register or resource and, by our assumption,
every register/resource must eventually be unlocked then eventually o’ N o' and the
while-loop will terminate.

a

In the worst case, j' can begin after ¢/ terminates. Since ¢’ has terminated 7' must
have unlocked all of its registers/resources and the transition o/ —— ¢" is possible and the

while-loop terminates. In this case,
d(i, h,j) = length(7)
However, we would like to show a stronger result; that d(¢, h, j) is the minimal latency.
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function Construct_Latency_Function((P, o, Act, —))
let
Opcodes = {Add, Fadd, BZ, ...} and
Hazards = {RAW, WAR, WAW}
in
for each (i, h,j) € Opcodes x Hazards x Opcodes do
1) Construct an instruction pair, (¢, j') s.t. ¢’ uses opcode ¢,
7' uses opcode j, and hazard h exists from 4’ to j'.
2) let o' be state s.t. op LA
3) delay := 1;
while there is no transition o’ —» o do
1) delay := delay + 1
2) let opext be state s.t. o 1, Opnext
3) o' := Onext
end while
d(i,h,j) = delay
end for
end let
return(d)

end Construct _Latency Function

Figure 10.1: Algorithm that derives instruction latencies.
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Theorem 10.2 Algorithm Construct_Latency Function constructs d, the minimal latency
function.

Proof: We need to show that an arbitrary triple (7, h,j) € Opcodes X Hazards x Opcodes
has a minimal latency, d(¢, h, 7). Let the instruction pair (¢, ') be the pair constructed in
the first statement of the for-loop. Instruction ¢’ can start executing (i.e., statement 2 of
the for-loop is valid) since no other instructions are currently executing that may block ¢'.
There are two cases to consider: 1) instruction ¢’ is not blocking j' and 2) instruction ¢’ is

blocking j'.

case 1: ¢’ is not blocking j'. In this case, the while-loop is never entered as the only
transitions possible are

I T
og — 0 — o

and d(i, h,j) = 1.

case 2: i’ is blocking j'. We only need to show that j’ starts as early as possible. That is,

that the latency is not too large. If o —*, at time ¢ then we try to execute j' at time

J
t+ 1. If o/ then we issue the idle action and reach a state ¢’ and try to execute j'
again. Eventually, o’ L, o" at time n because, by the assumption that 4’ is in normal

form, it will eventually release all of its registers/resources that j' depends on.

The second case of the proof essentially says that, if i’ started execution at time ¢, then
i will eventually unlock register » at some time ¢ + n (by the assumption that instruction

i is in normal form). The latency is then n + 1. If the current cycle of ¢’ is n (i.e., time

J
t +n) then the variable delay = n. Now, o'/ and we enter the body of the while loop and:
1. delay is set to n + 1;

2. the algorithm issues the idle action 1 (i.e., the transition o’ NPT taken). But
now, on this transition 7' unlocks r (because this is cycle n) and, therefore, in state

o" (time t + n + 1), » is unlocked and 7’ is no longer blocking j'.

The algorithm tries to execute the loop body again but the transition o/ > ¢ is possible
and the loop terminates with delay = n + 1.

a

Notice that the latency between two instructions, i’ and j’, that suffer a data hazard

may be equal to the length of 7. In the second case, it is possible that 7’ may lock a resource
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causing j' to stall after ;' has begun executing. Here, j' has already started, but that is all
that is needed to calculate the latency since the latency represents the least amount of time,
in cycles, that must pass after i’ begins executing before j' can begin. The resource vectors
of the instructions will yield information allowing the scheduler to optimize for resource

conflicts.

Theorem 10.3 The time complexity of Construct Latency Function is O(mn?) where m
is length of the longest instruction and n is the number of opcodes for the architecture.
Proof: The for-loop in algorithm iterates 3n? times, which is O(n?) (where 3n? = |Opcodes x
Hazards X Opcodes|). Since instructions terminate, the while-loop iterates, at most, m =
MaX;cOpcodes length(z) times, which is O(m). Hence, algorithm Construct_Latency_Function
is O(mn?).

a

10.3 Determining Illegal Instruction Sequences

We need to be able to determine which instruction sequences are illegal (e.g., incorrectly
using the load or branch delay slots). If an illegal instruction sequence is executed then our
simulated processor deadlocks (recall Figure 8.2). In our example microprocessor, referring
to aregister being loaded while it is locked (Equation 6.10) or executing a branch instruction
in the branch delay slot (Equation 6.22) constitute illegal sequences. We would expect these
to be the only situations where illegal combinations of instructions arise, but there could

be others, so we must check.

10.3.1 A Modal Logic for SCCS

At the expense of some preliminary discussion we will make our algorithms more clear and
concise by employing a modal logic defined in terms of labeled transition systems. The
logic lets us describe properties in terms of a logical formula, we may then check whether
the transition system (process) satisfies this logic formula [93]. We introduce the logic
informally through an example. The following grammar generates the formulae of the logic

where K € Act.
A ::=true |false | A; AN Ay | A1V Ay | 7A | [K]A| (K)A | pz.A

The logic is essentially the propositional calculus (boolean algebra) with two additional

modal operators, [K| and (K). ([K] and (K) represent “necessity” and “possibility” from
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classical modal logic, usually denoted O and <.) The calculus also includes the operator
pz. A which allows us to write recursive logic equations.

If K is a set of actions then a process P satisfies [K]A, written P |= [K]A iff P can do
every action in K and subsequently satisfy A. (K) is a dual of [K] and P |= (K)A iff after
some action in K, P |= A. Every process P has the property true. That is,

VP € P.P = true
and no agent has the property false:

VP € P.P - false.

As an example, consider a process V that represents a vending machine that can accept
one quarter or a half dollar coin and yields a small (1 quarter) or large (half dollar) candy

(this example is borrowed from [93]). The actions 1q and hd represent inserting a quarter

or a half dollar.
1% def hd : big: collect: V + 1q: little:collect:V

Here, V |= (1q)true, that is V' can perform the action 1q (V can accept a quarter). A
candy cannot be retrieved before a quarter is inserted. That is, V = [big,little]false.

Some more properties include:

e V |= [hd]([1ittle]false A (big)true): after a half dollar is inserted we cannot get a

little candy but we can get a big one.
e V = [1q,hd|[1g,hd]false: after one coin is inserted no more coins can be inserted.

e V = [1q,hd|[big,little]|(collect)true: after a coin is inserted and a candy is

returned we can collect it.
We can express immediate deadlock in the logic with the formula
Deadlock % [—|false.

Here, “—” is a wild card that represents the entire action set. If P satisfies Deadlock then
P can’t do any action. The process 0 possesses no actions and represents the deadlocked

agent, consequently, 0 = Deadlock.
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We can also encode the temporal logic operator eventually into the logicl. Here, P =

eventually(A4) when P eventually evolves to a process P’ that satisfies A. That is,
P—...—PAPEA

P = eventually(Deadlock) if the process P eventually deadlocks (as opposed to immedi-
ately deadlocks).

10.3.2 Using the logic in a processor

We first consider illegal instruction pairs. Essentially, we detect these by executing all
instruction pairs and examining which cause the processor to deadlock. If CPU is our

SCCS process that represents our microprocessor then
CPU = [Load R1, (R2)][Add R3,R1,Rijeventually(Deadlock)

means that CPU deadlocks when this particular Load instruction followed by the 4dd in-
struction is executed. Hence, this instruction sequence is illegal. Our intuition suggests that,
for our example microprocessor that we have been studying, any instruction pair where the
first instruction is a Load and the second instruction uses the register being loaded is illegal.

Another illegal instruction pair is a BZ instruction followed by a BZ instruction. So we

expect that
CPU |= [BZ R;, Locni|[BZ R;, Locn2leventually(Deadlock).

Algorithm Detect_Illegal_Instruction_Pairs (Figure 10.2) examines illegal instruction pairs.
When the algorithm detects an illegal pair (%, h, §) it records the error value L in the table
entry for that pair. That is, d(¢, h,j) =L.

It is possible to extend this method to all illegal instruction sequences of length n. For

example, we could check to see if, for an instruction sequence i1, iy, - - - 2, is legal with:
CPU [= [i1] - - - [in]eventually( Deadlock)

but this could lead to combinatorial problems. Fortunately, n is usually quite small.

!Encoding the operator eventually requires using the least fixpoint operator, pu, which represents a certain
. . . . . . . def .
solution to recursive equations written in the logic (e.g., an equation such as Z =< {a}Z). Specifically

from [98] we have,

eventually(B) def pX.(BV ({(—)true A [-]X))
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function Detect Illegal Instruction Pairs((P, oq, Act, —), d)
let
Opcodes = {Add, Fadd, BZ, ...} and
Hazards = {RAW, WAR, WAW, NoHazard}
in
for each (i, h,j) € Opcodes x Hazards x Opcodes do
1) Construct an instruction pair, (¢, j') s.t. ¢’ uses opcode ¢,
7' uses opcode j, and hazard h exists from 4’ to j'.
2) if — = [¢'][j']eventually(Deadlock) then
d(i,h,j) =1
end for
end let
return(d)

end Detect Illegal Instruction Pairs

Figure 10.2: Algorithm to detect illegal instruction pairs.
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Theorem 10.4 Algorithm Detect_Illlegal Instruction_Pairs correctly identifies illegal in-
struction pairs.

Proof: By the assumption that the specification is in the normal form laid out at the end
of chapter 6 and the correctness of the satisfaction relation |=. The correctness of = is
well-known [94] and is computable for finite-state systems.

a

The only interesting part of algorithm Detect_Illegal Instruction_Pairs is the second state-
ment of the for-loop, checking the satisfaction relation, |=. Here we have used the modal

logic to do all of the transition checking and rely on the correct implementation of the logic.

10.4 Determining Possible Multiple-Issue Instructions

We can also identify which instructions can be issued in parallel using the modal logic. An
instruction is an action in SCCS, and two instructions, ¢ and j, executing in parallel, is
the product of these actions, 7-j. So if ¢ and j can execute in parallel then the transition
o 1, oM is possible (Figure 8.4 shows this case).

In terms of the logic then, we expect that CPU |= (i - j)true if ¢ and j can execute in
parallel. For example, if our processor can execute an integer instruction in parallel with a

floating-point instruction then
CPU = (Fadd FR1, FR2, FR3-Mov R1i,R2)true.

In this situation we consider the latency between the two instructions to be zero. That is,
d(i,h,j)=0.

Algorithm Detect_Multiple_Issue_Pairs (Figure 10.3) only examines instruction pairs. As
in the case for illegal instruction sequences, we can extend this method to all instruction
sequences of length n but, again, this leads to combinatorial problems. Fortunately, n
is usually quite small and there is some evidence that there is a small lower bound (less
than 10) on the amount of available instruction-level-parallelism [86, 97]. For all current
superscalar architectures, n is less than five. The IBM RS/6000, which has the largest

degree of parallelism, is capable of issuing four instructions/cycle.

Theorem 10.5 Algorithm Detect Multiple_Issue_Pairs correctly identifies instruction pairs
that can be issued simultaneously.

Proof: By the correctness of = [94].

O
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function Detect_Multiple Issue_Pairs((P, oq, Act, —), d)

let
Opcodes = {Add, Fadd, BZ, ...} and
Hazards = {RAW, WAR, WAW, NoHazard}
in
for each (i, h,j) € Opcodes x Hazards x Opcodes do
1) Construct an instruction pair, (¢, j') s.t. ¢’ uses opcode ¢,
7' uses opcode j, and hazard h exists from 4’ to j'.
2) if — = (¢ - j")true then
(i, h, ') = 0
end for
end let
return(d)

end Detect_Multiple Issue_Pairs

Figure 10.3: Algorithm to detect multiple instruction issue pairs.
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As in the case for checking illegal instruction sequences, the only interesting part of al-
gorithm Detect_Multiple_Issue_Pairs is the second statement of the for-loop, checking the
satisfaction relation, |=. Again we have used the modal logic to do all of the transition

checking and rely on the correct implementation of the logic.

10.5 Computing the Resource Usage Functions

In this section we will compute the resource usage function, p;, for each instruction ¢ of the

SCCS processor specification. First, some definitions.

10.5.1 Particulate Actions and Agent Sorts

Recall that every action, a, is uniquely expressible as a product of powers of particulate

actions, that is, @ = a*aj? - - -a;*, where each a; is either a or @. We denote the particles

of an action a as Part(a), where Part(a) = {a,...,ar}. We need to categorize the process
by the actions that they may eventually execute. This categorization is called a sort and is

like a “type” in a programming language.

Definition 8 The action sort of an agent P, denoted Sort(P), is the set of actions that P

executes s.t. P executes action a implies a € Sort(P).

The converse of the implication does not have to hold so Sort(P) can be too big. That
is, if Sort(P) = § and § C T then Sort(P) = T.

Definition 9 The particle sort of P, denoted PartSort(P), is the set of particles of Sort(P)
s.t. PartSort(P) = {Part(a) | @ € Sort(P)}.

The particle sort of an SCCS agent is defined inductively on the structure of SCCS

terms.

PartSort(0) = 0

=0

= Part(a) U PartSort(P)

= PartSort(P) U PartSort(Q)
= PartSort(P) U PartSort(Q)

= PartSort(P) — Part(5)

)
PartSort( Done)
PartSort(a : P)

PartSort(P + Q)

PartSort(P x Q)
PartSort(P T §)
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PartSort(P[f]) = Part(f(Sort(P)))

PartSort(A ef P) = PartSort(P)

For example,

Sort(A 4’ a: Donex b: Donex 1: A) = {ab,1}

and

PartSort(4) = {a,b, 1}.

10.5.2 Resources and Actions

The only reason we need to introduce sorts at all is so that we can determine what resources,
if any, an instruction requires. If R is the set of resources of a processor (section 9.1.1) let

PartR be the set of particles used to acquire and release these resources (Equation 10.2).
PartR = {get, | i € R} U {put, | i € R} (10.2)

The set of particles that an instruction ¢ uses to access all of its resources is defined by
PartSort(P)N PartR where P is the SCCS agent that describes . For example, PartSort(P)N
PartR where P is the divide instruction of Equation 10.3 is the set

{get_adder, put_adder, get divider,release divider}

10.5.3 Deriving the Resource Usage Functions

Recall that the resource usage function p; for an instruction 7 precisely specifies what re-
sources % uses on each cycle of its execution. To derive the resource usage function for i we
simply execute ¢, in isolation, and observe what resources 7 acquires and releases and also
when those resources are acquired and released.

An instruction is using a resource from the time it gets that resource (using get) to
the time it releases that resource (using release). We can visualize this in terms of the

transition system for the instruction:

a B
0'0__>..._>0'__>..._>0'__>...__>Done
—_——

using resource r

where get, € Part(a), release, € Part(f)
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for each i € P s.t. Sort(i)N PartR # 0 do
let — and oy be the transition relation and start state of 3.
o' := og; InUse := §;
for cycle:=1 to length(7) do
let Opext, @ be state and action s.t. 6’ —— Opext;
0" 1= Onext;
if get, € Part(a) and put, € Part(a) then
pi(cycle) := InUse U {r};
else if get, € Part(a) then
pi(cycle) := InUse U {r};
InUse := InUse U{r};
else if put, € Part(a) then
pi(cycle) := InUse;
InUse := InUse —{r}
else
pi(cycle) := InUse
end if

end for

end for

Figure 10.4: Algorithm to calculate resource usage functions.
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Figure 10.4 gives the algorithm for computing the resource usage functions.

The algorithm works by examining, for each instruction, the transition graph of the
agent that describes that instruction. The algorithm scans the instruction recording the
current set of resources that are in begin used with the variable InUse. When a get, is
encountered, r is added to InUse. When a put, is encountered r is removed from InUse.

The if-statement in the inner-most for-loop has four cases:

1. If both a get, and put, are needed on the same cycle then the resource r is needed

for only one cycle and the current resources being used are InUse U {r}.

2. A get, (with no put,) signifies that the instruction begins using » for more than one
cycle, so the current resources used are again InUse U {r}. InUse is updated to include

T.

3. A put, signifies that the instruction is finished using r after the current cycle. The

resource 7 is removed from InUse.

4. Ifno get, or put, is encountered on the current cycle then the set of resources currently

being used is InUse.

Theorem 10.6 The algorithm in Figure 10.4 correctly computes the resource usage func-
tions of the architecture.

Proof: Consider an arbitrary instruction ¢ € P in normal form, a resource r € R, and the
transitions of .

o1 =L o, =k Lo, 2% Done
Consider an a,, € {a1,...,a,}. We need to show that r € p;(m) if and only if
1. get, € Part(a,,) or
2. put, € Part(a,,) or
3. dag,ap € {a1,...,a,} such that a < m < b and get, € Part(a,) A put, € Part(ap) A
—dput, € {agt1y---5 -1}

The first two are obvious from the first three conditions of the “if-statement” in the algo-
rithm. The third statement follows as the transition o —2 ¢' updates InUse to include =
and 7 is not removed from InUse until the transition o —% ¢'. Consequently, from the final
else clause r € p;(m).

a
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Theorem 10.7 The time complexity of the algorithm in Figure 10.4 is O(mn) where m is
the number of instructions, n is the length of the longest instruction.

Proof: Clearly the outer for-loop executes at most m times, the number of instructions
on the machine. The inner for-loop executes at most n times where n is the length of the

longest instruction. Hence, the statement in the inner for-loop executes mn times, which is

O(mnr).

The size of R, |R|, will typically be small (for example on the MIPS R2000 it is 13 and on
the Motorola 88000 it is 16).

An Example

Consider the floating-point divide instruction described in section 6.10.2 which we repeat

here.

FDIV(PC) &ef getmp(Fdiv, FR;, FR;, FRi)lockfreg;getfr (z)getfr,(y):

got_adder - release_adder :

get_divider: (1 :)°release divider:

got_adder : release_adder:

putfr,(z/y)releasefreg; : Done (10.3)

The algorithm computes the following resource usage function for the floating-point

divide instruction, Fdiv, described earlier.

{adder} ift=2

{divider} if3<¢<9
PFdiv(t) = _
{adder} ifl10<t<11

] otherwise

10.6 Summary

Using the labeled transition systems generated by the operational semantics of SCCS we

can have shown how to:
e find instruction latencies.

e determine illegal instruction sequences.
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e determine instructions that can be issued in parallel.

e derive the resource usage functions for each instruction.

110



Chapter 11

Conclusions and Future Research

This thesis has addressed the formal specification of two programmer views of a processor.
The architecture level describes the processor so that the programmer can write correct
programs. The timing level describes the processor so that the programmer can write
efficient programs.

At the highest level of abstraction, the architecture level, a processor can be viewed as a
set of instructions where each instruction is represented as a function from processor state
to processor state. One of the contributions of this thesis was to present a way in which
this functional view can be represented cleanly using the functional language SML. (Other
functional languages would have sufficed, such as Haskell or Miranda, but we chose SML
as it has the most advanced data abstraction facilities of any functional language.) We
essentially created an abstract data type (ADT) of common architectural operations and

implemented the instructions with this ADT.

11.1 Programmer’s Timing View

Programmers often need more information than the architecture provides. The architecture
is minimal in that it only includes information needed to write correct programs. However,
programmers also want to write efficient programs. Hence, we have the programmer’s
timing view of instructions. Timing information includes instruction latencies, resource
requirements, and multiple instruction issue capabilities.

It is natural to ask whether the functional technique used to specify architecture could

be extended and applied for the timing view. It turns out that specifying the temporal and
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parallel behavior of systems with functional methods is difficult. Qur criteria for choosing
another method were that the formalism be able to specify time and parallelism explicitly
and we chose the synchronous process algebra SCCS.

The second contribution of this thesis, then, is to specify, as abstractly as possible, the
timing behavior of a typical RISC architecture. We also showed how to specify superscalar
versions of our RISC in which more than one instruction can be issued simultaneously.

Since SCCS has a formally defined operational semantics, our specification is “exe-
cutable”. The abstract machine of the operational semantics, a labeled transition system,
(a type of state machine) specifically describes the behavior of systems specified in SCCS.
We have implemented our specification on the Concurrency Workbench, a tool for specifying

and analyzing systems written in SCCS (or CCS).

11.1.1 Instruction Scheduling

Once a timing view of a processor has been specified we showed what information is re-
quired to do instruction scheduling, essentially parameterizing the instruction scheduling
problem. Using the the labeled transition system of the specification we then showed how
to derive the instruction scheduling parameters from the specification consequently yielding

an instruction scheduler for the processor.

11.2 Future Research

The features that we have included in our example processor were those that are related
to instruction scheduling. It is natural to ask whether SCCS is capable of specifying other
features such as interrupts and more sophisticated memory hierarchies, such as instruction

and data caches.

11.2.1 Interrupts

One aspect of instruction processors that we did not address are interrupts, traps, and ex-
ceptions. Any complete processor specification, however, should include them. Fortunately,
SCCS and process algebras in general are capable of specifying interrupts. For example,
Milner [68] discusses an interrupt operator where a process F' may interrupt a process E,
written ENF. Once the interrupt operator is included it is also possible to specify a Restart

operator allowing processes to be restarted after they have been interrupted. The syn-
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chronous process language ESTEREL also includes operators useful for specifying interrupts
such as its “watchdog” and “trap” statements. For example the statement

do S watching I

repeatedly executes the statement S until the signal I occurs. Eventually, we should
address specifying processor interrupts — though this may not be useful information for

compilers, users of the processor may need to know how interrupts are handled.

11.2.2 Cache Model

At present the memory hierarchy we use is only a two-level model of registers and main
memory. Though it would complicate our specification of memory, we could add a cache
to our specification in a transparent way, without altering the specification of individual
instructions, since, in a RISC model only two instructions access memory, Load and Store.
Compiling for efficient use of caches is a current area of active research [22]. Typically,
program profilers generate information that describes the program memory access patterns
and the compiler rearranges procedures to make efficient use of the instruction cache. Com-
pilers can also rearrange instructions that access data so that the data cache is used more
efficiently.

Once a cache model has been included in the specification it may be possible to use this

specification to help generate this optimization phase of the compiler.

Other Classes of Processors

In this dissertation we have concentrated on RISC-style architectures. Certainly it would
be possible to specify other classes of architecture such as CISCs or VLIWs (Very Long
Instruction Word). In a VLIW, the architecture and the organization are inseparable [35].

Specifying a VLIW would essentially require us to specify the individual resources and
the data-paths of the processor. Since it is up to the programmer to organize the instructions
so that resource uses do not conflict it should, in principle, be easier to specify than a RISC
where we needed to provide interlocks. A specification of a VLIW would require altering

the algorithms to reflect the volatile nature of the resources.

11.2.3 Verification and Synthesis

One important property of SCCS that we have not used is the ability to prove systems
equivalent. In SCCS it is possible to specify a high-level system and to verify that an
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implementation of the system meets its specification. To do this would require that we

specify a processor at a lower “implementation” level.

Verification

For example, the obvious choice is to specify the organization of the processor: the pipeline
stages, forwarding paths, etc. Doing this may be tedious but not difficult. The problem
is state explosion. That is, the number of states in any processor is tremendous and since
the notion of equivalence in SCCS relates states in the implementation with states in the
specification, any complete verification would require that all of the states be checked.

There are a couple of techniques that we could use to handle the state explosion problem.
The first technique exploits the fact the parts of the processor are regular, that is, they have
a repetitive or inductive structure. For example, a 32-bit ALU may be constructed from
thirty-two 1-bit ALU’s (for example, see Patterson & Hennessy [77]). So a specification of
a 16-bit ALU is almost identical to the specification of a 32-bit ALU. As Milner points [68],
systems with inductive structure have proofs that are amenable to induction proofs.

One of the principle reasons a processor specification has so many states is that the
number of states in a specification increases exponentially as the size of the memory elements
increases. For example, a 32-bit register has 232 different states and each 1-bit increase
in word-size doubles the number of possible states. There has been some research using
abstraction techniques (for example, see [24]) where an abstraction function is used to “merge
states”. For example, if we want to verify the control portion of a processor then we can

ignore the values in registers and memory. Using this abstraction all 232

possible states of
a register are collapsed into one state. In this case the abstraction function is “congruence
modulo one” which creates an equivalence class for each register on the processor. Now,
each register, R;, is the representative for all of the possible 232 states of register R;. If a
processor has n 32-bit registers, the number of possible states is reduced from (232)" to just
n — a dramatic decrease. The majority of the states would come from the control portion
of the hardware known as the control unit. The control unit likely includes other “state

registers” which we could not abstract in the previous manner as they are integral parts of

the control unit.

Synthesis

We should also note that it may be possible to synthesize hardware from a specification,

since a labeled transition system, at least in the finite case, is really just a state machine
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and hardware synthesis is often performed from state machines. In fact, there are CAD

packages that will synthesize hardware from descriptions of state machines [96].

11.3 Formal Methods

We should also stress that formal specifications are valuable in their own right and are a
starting point for a variety of applications. One benefit is that they require the designer to

thoughtfully plan the design in a structured manner. As Noam Chomsky points out in [23]:

. a formalized theory may automatically provide solutions for many problems other
than those for which it was explicitly designed. Obscure and intuition-bound notions
can neither lead to absurd conclusions nor provide new and correct ones, and hence

they fail to be useful in two important respects.

Starting from a mature and well-defined formal approach made available a large amount
of mathematical machinery. Predefined are notions of system equivalence (used for veri-
fication), labeled transition system (used in the semantics, for simulation and just about
everything else), modal/temporal logic, sorts, etc. Often, whenever we needed to do some-

thing with our specification existing results were there to help.
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Appendix A

Example circuits in the

Concurrency Workbench

In this appendix we show the Workbench implementations some of the example circuits
from chapter 4.

A few notes about the SCCS syntax and the CWB-SCCS syntax. The Concurrency
Workbench implements the “basic” SCCS calculus. Consequently, this means that there
is no generalized summation (e.g., 3°) in the Workbench. In order to keep the description
tangible, I have given only a “timing” specification and have excised all values, register and
memory values.

There is also some notational differences.

e Action product is specified with # instead of juxtaposition. For example, the agent

ab: 0 is a#b:0.
e Action complement is done using a single quote character (’out instead of out).
e Parallel composition is, for example, A|B instead of A X B.

e Process definition 4 % P is handled by the bi command which binds an identifier

to a process description.
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A.1 Simple Logic Gates

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

**x*x* Or gate is described by

ook ok

*okok ok 0r(k) <= a(i)#b(j)#’out(k):0r(i or j)
ook ok

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

bi 0rO aO#bO#’out0:0r0 + alO#tbl#’outO:0r1 \
+ al#bO#’out0:0xrl1 + ali#tbil#’out0O:0rl

bi Ori aO#bO#’outl:0r0 + aO#bl#’outl:0rl \
+ al#bO#’outl:0rl1 + ali#tbil#’outl:0rl

bi 0r O0r0 + Orl

ok 3 K ook ok o 3 ook ok 3 3 o ok ke o o o ok 3 ok ok o K 3 ok oKk ok 3 ok oKk ok ok ok

**** An exclusive-or gate is similar.

ok 3 K ook ok o 3 ook ok 3 3 o ok ke o o o ok 3 ok ok o K 3 ok oKk ok 3 ok oKk ok ok ok

bi Xor0 a0#bO#’out0:Xor0 + alO#bi#’outl:Xorl \
+ al#tbO#’outO:Xorl + al#bil#’outO:Xor0

bi Xoril aO#bO#’outl:Xor0 + aO#bli#t’outl:Xorl \
+ al#bO#’outli:Xorl + al#bl#’outl:Xor0

bi Xor Xor0 + Xorl

3o ok o ko ok o ok sk ok o ok ke ok ok ok sk ok ok ok ok o o ok ok ok o ko o ksl ok o sk sk ok ok ke ok ok ok sk ok ok sk ok o ko o ok ok ok o
**x*x* And gate is described by

ook ok

*okok ok And(k) <= a(1)#b(j)#’out(k):Nor(i and j)

ook ok

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k
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bi AndO aO#b0#’out0:And0 + alO#bli#’out0:Ando \
+ al#bO#’outO0:And0 + al#bl#’outO:Andl

bi Andi aO#bO0#’outl:And0 + alO#bli#’outl:Ando \
+ al#bO#’outl:And0 + al#bl#’outl:Andl

bi And AndO + And1l

A.1.1 Not Gates

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k dk 2k ok 2k 2k dk ok 2k ok 3k %k dk ok 2k 3k 3k k 2k 2k 2k %k dk ok dk 2k 3k %k >k 2k 2k ok 3k %k dk 2k A %k *k %k 5k >k *k %k

**¥kk A Not gate.

ok kK
*okok ok Not(j) <= a(i)$’out(j):Not(not i)

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k dk 2k ok 2k 2k dk ok 2k ok 3k %k dk ok 2k 3k 3k k 2k 2k 2k %k dk ok dk 2k 3k %k >k 2k 2k ok 3k %k dk 2k A %k *k %k 5k >k *k %k

bi Not0 alO#’outO:Notl + al#’outO0:Not0
bi Notl alO#’outi:Notl + al#’outl:NotO
bi Not Not0 + Noti

bi NotNot (Not[’alphal/’outO,’alphal/’outl] | \
Not[alphaO/a0,alphal/al])\{a0,al, ’out0,’outl}

A.2 Half-Adder

A.2.1 Specification

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

**%*%* Binary Half-adder specification is described by
* ok kK

*x*x* HA_Spec(c,s) <=

* ok kK

*okok ok a(i)#b(j)#’ carry(c)#’sum(s) :HA_Spec(i and j, i or j)
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%k ok 5k Xk

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

***%* NOTE: There is mo HA_Specl0 as it is an unreachable state.

bi HA_Spec00 aO#bO#’ carryO#’ sumO:HA_Spec00 \
+ aO#bl#’carryO#’sum0:HA_SpecOl \
+ al#bO#’carryO#’sum0:HA_SpecOl \
+ al#bi#’carryO#’sumO:HA_Specii

bi HA_SpecO1 aO#bO#’ carryO#’ suml:HA_Spec00 \
+ aO#bl#’carryO#’suml:HA_SpecOl \
+ al#bO#’carryO#’suml:HA_SpecOl \
+ al#bi#’carryO#’sumi:HA_Specii

bi HA_Speclil aO#bO#’ carryl#’suml:HA_Spec00 \
+ aO#bl#’carryl#’suml:HA_SpecOl \
+ al#bO#’carryl#’suml:HA_SpecOl \
+ al#bi#’carryl#’sumi:HA_Specil

bi HA_Spec HA_SpecO0 + HA_SpecOl + HA_Specil

A.2.2 Implementation

3 ks s o o ok ok ok Sk s ok o ok Sk s ok o ok ok ko o ok ok ks s ok ok sk sk sk sk ok sk sk s ok sk ok sk s sk sk ke ko sk ok ok o ok
**%*%* Binary Half-adder implementation is implemented with an

**x** OR-gate properly comnnected to an AND-gate.

%k ok 5k Xk

**¥*xx  HA_TImpl(c,s) <= (And(c)[f] | Xor(s)[gl) [hl]

%k ok 5k Xk

* ok ok where f = carry/out, g = sum/out, h = in/in#in

kKKK meees

* ok ok ok

* ok ok workbench says cannot have relabel of form a/j#k,
* ok ok but Milner’s paper says you can.
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%k ok 5k Xk

%k ok 5k Xk

%k ok 5k Xk

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

Workbench implements []:Act --> Part, where

[]:Act --> Act would be nice.

**x*x* A big set of all possible actions

basi A1l a0~ 2#b0"2#’carryO#’sum0

a0”2#b0"2#° carryO#’suml
al”2#b0"2#’ carryOit’ sum0
al”2#b0"2#° carryO#’suml
al”2#b172#’ carryOit’ sum0
al”2#b1"2#’ carryO#’suml
a0”2#b1"2#’ carryOit’ sum0
a0”2#b1"2#° carryO#’suml

a0”2#b0"2#° carryi#’suml
a0”2#b0"2#’ carryli’ sum0
al”2#b0"2#° carryi#’suml
al”2#b0~2#’ carryli’ sum0
al”2#b1"2#’ carryi#’suml
al”2#b172#’ carryli’ sum0
a0”2#b1"2#° carryi#’suml
a0”2#b1"2#’ carryli’ sum0

(HA_ImplOO + HA_ImplO1l + HA_Implil)/All

(AndO[’carry0/’out0, ’carryl/’outi] \

| XorO[’sum0/’out0, ’sumi/’outi])

(AndO[’carry0/’out0, ’carryl/’outi] \

| Xori[’sum0/’out0, ’sumi/’outl])

(And1[’carry0/’out0, ’carryl/’outi] \

| Xori[’sum0/’out0, ’sumi/’outl])

(And[’carry0/’out0, ’carryl/’outi] \

| Xor[’sum0/’outO, ’suml/’outi])/All

bi HA_Impl

bi HA_ImplOO
bi HA_ImplOi
bi HA_Implii
bi HA_Impl’
A.3 Wires

3k 2k ok ok 3k ok ok ok 2k %k dk ok 2k 3k dk dk 2k 3k ok dk ok 2k 2k dk ok 2k ok 3 %k dk ok 2k 3k 3k 5k 2k 2k 2k %k dk ok >k >k 3k %k >k >k Xk

**x*x*x Unit delay wire
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ok ok ok
*okok ok Wire(j) <= in(i)#’out(j):Wire(i)

ok ok ok

**¥*k* Two delay wire Specification

ok ok ok

*okok ok Wire’’(i,j) <= in(a)#’out(j):Wire’’(a,i)
s ks s o o ok ok sk s ok o ok ok sk sk s ok sk ok ok sk ok sk ok o sk ok ok o ok ok sk sk ok ok ok ok sk o
bi WireO inO#’outO:Wire0 + inil#’outO:Wirel

bi Wirel inO#’outl:WireO + inil#’outl:Wirel

bi Wire Wire0 + Wirel

bi Wire’’00 inO#’outO:Wire’’00 + inil#’outO:Wire’’10
bi Wire’’01 inO#’outl:Wire’’00 + inil#’outl:Wire’’10
bi Wire’’10 inO#’outO:Wire’’0l1 + inil#’outO:Wire’’11l

bi Wire’’11 inO#’outl:Wire’’0l1 + inil#’outl:Wire’’11l

bi Wire’’ Wire’’00 + Wire’’01 + Wire’’10 + Wire’’11

3o o o o o KoK K K o o K o o K o o K o o o K o o ok o o ok ok o o o K oK o ok o o o ok ok o oK o ko ok o
**%k* Implement a two unit delay wire with two pieces of
**¥k* unit delay wire.
*ok koK
*¥*¥xx  Wire’’Impl <= (Wire[f] | Wire[gl)\{in(i),out(id}
*ok koK
***xx  where f = ’alpha(i)/’out(i) and g = alpha(i)/in(i)
3o o o o o KoK K K o o K o o K o o K o o o K o o ok o o ok ok o o o K oK o ok o o o ok ok o oK o ko ok o
bi Wire’’Impl \
(Wire[’alphaO/’out0,’alphal/’outi] \
| Wire[alpha0/in0,alphal/ini])\{in0,in1,’out0,’outl}

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k dk 2k ok 2k 2k dk ok 2k ok 3k %k dk ok 2k 3k 3k k 2k 2k 2k %k dk ok dk 2k 3k %k >k 2k 2k ok 3k %k dk 2k A %k *k %k 5k >k *k %k

**¥*k*x Notice that: Wire’’ * Wire’’Impl ~ NotNot

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k dk 2k ok 2k 2k dk ok 2k ok 3k %k dk ok 2k 3k 3k k 2k 2k 2k %k dk ok dk 2k 3k %k >k 2k 2k ok 3k %k dk 2k A %k *k %k 5k >k *k %k
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A.4 Full-Adder

A.4.1 Specification

3o o o o o KoK K K o o K o o K o o K o o o K o o ok o o ok ok o o o K oK o ok o o o ok ok o oK o ko ok o
**%*k* Full Adder specification

*ok koK

*x*x* FA_Spec(c,s) <== a(i)b(j)Cin(k)’carry(c)’sum(s):

*okok ok FA_Spec(if i+j+k >= 2 then 1 else O,

*okok ok if i+j+k = 1 or 3 then 1 else 0)

3o o o o o KoK K K o o K o o K o o K o o o K o o ok o o ok ok o o o K oK o ok o o o ok ok o oK o ko ok o

bi FA_Spec FA_Spec00 + FA_SpecOl1 + FA_Specl0 + FA_Specll

bi FA_Spec00

bi FA_SpecO1

bi FA_Specl0

aO#bO#cinO#’ carryO#’ sum0:
aO#bO#cini#’ carryO#’ sum0:
aO#bl#cinO#’ carryO#’ sum0:
aO#bil#cini#’ carryO#’ sumo0:
al#bO#cinO#’ carryO#’ sumo0:
al#bO#cini#’ carryO#’ sumoO:
al#bl#cinO#’ carryO#’ sumoO:
al#bil#cini#’ carryO#’ sumO:

aO#bO#cinO#’ carryO#’ suml:
aO#bO#cini#’ carryO#’ suml:
aO#bl#cinO#’ carryO#’ suml:
aO#bl#cini#’ carryO#’suml:
al#bO#cinO#’ carryO#’ suml:
al#bO#cini#’ carryO#’suml:
al#bl#cinO#’ carryO#’suml:
al#bil#cini#’ carryO#’suml:

aO#bO#cinO#’ carryl#’ sum0:
aO#bO#cini#’ carryl#’ sum0:
aO#bl#cinO#’ carryl#’ sumoO:
aO#bl#cini#’ carryl#’ sumoO:
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FA_SpecO1
FA_SpecO1
FA_Specl0
FA_SpecO1
FA_Specl0
FA_Specl0
FA_Specii

FA_Spec00
FA_SpecO1
FA_SpecO1
FA_Specl0
FA_SpecO1
FA_Specl0
FA_Specl0
FA_Specii

FA_Spec00
FA_SpecO1
FA_SpecO1
FA_Specl0
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bi FA_Specll

al#bO#cinO#’ carryl#’ sumO:
al#bO#cini#’ carryl#’ sumoO:
al#bl#cinO#’ carryl#’ sumoO:
al#bil#cini#’carryl#’ sumoO:

aO#bO#cinO#’ carryl#’suml:
aO#bO#cini#’ carryl#’suml:
aO#bl#cinO#’ carryl#’ suml:
aO#bil#cini#’ carryl#’suml:
al#bO#cinO#’ carryl#’suml:
al#bO#cini#’ carryl#’suml:
al#bl#cinO#’ carryl#’suml:
al#bil#cini#’carryl#’suml:

A.4.2 Implementation

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k k ok ok 2k %k dk ok 2k ok 3k 5k dk ok 2k 3k 3k k 2k 2k 2k 2k dk ok 5k 2k 3k %k dk 2k 2k ok 3k %k 2k 2k 2k %k 3k %k dk >k *k %k >k >k 5k

**%*k* Full adder implementation

ok kK
**¥*xx FA_TImpl(c,s) <== (HA[f] | HA[g] | Or[h]l)/{a,b,c,carry,sum}
ok kK

*okok ok f = cin/b, tempsum/a, ’carry’/’carry

ok kK g = ’tempsum/’sum, ’carry’’/’carry

* kKK h = carry’/a, carry’’/b, ’carry/’out

FA_SpecO1
FA_Specl0
FA_Specl0
FA_Specii

FA_Spec00
FA_SpecO1
FA_SpecO1
FA_Specl0
FA_SpecO1
FA_Specl0
FA_Specl0
FA_Specii

P

Pl

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k k dk ok 3k k dk ok 2k 3k dk k 2k ok 2k 3k dk ok 2k 3k 3k %k dk ok 2k 3k dk dk dk 2k 2k 3k 2k dk 2k ok 2 %k dk >k 2k 3k 2k %k >k >k >k *k %k 5k

bi HA HA_Spec

bpsi S a0 al b0 bl carry0 carryl sum0 suml cinO cinil

bi HA1 HA[cinO/b0,cinl/bl,tempsum0/al,tempsumi/al, \

’carry’0/’carry0,’carry’1/’carryl]

bi HA2 HA[’tempsumO/’sum0,’tempsuml/’suml,’carry’’0/’carry0, \

’carry’’1/’carryi]
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bi 0r’ Or[carry’0/al,carry’i/al,carry’’0/b0,carry’’1/bl, \

’carry0/’out0,’carryl/’outi]

bi FA_Impl (HA1 | HA2 | Or’)\S

A.5 Flip-Flop

ok K K K K K K K K K K K K K K K K K K K K K K K K Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o o o ke ke ke kK Kok ok ok ok ok ok ok ok o
**x*x* This example of implementing a flip flop with two nor

**x*x* gates and is borrowed from

* %k k R. Milner, "Calculi For Synchrony and Asynchrony",

* %k k Theoretical Computer Science, 1983.

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k k ok ok 2k %k dk ok 2k ok 3k 5k dk ok 2k 3k 3k k 2k 2k 2k 2k dk ok 5k 2k 3k %k dk 2k 2k ok 3k %k 2k 2k 2k %k 3k %k dk >k *k %k >k >k 5k

A.5.1 Implementation

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

**x*x* Nor gate is described by

%k ok 5k Xk

*okok ok Nor(k) <= a(i)#b(i)#’out(k):Nor(i nor j)

%k ok 5k Xk

**%x* where in Sml

%k ok 5k Xk

*okok ok infix nor; fun i nor j = not (i orelse j);

3k 2k ok ok 3k 2k ok ok 2k 2k dk ok ok 3k dk dk ok 3k 5k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 3k 5k k 2k 3k 5k dk dk 5k >k 3k k dk 2k ok 2k 3k %k dk >k 3k >k 3k >k 5k >k *k %k

bi Nor0O a0#bO#°g0:Norl + aO#bi#’g0:Nor0 + \
al#bO#’°g0:Noxr0 + al#bili’g0:Nor0

bi Nori aO#bO#’°g1:Norl + aO#bi#’gl:Nor0 + \
al#bO#’°gl:Nor0 + al#bili’gl:Nor0

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k dk 2k ok 2k 2k dk ok 2k ok 3k %k dk ok 2k 3k 3k k 2k 2k 2k %k dk ok dk 2k 3k %k >k 2k 2k ok 3k %k dk 2k A %k *k %k 5k >k *k %k
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**%*%*x Make a flip flop out of two 'properly connected"

*¥kk nor gates.

®okok ok
>k kK FF(m,n) <= (Nor(m)[f] | Nor(m)[gl)

®okok ok

* ok ok where f = si/ai, gi#ai/outi where i in {0,1}
>k kK g = ri/bi, bi#di/outi

®okok ok

3k 2k ok ok 3k ok 3k ok 3k k dk ok 2k 3k dk k 2k 3k dk 2k ok 2k 2k dk ok 2k ok 3k %k dk ok 2k 3k 3k k 2k 2k 2k %k dk ok dk 2k 3k %k >k 2k 2k ok 3k %k dk 2k A %k *k %k 5k >k *k %k

bpsi S s0 s1 r0 r1 g0 g1 dO di

bi FFOO  (NorO[s0/a0,s1/al,’gO#’a0/’g0,’gl#’al/’gll \
| NorO[r0/b0,r1/bl,’b0#°d0/’g0,’bl#’d1l/’gl])\S

bi FFO1  (NorO[s0/a0,s1/al,’gO#’a0/’g0,’gl#’al/’gll \
| Nori[r0/b0,r1/bl,’b0#°d0/’g0,’bl#’d1l/’gl])\S

bi FF10  (Nori[s0/a0,s1/al,’gO#’a0/’g0,’gl#’al/’gll \
| NorO[r0/b0,r1/bl,’b0#°d0/’g0,’bl#’d1l/’gl])\S

bi FF11  (Nori[s0/a0,s1/al,’gO#’a0/’g0,’gl#’al/’gll \
| Nori[r0/b0,r1/bl,’b0#°d0/’g0,’bl#’d1l/’gl])\S

bi FF  FFO00 + FFO1 + FF10 + FF11

A.5.2 Specification

3k 2k ok ok 3k ok 2k ok 2k k dk ok 2k 3k k k ok 3k k dk ok 2k 3k dk ok 2k ok 2 %k dk ok 2k 3k 3k %k dk 2k 2k 3k k k dk 2k 2k %k dk dk 2k ok 2k %k dk >k 2k 3k ¥k %k %k >k *k

**%kx A flip flop specification

%k ok 5k Xk

*¥*¥*xx  FF(m,n) <= s()#r(j)#’g(m)#’d(n):FF(i nor n, m nor j)
ok kK

3k 2k ok ok 3k ok 2k ok 2k k dk ok 2k 3k k k ok 3k k dk ok 2k 3k dk ok 2k ok 2 %k dk ok 2k 3k 3k %k dk 2k 2k 3k k k dk 2k 2k %k dk dk 2k ok 2k %k dk >k 2k 3k ¥k %k %k >k *k

**x*x* Which unfolds to the following.
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bi

bi

bi

bi

bi

SpecFF00

SpecFFO01

SpecFF10

SpecFF11

sO#rO#’ gO#°do0:
s1#rO#’ gO#°do0:

sO#rO#’ gO#°dl:
s1#rO#’ gO#’dl:

sO#rO#’gi#’do0:
s1l#rO#’gli#’do:

sO#ro#’ gli#’dl:
sl#rO#’gi#’dl:

SpecFF11
SpecFFO01

SpecFFO01
SpecFFO01

SpecFF10
SpecFF00

SpecFF00
SpecFF00

sO#ri#’ gO#°do0:
sil#ri#’ gO#°do0:

sO#ri#’ gO#’dl:
si#ri#’ gO#’dl:

sO#ri#’gi#’do:
sifri#’gi#’do0:

sO#ri#’ gi#’dl:
silfri#’gi#’dl:

SpecFF SpecFF00 + SpecFF01 + SpecFF10 + SpecFFi1
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SpecFF00
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SpecFF00
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Appendix B

Our example RISC in the

Concurrency Workbench

In this appendix we list how the SCCS specification of our RISC is implemented using the
Concurrency Workbench [25, 71].

B.1 The CWB Listing

3 kS s o o ok ok Sk s ok o ok ok kS s ok o ok o ok s ok o ks sk ok ok sk ok s sk ok ok sk sk ok ke sk sk ok ke ko Sk sk ok o ok sk sk ok o ok ok ks o
**¥*k* Some auxillary definitioms
3 kS s o o ok ok Sk s ok o ok ok kS s ok o ok o ok s ok o ks sk ok ok sk ok s sk ok ok sk sk ok ke sk sk ok ke ko Sk sk ok o ok sk sk ok o ok ok ks o

bi DONE 1:DONE

3 kS s o o ok ok Sk s ok o ok ok kS s ok o ok o ok s ok o ks sk ok ok sk ok s sk ok ok sk sk ok ke sk sk ok ke ko Sk sk ok o ok sk sk ok o ok ok ks o
**%*%* Definition of a memory cell. There can be 0, 1, or 2
**x*x* roaders of the register. There is no problem with having more,
**%*%* they’re just not defined. Only one writer is allowed and it may
**** be simultaneous with a read.
ok ok ok
**x*x* This is basically an unfolding of a summation.
3 kS s o o ok ok Sk s ok o ok ok kS s ok o ok o ok s ok o ks sk ok ok sk ok s sk ok ok sk sk ok ke sk sk ok ke ko Sk sk ok o ok sk sk ok o ok ok ks o
bi Reg0’ putrO:Reg0 \

+ ’getr0:Reg0 \

127



+ ’getr0”2:Reg0

+ ’getr0°3:Reg0

+ ’getr0~4:Reg0

+ putrO#’getrO0:Regl
+ ‘gotr0~2#putr0:Reg0
+ ’geotr0~3#putr0:Reg0

Pl

+

’getr0~4#putrO0:Regl
1:Regl

+

bi  Reg0 Reg0’ + lockreg0:Locked_Reg0

bi  Locked_Reg0 Illegal_Access0
+ putrO#releasereg0l:Regl \
+ 1:Locked_Reg0

**x*x* Have to enumerate all of the possible illegal accesses.
bi Illegal_AccessO ’getr0:0

+ ’getr072:0

+ ’getr073:0

+ ’getr074:0

+ ’getrO#putr0:0

+ ’gotr0”2#putr0:0

+ ’getr0”3#putr0:0

+ ’gotr0”4#putr0:0

+ putr0:0

+ ’gotrO#fputrOffreleasereg: 0

+ ’gotr0~2#putrO#freleaseregl: 0

P D Y P P P

+ ’gotr0~3#putrO#freleaseregl:0
+ ’gotr0~4#putrO#ftreleaseregl:0

3o ok o ks ok o ok sk ok ok ok ke ok ok ko ok o ok o ok ok o ksl ok o sk ok ok ke o ok ok ko ok ok o o ok ok ok ok o sk ok o sk sk ok ok kK ok sk ok o o K ok o
***x* Do the same thing for another register, Regl, as in Reg0.

**x** Should have used relabeling but when running the Workbench the output
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**** is easier to look at if there is not alot of relabeling.
S ok o o o o o ok ok o ok o o 3 sk ok ok ok ok o 3k o ook ok o 3k o sk e o o ok o ok e ok ok ok o o s ok ook ok sk o o ok o sk e ok ok ok o ke ok ok ok o o o ok ok o
bi Regl’ putril:Regl \
+ ’getrl:Regl
+ ’getri~2:Regl
+ ’getri~3:Regl

~

+ ’getri~4:Regl
+ ’getrii#putri:Regl \
+ ’getri~2#putri:Regl \
+ ’getrl~3#putri:Regl \
+ ’getri~4#putri:Regl \
1:Regl

+

bi Regil Regl’ + lockregl:Locked_Regil

bi Locked_Regl Illegal_Accessl + putrl#releaseregl:Regl + 1:Locked_Regl

bi Illegal_Accessl ’getrl:0
+ ’getrl1~2:0
+ ’getr1~3:0
+ ’getrli~4:0
+ ’getri#putrl:O
+ ’getri”2#putrl:0
+ ’getri”3#putrl:0
+ ’getri~4#putrl:0
+ putril:0
+ ’getriffputrifireleaseregl:0
+ ’getri~2#putriffreleaseregl:0

P D Y P P P

+ ’getri~3#putriffreleaseregl:0
+ ’getri~4#putrifftreleaseregl:0

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

**x*x* Dofine memory cells. Easier than registers because no interlocks.

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k
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bi  MemO putmO : MemO
+ ’gotm0:Mem0O
+ ’getm0~2:Mem0O
+ putmO#’getmO:MemO

T

+ ’gotm0~2#putmoO :MemO
+ 1:MemO

bi  Memil putml:Meml
+ ’getml:Meml
+ ‘getml~2:Meml

+ putmi#’getml:Memil

T

+ ’getml~2#putml:Memil
1:Meml

+

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

**x*x* Dofining two memory cells and registers each.

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

bi Registers (RegO | Regl)

bi Memory (MemO | Meml)

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

38 o o K 6 o ok 3 6 o ok 3 6 ook 3 o o K 3K o o 3 K o ok ok 3 K o ok 3 3 ok ook 3 3 o K kK o o 3 K o ok ok 3 K o ok 3 ok o ok 3 3 ok K o o K K ok ok ok K
***%* There are 8 possible add instructions and the "nop" instruction.
**x*x* Three operands with Reg0 or Regl possible for each operand.

* ok ok K

**%*%* The syntax "addxyz" represent the add instruction with destination
**x*x* rogister "x", and source registers "y", and "z".

3 ok o o o o o ok ok ok o o o o ok ok ok o o o 3 o s ok o o 3k sk o o 3k sk e o o ok o sk ok ok ok o s ok o ok o ke ok ok ok o ok 3 ok ok ok o o o Kok o
bi ALU add000#getrO#getrO#’ putr0:DONE  \
+ add001l#getrO#getri#’putr0:DONE \
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+ add010#getrO#getri#’putr0:DONE
+ addOli#fgetrO#getri#’putrO:DONE
+ addl00#getrO#getrO#’putrl:DONE
+ addlOi#fgetrO#getri#’putrl:DONE
+ addli0#getri#getrO#’putrl:DONE
+ addllif#fgetri#getri#’putrl:DONE
+ nop:DONE

P Rl P P G

3 ok o o o o o ok ok ok o o o o ok ok ok o o o 3 o s ok o o 3k sk o o 3k sk e o o ok o sk ok ok ok o s ok o ok o ke ok ok ok o ok 3 ok ok ok o o o Kok o
**x*x* Thore are 8 load instructions and 8 store instructions

***x* but to save states we are actually only going to enumerate the

**x** ones where the base registers and the register being loaded or

**¥*¥* stored are distinct. That is you really don’t usually want

**** to do a Load RO, (RO).

3 ok o o o o o ok ok ok o o o o ok ok ok o o o 3 o s ok o o 3k sk o o 3k sk e o o ok o sk ok ok ok o s ok o ok o ke ok ok ok o ok 3 ok ok ok o o o Kok o

bi Load_Store Load + Store

S ok ok o o o o ok s ok o o o o 3k sk ok ok ok o 3k o ok o o o 3 ok e ok o o 3k s ook o ok o sk o ok ok o o ok e ok ok ok o o sk ok ok ok ok o sk ok ok ok ok o kK
***x insn[i,j,k] where i = dest reg, j = base reg, k = memory locn
S ok ok o o o o ok s ok o o o o 3k sk ok ok ok o 3k o ok o o o 3 ok e ok o o 3k s ook o ok o sk o ok ok o o ok e ok ok ok o o sk ok ok ok ok o sk ok ok ok ok o kK
bi Load loadO010#getri#tgetmO#’lockregl: ’putrO#’releaseregl:DONE
+ loadOli#getri#getmi#’lockregl: putrO#’releaseregl:DONE
+ loadl00#getrO#getmO#’ lockregl: ‘putri#’releaseregl :DONE \
+ loadl01i#getrO#getmi#’lockregl: ’putri#’releaseregl :DONE

bi Store store010#getrO#getrl#’putmO:DONE
+ storelli#getrO#getri#’putml:DONE
+ storelOO#getrl#tgetrO#’ putm0:DONE \
+ storelll#getri#fgetrO#’putml:DONE

ok 3 5K ok ok ok ok ok oK ok 3k 3 5K ok 3 oK ok o 3K ok ok 3 5K ok 3k oKk oK ok 3k 3 5K ok ok ok 3 3K ok ok 3 3Kk ok ok o 3K ok 3k 3K ok 3k ok ok 3k 3K ok 3k oK ok ok ok ok 3k 3K ok 3k oK ok o ok ok ok
***x* The branch instruction has two outcomes: succede or fail.
**¥x* Also, if the branch succedes, we can’t have another branch

**%x* instruction.
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3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

bi Branch Succede + Fail

bi Succede  bzigetr0:(((ALU + Load_Store) | 1:IPL) + bz:0) \
+ bzi#getrl: (((ALU + Load_Store) | 1:IPL) + bz:0)

bi Fail bzitgetr0:IPL + bz#getrl:IPL

3k 2k ok ok 3k ok ok ok 2k %k dk ok 2k 3k dk dk 2k 3k ok dk ok 2k 2k dk ok 2k ok 3k %k dk 2k 2k 3k 3k k 2k 2k 2k 2k dk 2k dk 2k A %k 2k 2k 2k ok 3k %k >k 2k 2k %k 3k %k dk 2k 2k %k >k >k 5k >k *k %k

* Define a particle set of all possible instructions.

3k 2k ok ok 3k ok ok ok 2k %k dk ok 2k 3k dk dk 2k 3k ok dk ok 2k 2k dk ok 2k ok 3k %k dk 2k 2k 3k 3k k 2k 2k 2k 2k dk 2k dk 2k A %k 2k 2k 2k ok 3k %k >k 2k 2k %k 3k %k dk 2k 2k %k >k >k 5k >k *k %k

bpsi Insns add000 add001 add010 add011 add100 add101 add110 addiil \

load010 load011 loadl100 loadloO1l \
store010 store01ll storel00 storelll \
bz nop

bpsi Alu_Insns add000 add001 add010 add011 add100 add101 add110 addiill nop

bpsi FPU_Insns fadd000 fadd001 fadd010 faddo11l \
fadd100 fadd101 fadd110 faddiiil

3 kS s o o ok ok Sk s ok o ok ok kS s ok o ok o ok s ok o ks sk ok ok sk ok s sk ok ok sk sk ok ke sk sk ok ke ko Sk sk ok o ok sk sk ok o ok ok ks o
**%*%* Definition of dual ALU instruction issue. Need appropriate

**%** particle sets. See dissertation chapter on Superscalar.

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

bpsi Putr0 putr0 getr0 getrl add000 add00l1 add010 add011l add100 \
add101 add110 addiiil nop

bpsi NotGetr0 putrl getrl add000 add001 add010 add011 add100 \
add101 add110 addiiil nop

bpsi Putril putrl getr0 getrl add000 add001 add010 add011 add100 \

add101 add110 addiiil nop
bpsi NotGetrl putr0 getr0 add000 add001 add010 add01l add100 addi01 \
add110 addii1l nop
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bi TwolAlus ((ALU\PutrO | ALU\NotGetr0O) + (ALU\Putrl | ALU\NotGetrl))

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

**x*x* Floating-point registers

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

bi Fregil lockfregl:Locked_Fregl \
+ ’getfri#flockfregl:Locked_Fregl \
+ ’getfri~2#lockfregl:Locked_Fregl \
+ ‘’getfril:Fregl \
+ ‘’getfri1”2:Fregl \
+ 1:Fregl

bi Locked_Fregl putfri#releasefregl:Fregl \

+ 1:Locked_Fregl

bi Freg2 lockfreg2:Locked_Freg2 \
+ ’getfr2#lockfreg2:Locked_Freg2 \
+ ’getfr2”2#lockfreg2:Locked_Freg2 \
+ ’getfr2:Freg2 \
+ ‘’getfr2-2:Freg2 \
+ 1:Freg2

bi Locked_Freg2 putfr2#releasefreg2:Freg2 \

+ 1:Locked_Freg2

bi FP_Registers (Fregl | Freg2)

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

**x*x* Floating-point unit resource declarations

%k ok 5k Xk

**%** There is an adder, multiplier, and a divider. All of which are
**x** accessed exclusively through semaphores.

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

bi Resource get_resource:Locked_Resource \
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+ get_resource#release_resource:Resource \

+ 1:Resource

bi Locked_Resource release_resource:Resource \

+ 1:Locked_Resource

bi FPU (Resource[get_multiplier/get_resource,
release_multiplier/release_resource]
| Resource[get_adder/get_resource,

release_adder/release_resource]

T

| Resource[get_divider/get_resource,

release_divider/release_resource])

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

**x*x* Floating-point instructions Fdiv and Fmul not yet implemented
ok ok ok

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

3k 2k ok ok 3k ok 2k ok 2k k dk ok 2k 3k dk 3k ok 3k %k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 2k dk ok 2k 3k k dk dk >k 2k 3k k 2k 2k 2k 2k 3k dk dk 2k 3k 2k %k dk 5k 2k 3k >k 5k dk >k 2k 3k >k 5k >k >k >k *k %k 5k

**x*x* Yuck!! Enumerate all of the eight possible Fadd instrcutioms.

3k 2k ok ok 3k ok 2k ok 2k k dk ok 2k 3k dk 3k ok 3k %k dk ok 2k 3k dk dk 2k ok 2k 3k dk k 2k 3k 2k 2k dk ok 2k 3k k dk dk >k 2k 3k k 2k 2k 2k 2k 3k dk dk 2k 3k 2k %k dk 5k 2k 3k >k 5k dk >k 2k 3k >k 5k >k >k >k *k %k 5k

P

bi Float £fadd000#’lockfregl#getfrO#getfroO:
’get_adder:1:1:’release_adder:

‘putfrO#’releasefreg0:DONE

+ fadd001#’lockfreglitgetfrO#tgetfri:
’get_adder:1:1:’release_adder:

‘putfrO#’releasefreg0:DONE

+ fadd010#’lockfreglitgetfrittgetfrO:
’get_adder:1:1:’release_adder:

‘putfrO#’releasefreg0:DONE

P R
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+

fadd011#’lockfreglitgetfriitgetfri:
’get_adder:1:1:’release_adder:

‘putfrO#’releasefreg0:DONE

+ fadd100#’lockfreglitgetfrO#tgetfrO:
’get_adder:1:1:’release_adder:

‘putfri#’releasefregl:DONE

+ fadd101#’lockfreglitgetfrO#tgetfri:
’get_adder:1:1:’release_adder:

‘putfri#’releasefregl:DONE

+ fadd110#’lockfreglitgetfritgetfrO:
’get_adder:1:1:’release_adder:
‘putfri#’releasefregl:DONE

+ faddilli#’lockfreglitgetfrittgetfri:
’get_adder:1:1:’release_adder:
‘putfri#’releasefregl:DONE

3 ok o o o o o ok ok ok o o o o ok ok ok o o o 3 o s ok o o 3k sk o o 3k sk e o o ok o sk ok ok ok o s ok o ok o ke ok ok ok o ok 3 ok ok ok o o o Kok o

**x*x* The top-level "standard normal form" agent

3k 2k 3k ok 3k ok 2k ok 2k 5k dk ok 2k 3k dk 2k ok 3k k dk ok 2k 3k dk dk 2k ok 2k 2k dk ok 2k 3k 2k 2k dk ok 2k 3k k 2k dk 2k 2k 3k 5k 2k 2k ok 2k 3k k k 2k 3k 2k %k >k >k 2k 3k >k 5k >k >k 2k 3k 5k 5k >k >k *k

bi Instr ((TwoAlus + ALU + Load_Store + Float) | 1:Instr) + Branch

bi CPU  (Registers | FP_Registers | FPU | Memory | Instr)\Insns
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