
AbstractHARCOURT, EDWIN ALAN. Formal Speci�cation of Instruction Set Processors and theDerivation of Instruction Schedulers. (Under the Direction of Jon Mauney and Thomas K.Miller, III.)We present two techniques for formally specifying an instruction set processor at the pro-grammer's view| the architecture view and the timing view. From the timing speci�cationwe show how to derive an instruction scheduler for the processor.One technique addresses architecture speci�cation, that is, the information required towrite correct programs. At the architectural level we present a functional semantics thatcaptures the property that instructions are functions from processor state to processor state.The second speci�cation technique addresses the programmer's view of the timing of theprocessor, that is, the needed information required to write temporally e�cient programs.We present a technique for formally describing, at a high-level, the timing properties ofpipelined, superscalar processors. We illustrate the technique by specifying and simulatinga hypothetical processor that includes many features of commercial processors includingdelayed loads and branches, interlocked
oating-point instructions, and multiple instruc-tion issue. As our mathematical formalism we use SCCS, a synchronous process algebradesigned for specifying timed, concurrent systems. Putting our speci�cation to use, weshow how to construct an instruction-scheduler from the speci�cation by deriving appro-priate parameters needed for instruction scheduling. These parameters include instructionlatencies, illegal instruction combinations, resource constraints, and instructions that maybe issued in parallel.

The Formal Speci�cation of InstructionSet Processors and theDerivation of Instruction SchedulersbyEdwin Alan HarcourtA dissertation submitted to the Graduate Faculty ofNorth Carolina State Universityin partial ful�llment of therequirements for the Degree ofDoctor of PhilosophyComputer ScienceRaleigh1994Approved by:Co-chair of Advisory Committee Co-chair of Advisory Committee

BiographyEdwin A. Harcourt received a B.S. in Computer Science from the State University of NewYork at Plattsburgh in 1986. In 1989 he received an M.S. in Computer Engineering (1989)and in 1994 a Ph.D. in Computer Science both from North Carolina State University.

ii

ContentsList of Figures viii1 Introduction 11.1 The Architecture Level : 21.2 Organization Detail vs. Timing Detail : 31.3 Static Instruction Scheduling : 41.4 Outline of Dissertation : 42 Mathematical Speci�cations and Related Research 62.1 Hardware Description Languages : 62.2 Formal Speci�cation Languages : 92.2.1 Sequential Formalisms : 92.2.2 Formalisms of Concurrency and Time : : : : : : : : : : : : : : : : : 122.3 Compiler Code Generator Generation Languages : : : : : : : : : : : : : : : 142.3.1 Resource Requirements : 152.3.2 A Marion Extension : 172.3.3 Other Processor Features : 182.4 Summary | The Speci�cation Language Zoo : : : : : : : : : : : : : : : : : 183 Functional ISA Speci�cation 213.1 Denotational Semantics : 213.2 Semantic Algebras : 223.3 The Semantics of ISA's : 23iii

3.3.1 Notation : 233.3.2 The Syntactic Domain : 243.3.3 The Semantic Actions : 243.3.4 The Valuation Function : 273.4 Action Implementation : 333.5 Code Generation : 343.6 Discussion : 354 Instruction Timing 364.1 Architecture and Organization : 364.2 Delayed Instructions : 374.3 Multicycle Instructions : 384.4 Resource Constraints : 384.5 Multiple Instruction Issue : 384.6 Motivation : 394.7 Functions Don't Work : 395 SCCS: A Synchronous Calculus of Communicating Systems 415.1 A Small Example : 415.2 SCCS Syntax : 425.3 Connecting Processes : 425.4 An Algebra of Actions : 445.5 Extensions to SCCS : 455.6 Transition Graphs : 465.7 The Operational Semantics of SCCS : 475.8 Examples : 505.8.1 A Zero-Delay and a Unit-Delay Wire : : : : : : : : : : : : : : : : : : 505.8.2 Logic Gates : 505.8.3 Flip-Flop : 51iv

6 Specifying a Processor 536.1 Our example microprocessor : 536.2 Timing Constraints : 556.3 The SCCS Speci�cation : 556.4 Instruction Formats as Actions : 566.5 De�ning the Registers : 566.5.1 Register Locking : 586.6 De�ning Memory : 596.7 Instruction Pipeline : 606.8 Instruction Issue : 606.8.1 Arithmetic Instructions : 616.8.2 Integer Load and Store Instructions : : : : : : : : : : : : : : : : : : 626.8.3 The Branch Instruction : 636.9 Interlocked Floating-Point Instructions : 646.9.1 Floating-Point Registers : 646.9.2 The Fadd instruction : 666.10 Structural Constraints : 666.10.1 Modeling Finite Resources : 676.10.2 Multi-cycle Floating-point Instructions : : : : : : : : : : : : : : : : : 696.11 A Normal Form : 706.11.1 Register Locking : 716.11.2 Resource Requirements : 716.11.3 Unde�ned Instruction Sequences : 716.12 Summary : 717 Multiple Instruction-Issue Processors 737.1 An Integer� Float Superscalar : 737.1.1 Instruction Issue : 747.2 An Integer� Integer Superscalar : 757.2.1 Data Dependencies (or Data Hazards) : : : : : : : : : : : : : : : : : 757.2.2 Specifying Data Hazards : 75v

7.3 An Integer� Integer� Float Superscalar : 778 Simulation 798.1 The Reactive View : 798.2 Simulation : 808.3 A Simple Example : 818.4 Example: An Illegal Instruction Sequence : : : : : : : : : : : : : : : : : : : 818.5 Example: A Floating-Point Vector Sum : 819 Instruction Scheduling 859.1 Instruction Scheduling : 859.1.1 Constraints : 869.1.2 Instruction Scheduling Algorithms : : : : : : : : : : : : : : : : : : : 8710 Deriving Instruction Scheduling Parameters 9210.1 Preliminaries : 9210.2 Derivation of Scheduling Parameters : 9310.2.1 The Algorithm : 9410.3 Determining Illegal Instruction Sequences : : : : : : : : : : : : : : : : : : : 9910.3.1 A Modal Logic for SCCS : 9910.3.2 Using the logic in a processor : 10110.4 Determining Possible Multiple-Issue Instructions : : : : : : : : : : : : : : : 10310.5 Computing the Resource Usage Functions : : : : : : : : : : : : : : : : : : : 10510.5.1 Particulate Actions and Agent Sorts : : : : : : : : : : : : : : : : : : 10510.5.2 Resources and Actions : 10610.5.3 Deriving the Resource Usage Functions : : : : : : : : : : : : : : : : 10610.6 Summary : 10911 Conclusions and Future Research 11111.1 Programmer's Timing View : 11111.1.1 Instruction Scheduling : 11211.2 Future Research : 112vi

11.2.1 Interrupts : 11211.2.2 Cache Model : 11311.2.3 Veri�cation and Synthesis : 11311.3 Formal Methods : 115A Example circuits in the Concurrency Workbench 116A.1 Simple Logic Gates : 117A.1.1 Not Gates : 118A.2 Half-Adder : 118A.2.1 Speci�cation : 118A.2.2 Implementation : 119A.3 Wires : 120A.4 Full-Adder : 122A.4.1 Speci�cation : 122A.4.2 Implementation : 123A.5 Flip-Flop : 124A.5.1 Implementation : 124A.5.2 Speci�cation : 125B Our example RISC in the Concurrency Workbench 127B.1 The CWB Listing : 127
vii

List of Figures2.1 A VHDL description of an inverter. : : : : : : : : : : : : : : : : : : : 82.2 A full-adder speci�ed in SML. : 102.3 The classi�cation of speci�cation languages. : : : : : : : : : : : : : : 193.1 Syntactic domain that speci�es PDP-11 instruction formats. : : : : 253.2 Syntax of semantic actions that specify RTL. : : : : : : : : : : : : : 263.3 The Semantics of the PDP-11 Addressing Modes : : : : : : : : : : : 293.4 Semantics of PDP-11 Instructions. : 303.5 Semantics of PDP-11 Instructions (continued). : : : : : : : : : : : : : 313.6 Semantics of PDP-11 Instructions (continued). : : : : : : : : : : : : : 323.7 RTL Syntax tree corresponding to the instruction Add R1, (R2)+. : 355.1 A two stage \Add 2" pipeline constructed from two \Add 1" agents. 415.2 Syntax of SCCS expressions : 435.3 Transition graph of agent de�ned in Equation 5.4. : : : : : : : : : : 475.4 Operational semantics of SCCS. : 485.5 Equational laws of SCCS : 495.6 A nor gate. : 525.7 A
ip-
op constructed from two nor-gates (Figure 5.6). : : : : : : : 526.1 RISC instruction set. : 546.2 State transition graph of agent Reg in Equation 6.8. : : : : : : : : : 596.3 State transition graph of a
oating-point register, Freg. : : : : : : : 656.4 State transition graph of a Resource in Equation 6.25. : : : : : : : : 68viii

7.1 Possible data dependencies in instruction sequences. : : : : : : : : : 767.2 Possible three-issue instruction sequences. : : : : : : : : : : : : : : : 788.1 Derivation of program executing on the processor. : : : : : : : : : : 808.2 Derivation of illegal program executing. : : : : : : : : : : : : : : : : : 828.3 Program that calculates a vector sum. : : : : : : : : : : : : : : : : : : 828.4 Transition graph of vector sum from Figure 8.3. : : : : : : : : : : : : 839.1 Dependency graph of vector sum program from Figure 8.3. : : : : 879.2 Part of resource usage function for MIPS/R4000 FDIV instruction. 889.3 Generic list scheduling algorithm. : 909.4 The structure of a typical compiler. : : : : : : : : : : : : : : : : : : : 9110.1 Algorithm that derives instruction latencies. : : : : : : : : : : : : : : 9710.2 Algorithm to detect illegal instruction pairs. : : : : : : : : : : : : : : 10210.3 Algorithm to detect multiple instruction issue pairs. : : : : : : : : : 10410.4 Algorithm to calculate resource usage functions. : : : : : : : : : : : 107

ix

Chapter 1IntroductionA speci�cation of a system is a precise description of the desired behavior of the systemwhich any implementation should provide. Speci�cations have traditionally been expressedin natural language which, unfortunately, can be vague and hence lead to imprecision andambiguity. To remedy this problem many speci�cations are now being expressed formally(i.e., using some mathematical framework such as �rst-order logic or algebraic techniques).Once a formal speci�cation has been written, several tasks can be performed: the speci�ca-tion may be used to help derive an implementation, construct a simulator for the system,or aid in writing documentation.This dissertation addresses the problem of specifying an instruction set processor in away that is useful for building compilers. An instruction set processor is what we normallythink of as a microprocessor or CPU. Speci�cally, we address formally specifying a processorat two levels: the architecture level and the instruction timing level. Also, we show how atiming speci�cation can be used to derive an instruction scheduler for the processor.Formal processor speci�cations are valuable for a variety of reasons.� Formal speci�cations aid in the design process. They require the user to thoughtfullyplan and design the system.� Processor veri�cation requires a formal speci�cation in order to carry out proofs ofcorrectness.� If the speci�cation language is executable (and both SML and SCCS are) then atiming level simulator is automatically available.

� High-level synthesis (whether compilers or hardware) requires some form of a speci�-cation.� Formal speci�cations are used for precise documentation.Instruction set processors are best viewed hierarchically at various levels of abstraction.A common partitioning of the hierarchy is as follows:� The instruction set architecture (or just architecture) level is a functional view thatrepresents the processor as seen by the assembly language programmer (or compilerwriter). This view only includes information needed to write functionally correctprograms.� The organization level includes the general structure of the processor in terms offunctional units which include include integer and
oating point pipelines, branchunits, caches, buses, internal latches, etc.� The logic level contains the low level implementation details of the functional units.When discussing or making an argument about a processor one has to be clear aboutthe level of abstraction at issue. The user of a processor is usually concerned with thearchitectural level, since the user must have this information to write correct programs.1.1 The Architecture LevelAt its highest level, an architecture is an abstract data type where memory and registers(i.e., the machine state) constitute the data and the machine instructions are the operationsde�ned on the data. At this level, instructions are essentially functions that map states tostates. Usually, a simple register transfer language, or RTL, notation su�ces to describethe computational e�ect(s) of an instruction. For example, the instructionAdd Ri, Rj, Rkmay be described by the register transfer statementReg[i] := Reg[j] + Reg[k].Until recently, there has been no language available for specifying processors at thearchitectural level. Cook [29] remedied this by designing a language speci�cally for designinginstruction sets. Since the architecture level provides a functional view, where instructionsare functions from processor state to processor state, it can be formalized using a functional2

language. In Chapter 3 we present a functional semantics of a processor at the architecturelevel using the language SML [78].1.2 Organization Detail vs. Timing DetailBesides writing correct programs, a user would also like to write e�cient programs. Hence,the user needs more information than is contained in an architecture speci�cation. Forexample, in some RISC architectures the following instruction sequence is not the moste�cient.(1) Load R1, (R2) ;R1 := Mem[R2](2) Add R2, R2, R1 ;R2 := R2 + R1(3) Add R3, R3, #1 ;R3 := R3 + 1Instruction (2) will usually cause an interlock (because (2) needs to wait for R1 to beloaded from memory by (1)), which wastes cycles and causes the pipeline to stall. Onsome processors the sequence is illegal which causes the value of R1 to be unde�ned duringinstructions (1) and (2). However, instructions (2) and (3) may be switched without alteringthe meaning of the program, and this switch would reduce the number of stall cycles ormake the sequence valid.When one instruction can interact with another and alter the computational e�ectin unde�ned ways (e.g., the load instruction above) or when we wish to capture timinginformation so that we can write e�cient programs, then viewing instructions as functionsis no longer su�cient. We consider this point further in Chapter 2.In many modern instruction set processors, the temporal and concurrent properties ofthe instructions are visible to the user of the processor. Consequently, such properties shouldbe included in a behavioral processor speci�cation. We present a technique for formally de-scribing, at a high-level, the timing properties of pipelined, superscalar processors [76, 55].We illustrate the technique by specifying and simulating a hypothetical processor thatincludes many features of commercial processors including delayed loads and branches, in-terlocked
oating-point instructions, and multiple instruction issue (superscalar). As ourmathematical formalismwe use SCCS (Synchronous Calculus ofCommunication Systems),a synchronous process algebra designed for specifying timed, concurrent systems [68, 67].After showing how to specify a processor we parameterize the instruction scheduling prob-lem and demonstrate how to derive these scheduling parameters from the speci�cation,3

essentially yielding an instruction scheduler for the architecture.1.3 Static Instruction SchedulingOnce a processor has been de�ned at the instruction timing level there are several ways inwhich the speci�cation can be used. A hardware designer could use the speci�cation as therequirements speci�cation that any implementation must meet.However, a particular level of abstraction is both a speci�cation of a lower level and animplementation of a higher level. For example, the organization level can be viewed as animplementation of the architecture level and as a speci�cation for the logic level. In a similarvein our timing speci�cation could also be viewed as an implementation of the processorfor a higher level, the compiler level. It is in this way that we use our timing speci�cation:by extracting scheduling information from the timing speci�cation and putting it in a formsuitable for use with an \o� the shelf" instruction scheduler.A subsequent goal of this research, then, is to utilize our speci�cation by generatinginstruction scheduling information (e.g., latencies, resource requirements) directly from thespeci�cation. We develop algorithms that analyze SCCS descriptions and yield the instruc-tion scheduling information. The algorithms depend on the formal operational semanticsof SCCS, which is de�ned in terms of an abstract machine known as a labeled transitionsystem.1.4 Outline of DissertationThe rest of this dissertation is organized as follows:� There have been a variety of methods used to specify low-level digital hardware, bothformal and informal. Chapter 2 reviews this related research and further motivatesour choice of using the synchronous process algebra, SCCS.� Instructions at the highest level are, mathematically, state transformation functions.Chapter 3 gives a functional semantics to an example architecture, using the functionallanguage SML.� In Chapter 4 we motivate the need for expressing programmer level timing constraintsin processor speci�cations. 4

� In Chapter 5 we introduce SCCS both formally (using structural operational seman-tics) and informally (with several examples of using SCCS to describe some simplecombinational and sequential circuits).� Chapter 6 formally speci�es, using SCCS, the instructions and the their timing con-straints of a hypothetical, yet realistic, RISC style processor.� Chapter 7 shows how we can use SCCS to specify various Superscalar con�gurationsof our example architecture.� The operational semantics of SCCS maps SCCS programs to abstract machines. OurSCCS speci�cation is, therefore, executable, in terms of the abstract machine it rep-resents. In Chapter 8 we discuss how the behavior of our architecture is simulated.� Chapter 9 gives a brief introduction to instruction scheduling and sets the stage forderiving instruction scheduling information from the SCCS speci�cation.� Chapter 10 describes how to derive instruction scheduling parameters, including in-struction latencies, resource constraints, illegal instruction sequences (e.g., delayedloads) and multiple instruction issue.� Chapter 11 concludes and discusses future research.� For purposes of introducing SCCS with some simple examples, Appendix A givesthe SCCS implementation (using the Concurrency Workbench) of some simple digitalcircuits.� Appendix B gives an SCCS implementation of our example RISC architecture usingthe Concurrency Workbench.
5

Chapter 2Mathematical Speci�cations andRelated ResearchAt �rst, researchers hoped that there might exist some one unique ideal speci�cationlanguage. But what could it be? Perhaps some kind of logic, say full �rst orderlogic? Or perhaps Horn clause logic? Or equational logic? Or LCF? What aboutthe lambda calculus? Or perhaps we should take a state transition approach : : :?But none of these seemed to work.(Joseph Goguen { One, None, a Hundred Thousand Speci�cation Languages)There are many formalisms available and currently being applied for specifying the in-tended behavior and/or semantics of computer hardware and architectures. In this chapterwe review hardware description languages (e.g., Verilog and VHDL) [65, 3, 29, 5, 6, 40],formal speci�cation languages such as �rst-order logic [18], higher-order logic [47, 11, 91, 9,61, 10], temporal logic [80, 94, 43], equational algebra [90, 42, 39], relational algebra [85],concurrency formalisms [53, 67, 68, 69, 66, 17, 34, 44, 8, 16, 83], the Z speci�cation lan-guage [13, 12, 87], type theory [54, 48], and the lambda calculus [45, 46, 88, 75, 21]. Wealso review compiler code generator generators which also provide speci�cation languagesfor describing processors [1, 37, 33, 81, 15].2.1 Hardware Description LanguagesThe term \hardware description language" (or HDL) is not a well-de�ned term. Tradition-ally it means \any language used to specify hardware". But this de�nition is too broad as6

this would include imperative programming languages such as C, Pascal, and Ada and ab-stract formalisms such as Constructive Type Theory [54] and Category Theory [85]. Usuallyan HDL refers to languages such as VHDL and Verilog which are imperative style program-ming languages extended with primitives and libraries that aid in describing hardware.There are a variety of HDL's such as Verilog [92], VHDL [62], ISPS [5], and ELLA [72].All of them su�er in that they lack a formal de�nition. HDL's are extensions of imperativeprogramming languages and their problems can be traced to the problems of imperativelanguages | such as aliasing and side-e�ects. It has also been suggested that HDL's beabandoned altogether and that imperative programming languages be used. Using Ada asan HDL has been addressed in [6, 40]. Also, while HDL's are useful for simulating low-leveldigital hardware they are unsuitable for use in high-level processor speci�cation as pointedout by Cook [29].VHDL is one of the more popular hardware description languages [62]; Figure 2.1 showsthe VHDL code that describes the behavior of a simple inverter. There is nothing toosurprising about this description other than that it is a lot of code for specifying a simpleinverter. A more serious problem, however, is that, since VHDL is not formally de�ned,attempting to ascertain the behavior of even simple circuits (let alone more complicatedcircuits) is dependent upon individual implementations of VHDL. For example, the key-word, transport in the inverter speci�cation speci�es that the delay in the after clausecorresponds to the propagation delay associated with passing a value through a wire. Ifthe keyword transport is omitted then delay corresponds, not to a propagation delay in awire, but to the \hold time", that is, the amount of time the signal must persist in order forit to be considered as a signal. Other timing complications are introduced by the variousforms of the wait statement on processes { wait, wait on, wait for, wait until, waittime-expression.Another criticism frequently leveled at VHDL is that the timing primitives of VHDL arelow-level and overly concrete as the programmer is required to specify timing constraintsin nanoseconds or femtoseconds (one femtosecond is the smallest unit of time in VHDL). Ifone wishes to view time more abstractly in terms of, say, clock cycles then a \clock process"must be constructed that models a clock and every process must then perform their actionsbased on a signal that this clock process emits. These same criticisms apply to Verilog, theother most widely used HDL, as it is similar to VHDL.7

| De�ne some enumeration types.type Logic is ('0','1');type Delay_flag is (Zero_delay,Const_delay);| The interface to the inverter.entity INV isgeneric (Time_flag: Delay_flag);port (X: in Logic;Y: out Logic);end INV;| Specify the behavior of the inverter.architecture Behavior of INV isbeginp0: processvariable delay: Time := 0 Ns;beginif Time_flag = Const_delay then delay := 0.83 Ns;end if;if X = '0' thenY <= transport '1' after delay;elseY <= transport '0' after delay;end if;wait on X;end process;end Behavior;Figure 2.1: A VHDL description of an inverter.
8

2.2 Formal Speci�cation LanguagesA formal speci�cation language is one that is based on some rigorous mathematical frame-work. The speci�cation then becomes amenable to analysis using the mathematical toolsof the framework. For example, if we specify a system using �rst-order logic we may thenbe able to use resolution to perform proofs about the system.Formal speci�cation languages fall into two broad categories: functional (or relational)and reactive. A functional view of a system is one that maps an initial state to a �nal state.(Or in the relational view, mapping an input to a set of outputs). This view is appropriatefor programs that accept all of their inputs when the program begins executing and yields itsoutput when the program terminates [80]. For example, a compiler maps source programsto target programs.Some systems have no �nal output and termination is viewed as a catastrophe ratherthan as a virtue. The behavior of these reactive systems is de�ned in terms of the ongoinginteraction with their environment. For example, an operating system should not terminateand has no �nal output but has an ongoing interaction with users to service their requests.Any concurrent system can be viewed as reactive because, even if its overall role is functional,the system is composed of interacting components [80]. It is in this way that we view amicroprocessor: reactively as a system of interacting components (instructions, registers,and functional units).A recent overview of formal methods applied to the design and analysis of digital systemscan be found in [90].2.2.1 Sequential FormalismsWe use the term sequential to mean a formalism that does not include primitives to specifyconcurrency or time. Sequential formalisms include functional languages (based on the�-calculus), algebraic theories, �rst-order logic, and higher-order logic.Functional Speci�cationThere has been some research into specifying hardware and architectures using functionalmethods. Paillet [75] presents a functional semantics of a CISC-style microprocessor atthe instruction set level. No attempt was made to specify instruction timing properties orinstruction interaction; rather the intent of the research was to use the speci�cation as abasis to verify an implementation, although this was not done.9

fun HalfAdder(a,b) = (a <> b, a andalso b)fun FullAdder(Cin, a, b) =let val (Sum'', Carry') = HalfAdder(a,b)val (Sum', Carry'') = HalfAdder(Cin,Sum'')in (Sum', Carry' orelse Carry'')end Figure 2.2: A full-adder speci�ed in SML.Charlton [21] presents a technique of introducing a clock into a functional speci�cationby using \lazy lists" to represent an in�nite stream of clock pulses. The research was limitedto a consideration of how one could introduce a clock in a functional model; nothing wassubsequently done with the speci�cation.Gordon [45, 46] represents �nite-state systems using the �-calculus. He then showedhow one could verify circuits in the �-calculus using �xpoint induction. As an example,Figure 2.2 uses the functional language SML to specify a full-adder from two half-adders.Of the various abstraction levels of a processor the functional view is appropriate ifwe wish to view it at its highest level | the architecture. In this view, instructions arefunctions from states to states. However, a function that represents an instruction speci�es�nal values of an instruction and not how this value was computed nor how long it took tocompute. This view makes it di�cult to specify timing or instruction interaction.HOL | Higher-Order LogicProbably the most widely used formalism for formally specifying hardware is higher-orderlogic; in particular, the logic embodied in the HOL system of Gordon. (See Gordon [47] foran introduction to HOL and Melham [64] for using HOL in hardware veri�cation.) HigherOrder Logic is an extension of �rst-order logic in which variables can range over functionsand predicates. HOL uses the lambda calculus to specify functions and, consequently,subsumes functional methods.HOL is very expressive and has been used to describe other formalisms such as a subsetof VHDL [11], CCS [68] (the asynchronous version of SCCS), the �-calculus[70] (higherorder CCS), and Hoare's CSP [53]. This suggests that HOL is a good meta-language and is10

useful for de�ning other formalisms within HOL. However, there is a sense in which HOLis too expressive, according to Goguen [42]:\most logics are too expressive! We need more restricted logics ... in order to getexecutable speci�cation languages that can be used for rapid prototyping and evene�cient programming. And we certainly want to avoid specifying systems that areunimplementable because they involve uncomputable functions or relations".Higher order logic is undecidable. That is, it is undecidable whether a statement inhigher order logic is true. Consequently, the HOL system is not a theorem prover but aproof checker and provides a \support environment" for carrying out proofs in HOL byhand. Moreover, HOL can not directly be used to simulate the system being speci�ed asthere is no notion of the operational behavior of an HOL statement [90].As in functional methods, neither time nor concurrency are primitives in the logic but areencoded. However, because of HOL's expressiveness it is somewhat easier to represent bothtime and concurrency than in a functional approach. For example, to represent concurrencyin HOL we do not need to talk about sets of �nal values but simply de�ne two events �and � to occur in parallel if � and � are both true at time t, that is, if �(t) ^ �(t) holds.So logical conjunction is used to compose two elements in parallel.Typically, time is represented using the natural numbers (0; 1; 2; 3; : : : usually abbrevi-ated !). Consider two ports, in and out. A port can be represented as a function fromtime to booleans. in; out 2 ! ! boolWe use HOL's logical operations (the standard _;^; 8; 9;=) to specify constraints onthe port values. For example, the invariant that the value at port out at time t + 1 is thesame as the value on port in at time t is speci�ed as,8t 2 !:(out(t+ 1) = in(t))Equation 2.1 represents a one bit unit delay element where the output at time t is thesame as the input at time t� 1. Equation 2.1 also speci�es that, at time 0 (power up), thecontents of the register is 0.Reg(in; out 2 ! ! bool) def= 8t 2 !:out(t) = ((t = 0)) 0 j in(t� 1)) (2.1)The notation cond) true j false is a conditional expression.11

Equation 2.2 \connects" two registers together creating a delay circuit that inputs a bitat time t and outputs it at time t + 2. The types of the ports in, out, ` are omitted forreadability but are functions from time to booleans as in Equation 2.1.TwoRegs(in; out) def= 8in:8out:9`:(Reg(in; `) ^ Reg(`; out)) (2.2)Equation 2.2 shows how, using conjunction, two registers are instantiated in parallel. Exis-tentially quantifying the variable ` makes an internal connection between the two registers.In [26] Cohn describes the Viper microprocessor using HOL. The Viper is a microcodedprocessor that does not include any instruction-level parallel properties. Also, in [52], Her-bert discusses specifying and verifying microcoded microprocessors using HOL in general.Again, the techniques do not address instruction-level parallelism.2.2.2 Formalisms of Concurrency and TimeThere are well developed formalisms for explicitly dealing with reactive systems. The mostcommon formalisms are process algebras and modal and temporal logics.Process CalculiThere are a variety of formalisms for specifying asynchronous and/or synchronous con-current systems including Petri Nets [16], CCS [68, 69], SCCS [68, 67], ACP [4], CIR-CAL [66, 34], HOP [44], Esterel [8], the �-calculus [70], and CSP [53].Process algebras have been used to give a semantics to a communications protocollanguage, LOTOS [17]; a parallel object oriented language, POOL [4]; a computer integratedmanufacturing system [4]; to low-level digital hardware [66]; and biological ecosystems [95].The various calculi can be divided into asynchronous and synchronous languages. Thesynchronous languages can be considered \more expressive" as it is typically possible toembed an asynchronous calculus within a synchronous one. For example, the asynchronouscalculus CCS is de�nable within the synchronous calculus SCCS [67].In an asynchronous formalism parallelism is reduced to non-determinism (or interleav-ing). For example, let� A�B mean processes A and B execute in parallel;� A+B mean non-deterministically execute either A or B;� a:A mean execute the action a and then become the process A.12

In an asynchronous formalism if the process A can do some action a and become the processA0 we will write A a�! A0; the process B can do some action b and become the processB0 then the process A � B is equivalent to the process a:(A0 � B) + b:(A� B0). That is,the process A� B can execute A for a step or B for a step but not both at the same time(forgetting for the moment the possibility that A and B might wish to communicate).This is not the correct way to view clocked hardware as a circuit does not operate by in-terleaving the execution of the subcomponents of the circuit. This problem of asynchronousformalisms has been pointed out by Berry [8]. For example, if we construct a half-adderfrom an or-gate and an xor-gate the circuit does not operate by computing the result ofthe or-gate and then computing the result of the xor-gate (or vice-versa) but by really com-puting both the or and the xor at the same time. Consequently, we dismiss asynchronouscalculi (i.e., CCS, ACP, LOTOS, CSP, Petri Nets) as they can not directly represent theglobal clock associated with hardware. They have, however, been applied for representingasynchronous circuits, a current area of active research [19].Synchronous Process AlgebrasSeveral of the algebras cited above (SCCS, Esterel, CIRCAL, HOP) are designed forspecifying synchronous systems, in other words, systems that have a global clock whereevents occur based on the clock and processes execute in lock step. Given the above example,the process A � B is equivalent to the process a ? b:(A0 � B0) where \?" is some binaryoperation on actions. This means that both A and B perform their actions on the sameclock cycle. Here, � is now being used as a synchronous parallel operator rather than aninterleaving one.The synchronous languages are all related in that SCCS is the father of them all. Ourchoice of using SCCS over the other synchronous formalisms is largely pragmatic. SCCS:� is the most widely used and known� is the most mature and formally developed� has a large body of research to draw upon for doing formal analysis� has tools available for carrying out analysis [25]� has a simple syntax� has a clear and concise operational semantics13

� is compositional, allowing larger systems to be composed of smaller ones.No one has yet applied SCCS to the problem of hardware speci�cation.Modal and Temporal LogicThere are some logics that deal explicitly with time and concurrency [43, 94, 80]. Modallogic extends classical propositional or �rst-order logic by by including two operators 2 and3 that represent \necessity" and \possibility". (Really, the logic only need include oneof the operators as one can always be de�ned in terms of the other using negation.) In atemporal context these operators are usually interpreted as \henceforth" and \eventually".For example, the temporal logic of Pnueli [80] has a temporal operator 2 that means\henceforth" and an operator
 that means \next". Consider the example from the dis-cussion on HOL where we wished to represent the invariant that the value on a port in attime t appeared at port out at time t + 1. This can be represented in temporal logic by2((
out), in):This says that \from now on, the next output is equal to the current input."It turns out that there is a strong connection between modal (temporal) logics andprocess calculi. In fact we will use a particular modal logic, the �-calculus, to check whetherour microprocessor, speci�ed in SCCS, has certain properties. This connection betweenmodal/temporal logic and process algebra was �rst established by Pnueli [80]. Brie
y, therelationship is this: the operational semantics of SCCS is de�ned in terms of a labeledtransition system (de�ned in Chapter 5). In turn, the labeled transition system is used asa model for formulae in the modal logic [94]. That is, the abstract machine generated bythe operational semantics of one language (SCCS) is used as a model of another (the modal�-calculus). In Chapter 10 we will discuss this in more detail.2.3 Compiler Code Generator Generation LanguagesThe compiler research area of retargetable code generation o�ers another method of specify-ing an architecture. A retargetable code generator uses a general code generation strategy(often some type of pattern matching as in Twig [1]) parameterized by the properties ofthe architecture which are encapsulated in a machine description. However, the term \ma-chine description" is misleading as the machine description does not describe a machine14

as much as it describes an intermediate language (IL). A better term would be \codegenerator description" as one would expect that a machine description describe an architec-ture's instructions directly by mapping them to some other language. But what a machinedescription describes is how the compiler's intermediate language maps to the machine'sinstructions. That is, we would expectMachine Description: Instructions �! ILbut what we really have isMachine Description: IL �! InstructionsThis problem has been remedied by Giegerich [41] who proposes a way of inverting themachine description. Until recently, these retargetable code generation systems have dealtonly with instruction selection and not instruction scheduling. That is, they have not dealtwith instruction timing properties.There has been some work by Bradlee [15] and Proebsting and Fraser [81] (called PFfrom here on) in compiler code generator description languages where instruction timingproperties are inserted into the machine description to try and address the appropriateuser-level view of instruction timing. Bradlee was the �rst to propose extending machinedescriptions with instruction timing properties. The speci�cation language, Marion, wassubsequently used to perform retargetable instruction scheduling and as a basis for integrat-ing register allocation with instruction scheduling. The goal of PF was to generate, froma speci�cation of the resource requirements of a processor, a space-e�cient state transitiongraph that can be used for instruction scheduling. Consequently PF's machine descrip-tion only includes a method of specifying resource requirements and is not as expressiveas Bradlee's. Since our primary interest is on speci�cation and because Marion is moreexpressive than PF's description language we only consider Bradlee in detail.2.3.1 Resource RequirementsFrom the time an instruction is fetched to the time it has completed typically takes sev-eral cycles. On each cycle, an instruction uses a subset of the processor's resources. Thespeci�cation languages of PF and Bradlee specify these resource requirements directly. Forexample, the MIPS/R4000 processor's [56]
oating-point unit has as its resource set an un-packer, shifter, adder, rounder, two-stage multiplier, divider, and two exception resources.These are abbreviated by Bradlee as U, S, A, R, M1, M2, D, E1, and E2 respectively.15

Using Marion's syntax the resource constraints of the MIPS R4000 processor's singleprecision
oating-point divide instruction, div.s, is speci�ed as[U; S,A; S,R; S; D*13; D,A; D,R; D,A; D,R; A; R]which means that the div.s instruction uses the� unpacker on the �rst cycle� shifter and adder on the second cycle� shifter and rounder on the third cycle� shifter on the fourth cycle� divider only for thirteen consecutive cycle starting on cycle �veand so on.There are two main criticisms of Marion. The �rst criticism is that it is not formalas we only have intuitive notions of what the operators \;", \,", and *" mean. Thisprecludes Marion from being used for anything except for use with Bradlee's own algorithms.That is, in order to use Marion for other tasks, which we expect from a speci�cation(i.e., veri�cation, simulation, documentation) the speci�cation language needs to be givena formal de�nition.The second criticism of Marion and this approach is that it is sometimes a too low-level way of specifying the timing constraints of an instruction. For example, the Marionspeci�cation of the resource requirements for the MIPS/R3000 processor single precisioninteger addition instruction, add, is given as:[IF; RD; ALU; MEM; WB]which speci�es that the instruction uses a di�erent resource on each clock cycle, cycles 1through 5. More speci�cally, IF, RD, ALU, MEM, WB represent the instruction fetch, registerread, execute, memory access, and register write back stages of the integer pipeline respec-tively (though this information can only be inferred by the reader from already knowinghow instruction pipelines are usually structured).Yet, there are no timing constraints on the MIPS's add instruction and, in a program,the add instruction can be used in any context. This is impossible to ascertain from thedescription because we do not know precisely what the description means. As it turns out,the reason that there are no constraints is that there are other resources | forwardinghardware | which are left unspeci�ed. It is not possible to specify these extra resources16

as it does not su�ce to just enumerate the forwarding hardware as resources in the spec-i�cation language. One must specify how the forwarding resources are connected to theother resources and how they interact. This capability is currently beyond the speci�cationlanguages of both PF and Bradlee.2.3.2 A Marion ExtensionTo remedy the situation where Marion's resource vector does not accurately re
ect thetiming properties of the instruction, Bradlee associates a delay value with the instruction.In his notation, the add instruction is now speci�ed as:[IF; RD; ALU; MEM; WB] (1)Here, the (1) represents the latency of the instruction, or how many cycles need to passbefore a subsequent instruction can use the result produced by the add. Since the latency isonly one, the very next instruction may use the result. Now, in this case, the resource vectordoes not yield any useful information about the instruction's timing constraint, which iscontained in the extra parameter | the delay value (1). So sometimes specifying resourcesis unnecessary as the timing constraints of the instruction do not depend on them. However,if an instruction's timing constraints do depend on resource constraints then resources needto be included in the instruction speci�cation. While omitting unproblematic resources isnot possible in Marion, we will see that our speci�cation technique using SCCS will allowus to specify latency values with or without resource information depending on whether itis needed or not.The situation is actually more complicated. Bradlee also associates with each instruc-tion a value that represents the number of delay slots for the instruction, which, for mostinstructions is zero. For example, the statement[IF; RD; ALU] (2,1)represents the timing constraints of a delayed branch instruction. The tuple (2,1) rep-resents the latency and the number of required delay slots respectively. Furthermore, anegative value for the number of delay slots indicates that the instructions in the delayslots are only executed if the branch is taken. A positive value indicates that the instruc-tions are always executed. 17

2.3.3 Other Processor FeaturesSome processors use priority schemes to resolve resource con
icts For example, the Motorola88000 uses gives priority of certain instruction over others if they both require the data buson the same cycle [2]. Expressing this is not possible in the framework of Bradlee and PFbut is in SCCS (and process algebras in general) [20].Also, superscalar processors execute more than one instruction on each cycle. Specifyingthis will be possible in SCCS but is not within the frameworks of Bradlee and PF.2.4 Summary | The Speci�cation Language ZooIn this chapter we have reviewed two areas of processor speci�cation each adopting a partic-ular viewpoint: 1) hardware description languages (HDLs) and 2) compiler code generatormachine descriptions. We argued that the language we require should be formal and beable to explicitly specify the temporal and concurrent properties of instructions. We thenargued that no one has addressed formally specifying instruction timing at the appropriateuser level.In the compiler code generation view we indicated that, while there were attemptsto specify architectures at the correct user's timing level, the attempts were ad hoc andinformal and were only partially successful at hitting the correct level of abstraction. Withthese criticisms at hand we then justi�ed our choice of using SCCS as our speci�cationlanguage.Figure 2.3 shows a classi�cation of the various languages and formalisms from the pointof processor speci�cation as discussed in this chapter. From our perspective, every languageis a processor speci�cation language which is categorized as either a hardware descriptionlanguage or a code generator description language (Marion and Twig). VHDL, Verilog, andELLA are informal hardware description languages. SML and Haskell are two particularimplementations of the �-calculus. HOL is an implementation of higher-order-logic. CTL(Computational tree logic, a particular temporal logic) and the �-calculus are two particularmodal logics that are related to process algebra in that they are used to describe reactivesystems. SCCS, CIRCAL, and Esterel are synchronous process algebras while CCS,Petri Nets, and CSP are asynchronous process formalisms. The tree diagram representsthe current situation and does not mean to imply that there will never be such a thing asa formal code generator description language. Also there has been some work at givingVHDL a formal semantics [74] (currently only subsets of VHDL) which could move it into18

Processor
Specification

Hardware
Description
Languages

Code Generator
Description
Languages

Formal

Functional Reactive

Higher
Order
Logic

Process
Algebras

Asynchronous

CCS Petri Nets CSP

Synchronous

SCCS CIRCAL Esterel

Lambda−Calculus

Informal

VHDL Verilog ELLA

Twig Marion

HOL

SMLHaskell

Modal
Logic

mu−calculusCTLFigure 2.3: The classi�cation of speci�cation languages.
19

the realm of a formal hardware description language.

20

Chapter 3Functional ISA Speci�cationIn this chapter we present a methodology for formally specifying a denotational (or func-tional) semantics of an instruction set architecture. More speci�cally, since there are basicarchitectural operations common to all architectures (e.g., reading and writing registersand memory) we create an abstract data type of primitive architectural operations suit-able for representing a wide variety of architectures. This functional view speci�es �nalcomputations of instructions and not instruction timing properties.3.1 Denotational SemanticsA denotational semantics of a programming language represents each syntactic construct ofthe language in terms of mathematical objects (e.g., sets, functions, relations). We can viewan architecture as a low-level programming language (but a high-level view of a processor)in which each instruction is a syntactic object that represents an operation on the state ofthe processor. That is, an instruction is a state transformation functionI : State! Stateand State is the type of a function from locations (register numbers or memory addresses)to values (integers). State = Locations! ValuesLocations = RegNums + AddressesValues = integer21

If � is the state function then �(x) is the value stored at location x. A new state can bebuilt from an old state � with the state update function �[x 7! d] which means \the state �with x updated to d". Given this de�nition of state we can begin to describe the semanticsof individual instructions. For example, the MIPS Add instruction is de�ned byI [[Add Ri, Rj, Rk]]� = �[Ri 7! �(Rj) + �(Rk)]The notation I [[-]] represents the valuation function. The metabrackets \[[-]]" sur-round the syntax of an instruction and separate the language being de�ned from the de�ninglanguage. The state function � is an argument to the valuation function and an updatedvaluation function is returned. This coincides with our de�nition of instructions beingfunctions from state to state.The advantage of a denotational semantics is that it provides a facility to reason aboutspeci�cations and to mathematically prove properties about the speci�cation. For example,consider the de�nition of an instruction that increments by one the value stored in theregister I [[Inc Ri]]� = �[Ri 7! �(Ri) + 1]Given the de�nitions of Add and Inc it is now an easy matter to prove thatInc Ri � Add3 Ri, Ri, 1by checking that I [[Inc Ri]] � I [[Add3 Ri, Ri, 1]]By substituting each side of the \�" with its de�nition we see that�[Ri 7! �(Ri) + 1] � �[Ri 7! �(Ri) + 1]This property of being able to substitute equals for equals is known as referential trans-parency and is a property of functional speci�cations not shared by traditional imperativeprogramming languages and some hardware speci�cation languages such as VHDL or Ver-ilog [9].3.2 Semantic AlgebrasWe make our denotational speci�cations more readable and easier to work with by creatinga library of architectural primitives. This library is essentially an abstract data type and is22

sometimes called a semantic algebra [84]. The operations de�ned by the semantic algebraare called semantic actions. Rather than specify the architecture directly as a denotationalsemantics we �rst translate it into semantic actions de�ned by the semantic algebra. Thesemantic algebra is a register transfer language, or RTL, which is then speci�ed denotation-ally.This speci�cation technique is unique in that:� Specifying the semantic actions occurs once. When this is done, many architecturescan be speci�ed using the prede�ned actions.� The semantics of the actions need not be speci�ed denotationally, but could be speci-�ed using any formal semantic method (e.g. operational or algebraic semantics). Thisgives our semantic speci�cation an abstractness and modularity that is absent fromother semantic speci�cation methods. This style of semantics is called a separatedsemantics [60].3.3 The Semantics of ISA'sThe denotational semantics of an ISA will comprise the three parts of a semantics: asyntactic domain, a semantic domain, and a valuation function.� Syntactic domain| The syntactic domain is the instruction formats of the archi-tecture being speci�ed.� Semantic domain | The semantic domain is a set of semantic actions. In thispaper we use actions that implement a register transfer language (RTL).� Valuation function | A valuation function speci�es how an item in the syntacticdomain maps to an item in the semantic domain. In this case, the valuation functionformally describes an instruction in terms of semantic actions.To illustrate the process we use the PDP-11 as an example ISA.3.3.1 NotationIt is common to use a modern functional language to specify a denotational semantics [60],and in our case we will use Standard ML. While SML is not completely referentially trans-parent, due to its imperative features, its semantics is formally speci�ed. Also, if we restrictourselves to the purely functional subset we keep referential transparency.23

Traditionally, the syntactic domain is speci�ed with a context-free grammar. Since thesyntax of instructions is simple, SML's algebraic data type constructor (datatype) is usedto specify the abstract syntax.The semantic domain is a set of semantic actions that represent basic architecturaloperations and, as wasmentioned before, is RTL. The semantic actions constitute a languagewith a syntax and a semantics and, to be complete, both must be speci�ed.The valuation function in a traditional denotational description will be described us-ing SML functions. Since our semantics is directly coded into SML, a simulator for thearchitecture is immediately available.3.3.2 The Syntactic DomainThe syntactic domain consists of the ISA's instruction formats. Figure 3.1 shows the SMLde�nition of the syntax of the PDP-11 instruction formats. For example, the PDP-11instruction Add R0,(R1)+ is represented by the SML construct,TwoOp1(ADD, RegDirect(0), AutoInc(1))and the instruction Add 10(R2), #10 is represented by,TwoOp1(ADD, Indexed(10,2), Immediate(10))Here, TwoOp1, RegDirect, AutoInc, Indexed, and Immediate are type constructors (ortags).3.3.3 The Semantic ActionsThis section describes the syntax of the language of semantic actions (RTL). We defer theirimplementation until Section 3.4. The choice of the semantic actions is important: theymust be capable of specifying the low-level semantics of a machine instruction and also besuitable as an intermediate representation for the front end of a compiler. Register transferlanguage (RTL) satis�es both criteria[32]. Figure 3.2 shows the SML representation of theRTL syntax. The RTL semantic actions constitute an abstract data type that separatesthe RTL syntax from its semantics. Now, the syntax can be used e�ectively for patternmatching. This keeps the low-level implementation details of the RTL operators hidden.The RTL actions are of two kinds | values and imperatives. Value actions producevalues (e.g., memory fetching, register access, addition, etc.) and imperative actions alterthe state (e.g., assignment and statement sequencing). A valid RTL program is a sequence24

type RegNum = inttype Offset = inttype ImmediateValue = int(* Instruction formats *)datatype Instruction =TwoOp1 of (TwoOpInstr1 * Operand * Operand) |TwoOp2 of (TwoOpInstr2 * int * Operand) |OneOp of (OneOpInstr * Operand) |Branch of (BranchInstr * int)(* Instructions allowed for each format *)and TwoOpInstr1 = ADD | MOV | MOVB | SUB | CMP | CMPBand TwoOpInstr2 = XOR | MUL | DIV | ASH | ASHCand OneOpInstr = CLR | CLRB | INC | DECand BranchInstr = BR | BNE | BEQ | BGT | BGE | BLT | BLE(* Operand formats and addressing modes *)and Operand = RegDirect of int |RegIndirect of int |AutoInc of int |AutoDec of int |Immediate of int |Indexed of (int * int) |AutoIncIndirect of int |AutoDecIndirect of int |IndexedIndirect of (int * int)Figure 3.1: Syntactic domain that speci�es PDP-11 instruction formats.
25

datatypeMode = CC | Address | Int8 | Int16 | Int32 | Int64 | Float | DoubleFloatandValue =(* Arithmetic operators *)Mem of (Mode * Value) |Reg of (Mode * int) |Add of (Mode * Value * Value) |Sub of (Mode * Value * Value) |Mul of (Mode * Value * Value) |Div of (Mode * Value * Value) |Mod of (Mode * Value * Value) |Uminus of (Mode * Value) |Integer of (Mode * int) |...(* Comparison operators *)Compare of (Mode * Value * Value) |Eq of (Mode * Value * Value) |Neq of (Mode * Value * Value) |Gt of (Mode * Value * Value) |Gteq of (Mode * Value * Value) |Lt of (Mode * Value * Value) |Lteq of (Mode * Value * Value) |If_Then_Else of (Value * Value * Value) |(* Program counter and condition codes. *)PC |N |V |Z |CandImperative =Sequence of (Imperative list) |Parallel of (Imperative list) |Assign of (Value * Value) |Call of Value |Nop |ReturnFigure 3.2: Syntax of semantic actions that specify RTL.26

of imperatives. The Parallel operator speci�es that an instruction has multiple e�ectson the state that occur simultaneously. For example, an instruction ADD Dest, Sourceperforms the operation Dest = Dest+Source and, in parallel, assigns condition codes basedon Dest+ Source.3.3.4 The Valuation FunctionThe valuation function maps syntactic objects (instructions) to semantic actions (RTL).We specify the valuation function in two parts, addressing modes and instructions. Thevaluation functions build pre�x operator terms (or abstract syntax trees) that represent thee�ect of the operations. It is these terms that can either be given a semantics (as we willdo in the next section), matched for code selection [1, 32], or analyzed for code optimizergeneration [36].In the following discussion, for the sake of clarity, and adhering to common notationalconventions, we have strayed slightly from strict SML syntax.Addressing Modes| A valuation function for an addressing mode returns a Value(�gure 3.2) that describes how an operand is accessed. Some addressing modes (e.g., auto-increment/decrement modes) cause side e�ects on the processor state. Consequently, anaddressing mode also returns an Imperative that speci�es this side-e�ect. Where no side-e�ects take place, the imperative Nop is returned. The type for the addressing mode valu-ation function Op is: Op: Operand! Mode! (Value�Imperative)Where the type Operand (�gure 3.1) represents an operand including its addressing modeand Mode (�gure 3.2) is the size of the data being accessed. Function Op is higher-order: Optakes Operand and returns a function from Mode to a tuple.For example, consider the auto-increment addressing mode. The valuation function Opis Op [[AutoInc(RegNum)]] Mode =letval r = Reg(Addr, RegNum)in(Mem(Mode, r),Assign(r,Add(Addr,r,Int(Int8,Sizeof(Mode)))))end 27

Op returns a tuple, the �rst item of which is how the operand is accessed and the second itemis the side-e�ect of the auto-increment addressing mode. \AutoInc(RegNum)" is abstractsyntax and Reg, Mem, Assign, Add, and Integer are semantic actions. The remainder ofthe PDP-11's addressing modes are similarly de�ned and are shown in �gure 3.3.Instructions| A valuation function for an instruction constructs an Imperative bycombining the actions of the operands with the action that represents the semantics of theinstruction. The function Instr has typeInstr : Instruction! ImperativeFor example, the PDP-11 MOV instruction is speci�ed by the following valuation function,Instr:Instr [[(TwoOp1(MOV, DestMode, SrcMode))]] =letval (Dest, S') = Op [[DestMode]] Int16and (Src, S'') = Op [[SrcMode]] Int16inSequence([Parallel[Assign(Dest,Src),Assign(Z,Eq(Int16,Src,Integer(Int16,0))),Assign(N,Lt(Int16,Src,Integer(Int16,0)))],Parallel[S', S'']])endTwo subtrees, S' and S", are constructed that represent side-e�ects from both operandaccesses. These subtrees are combined with the subtree that represents the e�ect or meaningof the operation.An instruction can alter the state in three ways.� Explicitly� Through a side e�ect of the addressing mode.� By setting condition codes.The remainder of the PDP-11 instructions are similarly de�ned and are shown in �gures 3.4,3.5, and 3.6. 28

fun Op (RegDirect(RegNum)) Mode = (* Register Direct *)(Reg(Mode, RegNum), Nop)| Op (RegIndirect(RegNum)) Mode = (* Register Indirect *)(Mem(Mode, Reg(Address, RegNum)), Nop)| Op (AutoInc(RegNum)) Mode = (* Auto-increment *)let val r = Reg(Address, RegNum)in (Mem(Mode, r),Assign(r, Add(Address, r, Integer(Sizeof(Mode)))))end| Op (AutoDec(RegNum)) Mode = (* Auto-decrement *)let val r = Reg(Address, RegNum)in (Mem(Mode, r),Assign(r, Sub(Address, r, Integer(Sizeof(Mode)))))end| Op (Indexed(Offset, RegNum)) Mode = (* Indexed *)(Mem(Mode, Add(Address, Reg(Address, RegNum),Integer(Offset))), Nop)| Op (Immediate(ImmediateValue)) Mode = (* Immediate *)(Integer(ImmediateValue), Nop)| Op (AutoIncIndirect(RegNum)) Mode = (* Autoincrement indirect *)let val r = Reg(Address, RegNum)in (Mem(Mode, Mem(Address, r)),Assign(r, Add(Address, r, Integer(Sizeof(Address)))))endFigure 3.3: The Semantics of the PDP-11 Addressing Modes29

(* Add instruction *)fun Instr (TwoOp1(ADD, DestMode, SrcMode)) =letval (Dest, S') = Op(DestMode) Int16and (Src, S'') = Op(SrcMode) Int16inlet val Result = Add(Int16, Dest, Src)in Sequence([Parallel[Assign(Dest,Result),Assign(Z, Eq(Int16, Result, Integer(0))),Assign(N, Lt(Int16, Result, Integer(0)))],Parallel[S', S'']])endend(* Compare instruction *)| Instr (TwoOp1(CMP, DestMode, SrcMode)) =letval (Dest, S') = Op(DestMode) Int16and (Src, S'') = Op(SrcMode) Int16inlet val Temp = Sub(Int16, Dest, Src)in Sequence([Parallel[Assign(Z, Eq(Int16, Temp, Integer(0))),Assign(N, Lt(Int16, Temp, Integer(0)))],Parallel[S', S'']])endend(* Move instruction *)| Instr (TwoOp1(MOV, DestMode, SrcMode)) =letval (Dest, S') = Op(DestMode) Int16and (Src, S'') = Op(SrcMode) Int16inSequence([Parallel[Assign(Dest,Src),Assign(Z, Eq(Int16, Src, Integer(0))),Assign(N, Lt(Int16, Src, Integer(0)))],Parallel[S', S'']])end Figure 3.4: Semantics of PDP-11 Instructions.30

(* Branch on not equal to zero *)| Instr (Branch(BNE, Offset)) =Assign(PC, If_Then_Else(Eq(CC, Z, Integer(0)),Add(Address, PC, Integer(Offset)), PC))(* Divide. Dest Dest = Src. Dest must be an even numbered register *)(* The dividend is put in Dest and the remainder in Dest + 1. *)| Instr (TwoOp2(DIV, RegNum, SrcMode)) =letval (Src, S') = Op(SrcMode) Int16inletval Quotient = Div(Int16, Reg(Int16, RegNum), Src)and Remainder = Mod(Int16, Reg(Int16, RegNum), Src)inif even(RegNum) thenSequence([Parallel([Assign(Reg(Int16, RegNum), Quotient),Assign(Reg(Int16, RegNum+1), Remainder),Assign(Z, Eq(Int16, Quotient, Integer(0))),Assign(N, Lt(Int16, Quotient, Integer(0)))]), S'])else Nopendend(* Multiply. *)| Instr (TwoOp2(MUL, RegNum, SrcMode)) =let val (Src, S') = Op(SrcMode) Int16val Result = Mul(Int32, Reg(Int16, RegNum), Src)in letval LoBits = Assign(Reg(Int16, RegNum), LoPart(Int16, Result))and HiBits = if even(RegNum) thenAssign(Reg(Int16, RegNum+1), HiPart(Int16, Result))else NopinSequence([Parallel([LoBits, HiBits,Assign(Z, Eq(Int16, Result, Integer(0))),Assign(N, Lt(Int16, Result, Integer(0)))]), S'])endendFigure 3.5: Semantics of PDP-11 Instructions (continued).31

(* Clear *)| Instr (OneOp(CLR, SrcDestMode)) =let val (SrcDest, S') = Op(SrcDestMode) Int16val Result = Assign(SrcDest, Integer(0))in Parallel([Result, S'])end(* Increment *)| Instr (OneOp(INC, SrcDestMode)) =let val (SrcDest, S') = Op(SrcDestMode) Int16val Result = Assign(SrcDest, Add(Int16, SrcDest, Integer(1)))in Parallel([Result, S'])end(* Decrement *)| Instr (OneOp(DEC, SrcDestMode)) =let val (SrcDest, S') = Op(SrcDestMode) Int16val Result = Assign(SrcDest, Add(Int16, SrcDest, Integer(-1)))in Parallel([Result, S'])endFigure 3.6: Semantics of PDP-11 Instructions (continued).
32

3.4 Action ImplementationThis section outlines a denotational semantics of the RTL semantic actions used in theprevious section. The implementation of the semantic actions that describe the RTL onlyneeds to be done once, the point being that once the RTL is implemented we can easilydescribe a variety of architectures.We do not have room here to present the semantics of the actions but we will brie
youtline the type signatures of the actions and the kinds of values that they operate on. We�rst de�ne an abstract notion of state.The State| Our state consists of memory (byte addressable), registers (32-bit), and astatus register (for the condition codes C, N, V, and Z) that operate on the data types givenby Mode.Mode = Addr + Int8 + Int16 + Int32 + Int64 + Float + CCState = Memory � Registers � StatusRegEach of Memory, Registers, and the StatusReg are stores. Abstractly, a store is afunction from locations (addresses, register numbers, condition codes) to data. This suggeststhe following de�nition for the three stores:Memory = Address ! Int8Registers = RegNum ! Int32StatusReg = Flags ! BitAction Signatures| The Mem action takes two parameters: a mode (Mode) that speci�eshow many bytes to fetch, and a value producing action (Value) that yields an address. Memitself is a value producing action. Its signature is given by the following equation.Mem: Mode � Value ! ValueAn example of an imperative action (Imperative) is Assign. Assign takes two valueactions, the �rst of which must be an L-value that will be assigned the data the secondaction produces (the R-value). The signature of Assign is:Assign: Value � Value ! Imperative33

A value action is consequently a function from a state to a denotation. An imperative actionis a function from a state to a state.Imperative = State ! StateValue = State ! DenotationDenotation = CC of Bit + Address of int+ Int8 of int + Int16 of int + Int32 of intTo be complete, we must specify the semantics of individual actions. We only note thatthere is an SML function for each of the actions in �gure 3.2. For example, there is an SMLfunction Assign that has the following signature.Assign : Value � Value ! ImperativeSimulation | SML is, essentially, an implementation of the call-by-value typed �-calculus. The simulator for the architecture is the SML interpreter. The simulation shouldbe viewed as computational; that is, we model the computation of the individual instruc-tions as functions described in the �-calculus.3.5 Code GenerationA retargetable code generator operates by matching portions of the intermediate language(IL) produced by the front-end to the language that describes instructions in the machinedescription. This of course assumes that the IL generated by the front-end is the same asthe language that describes instructions. Fortunately, the RTL presented in this chaptersu�ces for both. (Using RTL for an IL was �rst proposed by Davidson [32] and is embodiedin the popular retargetable C compiler GCC [89].)Our speci�cation can be used in a code generator because the RTL used to describeinstructions can also be used as an intermediate language. For example, the instruction AddR1, (R2)+ determines the RTL syntax tree (linearized) in �gure 3.7. (Recall that Int16and Address are types that describe the kind of value in the register or memory cell.)Pattern matching code generators work by matching portions of the intermediate languagegenerated by the front-end with patterns that represent instructions (�gure 3.7). Twig [1]is one such system that could be used here. 34

Sequence([Parallel([Assign(Reg(Int16,1), Add(Int16,Reg(Int16,1),Mem(Int16,Reg(Address,2))))Assign(Z, Eq(Int16, Mem(Int16, Add(Int16,Reg(Int16,1),Mem(Int16,Reg(Address,2))))))Assign(N, Lt(Int16, Mem(Int16, Add(Int16,Reg(Int16,1),Mem(Int16,Reg(Address,2))))))])Parallel([Nop,Assign(Reg(Address,2),Add(Address,Reg(Address,2), Integer(2)))])])Figure 3.7: RTL Syntax tree corresponding to the instruction Add R1, (R2)+.3.6 DiscussionAn instruction set architecture is, in a sense, a programming language and can be treatedas such. Using denotational semantics we have speci�ed, formally, the semantics of aninstruction set architecture which allows for the design of modular, readable, and usablearchitectural speci�cations. We have implemented the semantics using the functional lan-guage SML which makes our speci�cation executable, automatically providing a simulatorfor the instruction set architecture.
35

Chapter 4Instruction TimingIn this chapter we motivate our thesis that the timing-properties of instructions that areneeded for program e�ciency (to perform instruction scheduling) should be included in ahigh-level processor speci�cation. We have refrained from using the the term \architecture"as this level contains only information required to write correct programs.4.1 Architecture and OrganizationThe distinction between the levels of abstraction of a processor are ill-de�ned and somewhatarti�cial. Consider the architecture and organization levels; it is often di�cult keeping thedetails of organization from creeping into the architecture. As an extreme example, the Inteli860 processor [63] makes no such separation and one can even argue that the organizationis the architecture. Consequently, in order to program the i860 properly it is necessary thatthe user understand the structure of the pipelines and how the internal latches are used.Ideally, an architecture speci�cation describes �nal values that the instructions computeand the organization describes how those values are computed. That is, the architecture isan abstraction whereas the organization is an implementation. To this end, the architecturelevel does not contain timing information but the organization level does. However, whenconsidering the e�ciency of a program, the organization level does contain information thatis of use for the programmer. Yet the organization also contains a considerable amount ofother detail that is of no concern to the user. For example, a
oating-point multiply mayhave a latency of six cycles due to the structure of the pipeline. However, to use themultiplication instruction e�ciently we need only be concerned with the latency itself, not36

the cause. There are many such examples of this complex instruction interaction which wenow describe.4.2 Delayed InstructionsSome instructions have an architecturally de�ned delay. The most common examples aredelayed loads and branches. In a delayed instruction the e�ect of the instruction alwaysoccurs n instructions (cycles) after the instruction begins, where n represents the number ofrequired delay slots. For example, some memory load instructions have an architecturallyde�ned delay to them (it is not reasonable to expect a word frommemory be fetch in a singlecycle without slowing the processor clock speed) as in the following instruction sequence,where n = 1);(1) Load R1, (R2) ;R1 := Mem[R2](2) Add R2, R2, R1 ;R2 := R2 + R1On some processors, the use of register R1 in (2) is illegal and sends the processor intoan unde�ned state. For delayed load instructions, program correctness depends on theprogrammer who must ensure that the instruction executing immediately after a delayedload instruction does not reference the register being loaded.Another situation arises with a delayed branch. For some processors, in the followinginstruction sequence,Locn: ...BZ R1, LocnAdd R2, R2, #-1...the Add instruction after the branch (BZ) is always executed before a jump to Locn. Ifthe branch is not taken a couple of di�erent behaviors can be de�ned. One is to alwaysexecute the Add instruction whether the branch succeeds or fails. The other is to skip theAdd instruction when the branch fails and execute the instruction immediately below theAdd (This is sometimes called nulli�cation of the delay-slot). Another constraint is that abranch instruction may not be immediately followed by another branch instruction.37

4.3 Multicycle InstructionsSome instructions take several cycles to execute. In this situation, an instruction may haveto wait until a previous instruction �nishes. This \wait" or data-dependent delay occurs inthe following instruction sequence,(1) Fmul FR1, FR2, FR3(2) Fadd FR4, FR4, FR1where the Fadd instruction has to wait until the Fmul instruction �nishes due to the datadependency on register FR1. The delay su�ered in this instruction pair is not the sameas that encountered in the delayed load instruction as the delay in the load instruction is\architecturally de�ned". That is, the delay is constant across implementations whereasthe delay in the above instruction pair is dependent upon a particular implementation ofthe processor.4.4 Resource ConstraintsA processor has a limited set of resources. When one instruction needs a resource that iscurrently being used by another instruction a structural hazard results and an interlock (ordelay) occurs. For example, if a processor has only one
oating-point adder then, in thefollowing sequence,(1) Fadd FR1, FR2, FR3(2) Fadd FR4, FR5, FR6the second Fadd instruction will have to wait for the �rst Fadd to �nish using the adder,even though the two instructions are data independent.4.5 Multiple Instruction IssueOn some processors, when instructions have no data dependencies nor resource con
icts theprocessor will execute the instructions in parallel. For example, integer and
oating-pointinstructions typically use mutually exclusive portions of the hardware and the followinginstructions 38

(1) Fmul FR1, FR2, FR3(2) Add R1, R2, R3can execute in parallel.4.6 MotivationAll of the timing constraints described above arise because instructions overlap in execution.This overlap is called instruction-level parallelism (or ILP). These constraints constitute theprogrammers view of instruction timing. The architecture level generally does not containtiming information but the organization level does. However, the organization level alsocontains many more details of implementation that are irrelevant to the user. Consequently,we are interested in a new level of abstraction that describes the programmer's view ofinstruction timing. This new level abstracts away from implementation details which wesimply call the instruction timing view.The main motivation for describing a processor at the timing level is that, in general,we should not expect that the user of the processor infer the existence of timing constraintsby examining the organization. One of our goals then is to develop a mathematical modelof instruction timing that hides irrelevant details of implementation.4.7 Functions Don't WorkGiven the above discussion on the various ways instructions can interact, the behavior of aninstruction can no longer be speci�ed in isolation of other instructions. Consequently, thetypical technique of using register-transfer statements can no longer be applied. However,as we have mentioned, on some processors it is vital that the compiler know the timing con-straints and the concurrent properties of the processor to use the processor e�ciently and,in some cases, correctly (e.g., architecturally de�ned delayed loads/branches and instructionlatencies).It is well-known that functional methods do not extend well to include timing constraintsor concurrency. In fact, it is widely known in the programming language community thatfunctional methods and concurrency are at odds, as has been pointed out by Milner [69],Hoare [53], and Pnueli [80]. This is because a concurrent system does not necessarily havea functional behavior as concurrency can introduce non-determinism into a system. The39

de�nition of being a function implies that an input has only one corresponding output.Consider again the delayed-load instruction of the MIPS R3000 [56]. On the MIPS, forthe following instruction sequence,(1) Load R1, (R2) ;R1 := Mem[R2](2) Add R2, R2, R1 ;R2 := R2 + R1the contents of register R1 is unde�ned at instruction (2). That is, the value of R1 is non-deterministic. The above load instruction, then, is can not be described by a function asR1 can receive one of two values:1. The correct value stored at the memory location in R2 or2. some unde�ned value.Consequently, since R1 is unde�ned R2 will also be unde�ned, possibly causing a ripple-e�ectof unde�ned registers. This implies that if the contents of any register becomes unde�nedthen the entire processor state must be considered to be unde�ned.Even if a concurrent system does have an overall functional behavior it may be moreappropriate to model the system using a concurrency-based formal method rather than afunctional one. This is because the concurrent system is composed of interacting compo-nents which can yield irregular, yet deterministic behavior which can be di�cult to specifyfunctionally. For example, if the load instruction above did not include an architecturallyde�ned delay but was interlocked instead (i.e., if the processor stalled and waited for R1 tobe loaded), as is done on the newer MIPS R4000, then we have to model the stall also. Butmodeling the stall is cumbersome using functional methods as one would have to somehowinclude a stall-value in the output. This is, as we will see, straightforward using a calculus ofconcurrency. So we will forego using a functional language in favor of a particular calculusof concurrency, SCCS.
40

Chapter 5SCCS: A Synchronous Calculus ofCommunicating SystemsSCCS, or Synchronous Calculus of Communicating Systems [67, 68], is a mathematical the-ory of communicating systems in which we can represent systems by the terms or expressionsin a simple language given by the theory. SCCS allows us to directly represent the temporaland concurrent properties of the system being speci�ed.5.1 A Small ExampleIn this section we introduce SCCS through a small example involving a pipeline. Considera two stage pipeline where each stage adds one to its input; such a pipeline is depicted in�gure 5.1.Each stage is modeled using an agent (process) in SCCS, which may have one or more
in out

Add2

S SFigure 5.1: A two stage \Add 2" pipeline constructed from two \Add 1" agents.41

communication ports. In SCCS, each agentmust perform an action (that is, use one or moreof its ports) on each clock cycle, or execute the idle action, written as 1. Communicationbetween two agents occurs when, at time t, one agent wants to use a port � and the otherwants to use complementary port �.One stage in our example pipeline is represented in SCCS by,S(x) def= in(y)out(x) : S(y + 1) (5.1)Equation 5.1 speci�es that on clock cycle t, S is an agent with current output x and inputy and that at time t + 1, S becomes an agent with current output y + 1. In Equation 5.1,� \:" is the pre�x operator. The expression a : P represents the process that, at timet, can do the action a and become the process P at time t+ 1.� in(y)out(x) is a product of actions specifying that the two particulate actions, in andout, occur simultaneously. This action can also be thought of as reading y on portin and sending x on port out.� S is de�ned recursively allowing for the modeling of non-terminating agents.� S is parameterized by the arithmetic expression y + 1. An important characteristicof SCCS is that the parameter of an output action may be any expression, usingwhatever functions over values we need [68].The semantics of SCCS is given formally in [68].5.2 SCCS SyntaxSystems speci�ed by SCCS consist of two entities, actions and agents (or processes). Aprocess is an SCCS expression (Figure 5.2 gives the syntax for SCCS expressions). Actionscommunicate values and can either be positive (e.g. in) or negative (e.g. out). Positiveactions input values and negative actions output values. Two actions � and �� associatedwith two agents running in parallel are connected by the fact that they are complements ofthe same name.5.3 Connecting ProcessesThe � combinatormodels parallelism. The agentA�B represents agentsA andB executingin parallel. If two agents joined by product contain complementary action names then these42

P (x1; x2; : : : ; xn) def= E Parameterized agent de�nition1 ; Done Idle agent0 Inactive agentE � F Parallel composition. E and F execute in parallel.E + F Choice of E or FE > F E or F with preference for Ea1(x1)a2(x2) � � �an(xn) : E Synchronous action pre�x with valuesif b then E1 else E2 ConditionalPi2I Ei Summation over indexing set IQi2I Ei Composition over indexing set IE " L Action RestrictionEnnL Particle RestrictionE[f] Apply relabeling function fFigure 5.2: Syntax of SCCS expressions
43

agents are joined by what may be thought of as wires at those ports. Hence these agentsmay now communicate.Given Equation 5.1 we can now construct a two stage \add 2" pipeline from two \add1" agents. There is a problem though, the agent S � S does not contain complementaryaction names (that is, the pipeline stages are not connected), yet the output of the �rst Sstage must be fed into the input of the second S stage. To model this kind of connection,SCCS provides a mechanism for relabeling actions. Relabeling out to � in the �rst S andin to � in the second occurrence of S provides the desired e�ect.Add2(x; y) def= (S(x)[�1]� S(y)[�2]) " fin, outg (5.2)�1 = out 7! �; �2 = in 7! �In Equation 5.2,� �1 is a relabeling function that means change the port name out to �. �2 changes into �.� S[�] means apply relabeling function � to agent S.� S " fin, outg is the restriction combinator applied to agent S. Restriction servesthe purpose of \internalizing" ports (or \hiding" actions) from the environment andexposing others. Hence in and out are made known to the environment and � isinternalized.Combining restriction and relabeling is a way of achieving scoping in SCCS.The net e�ect Equation 5.2 is to construct a pipeline of two stages where each stageadds 1 to its input.In SCCS the agent A+B represents a choice of performing agent A or agent B. Whichchoice is taken depends upon the actions available within the environment. The agentA1 +A2 + � � �+An is abbreviated to Pni=1Ai.5.4 An Algebra of ActionsAgents interact with their environment through \ports" that are identi�ed with labels.\Port" and \label" are synonymous and every port (and label) is also an action, but as wewill see the converse is not true. Actions have the following properties:44

� There is an in�nite set A of names and a set of conames A. The set of all labels isL = A [A.� There is a binary operator � used to form a new action that is a \product of actions".This, �1 � �2, is the product of actions �1 and �2 2 L.� � is commutative and associative: � � � = � � � and (� � �) �
 = � � (� �
).� Often, when clarity allows, a product of actions, �1 ��2, is written using juxtaposition(e.g. �1�2) rather than with �.� A product of actions, � = �1�2 � � ��n denotes simultaneous occurrence of �1, �2, : : :,�n.� The idle action, 1, is a left and right identity on � such that 1� = �1 = �.� The unary operator \�" is an inverse operation: � � �� = 1.With this information at hand we conclude that there is an algebra of actions that form anabelian (commutative) group generated by A, the set of particles.(Act, 1, �, �) is an Abelian GroupTherefore, every � 2 Act can be expressed as a unique product of particulate actions� = �z11 : : :�znnup to order.5.5 Extensions to SCCSIn this section we introduce two extensions to SCCS that will aid us in writing processorspeci�cations.Frequently, we wish to execute two agents A and B in parallel, where B begins executingone clock cycle afterA (e.g., issuing instructions on consecutive cycles). This can be modeledby A� 1 : B: We de�ne the binary combinator Next to denote this agent.A Next B = A� (1 : B) (5.3)Next is right-associative. That is,A Next B Next C = A Next (B Next C)45

Intuitively, the agent A Next B Next C should begin executing A at time t, B at time t+1,and C at time t + 2. We can see that this is the case by expanding it using Equation 5.3.A Next B Next C = A Next (B Next C)= A� 1 : (B Next C)= A� 1 : (B � 1 : C)= A� 1 � 1 : (B � 1 : C) (1 is identity)= A� 1 : B � 1 : 1 : C (by 5.9)Another useful operator is the priority sum operator, > [20]. Intuitively, if in the agentA+B both A and B can execute, then it is non-deterministic as to which is executed. Often,we would like to prioritize + so that if both A and B can execute, then A is preferred. Thus,A >B denotes the priority sum of A and B, where A has priority over B.5.6 Transition GraphsThe operational semantics of SCCS is de�ned in terms of a labeled transition system.De�nition 1 A labeled transition system (LTS) is a triple hP ;Act;�!i where P isa set of states, Act is a set of actions, and �! is the transition relation, a subset ofP � Act�P.When p; q 2 P and � 2 Act and (p; �; q) 2�! we write p ��! q to mean that \state pcan do an � and evolve into q." States p and q represent the state of the system at timest and t + 1 respectively. Figure 5.4 gives the inference rules for SCCS that map an SCCSterm to a labeled transition system, where states correspond to SCCS expressions. In thetransition p ��! q, q is called an \�-derivative" of p or just a \derivative" of p.A state t is reachable from state s if there exist states s0; : : : ; sn and actions �1; : : : ; �nsuch that s = s0 �1�! s1 �1�! � � � �n�! sn = t:In this case we call �1; : : : ; �n a trace of s.The transition graph of an agent p is a graphical representation of the LTS induced byp. For example, the SCCS agent de�ned in Equation 5.4 has the transition graph shown in�gure 5.3. E def= a : b : 0+ c : (d : 0 + e : 0) (5.4)46

0

0
E

b:0
b

a

0

c

0 0d: + e:

d

eFigure 5.3: Transition graph of agent de�ned in Equation 5.4.The transition graph of an agent represents its dynamic nature as it represents an agent\executing" through time. The LTS itself is a structure that represents all possible tracesof the system. For example, the LTS in �gure 5.3 of the SCCS process in Equation 5.4identi�es the set f(a; b); (c; d); (c; e)g as the possible traces of E of length two. Analysis ofSCCS processes (e.g., simulation, equivalence testing, model checking) is carried out on theLTS rather than SCCS terms directly.5.7 The Operational Semantics of SCCSIn general, an operational semantics of a language maps terms of the language to someabstract machine. A structural operational semantics (developed by Plotkin [79]) uses syntaxdirected rules to map terms of the language to a transition system (or labeled transitionsystem in our case). The structural operational semantics (or SOS [79]) for SCCS is givenin �gure 5.4.Each rule in �gure 5.4 is an inference rule structured on the syntax of an SCCS term.The following conveys the intuition behind the rules:Action | In the process a : 0 the rule Action says that a : 0 a�! 0.Product | If P can do an action � and Q can do an action � then P �Q can do an action� � �. For example, consider the process a : 0� b : b : 0. The rule Product says that1. since a : 0 a�! 0 and 47

Sum1 P ��! P 0P + Q ��! P 0 Sum2 Q ��! Q0P + Q ��! Q0Action � : P ��! PProduct P ��! P 0 Q ��! Q0P � Q ����! P 0 � Q0 Restriction P ��! P 0P " A ��! P 0 " A � 2 ARelabeling P ��! P 0P [f] f(�)�! P 0[f] De�nition P ��! P 0A ��! P 0 A def= PFigure 5.4: Operational semantics of SCCS.2. since b : b : 0 b�! b : 0 then3. then a : 0� b : b : 0 a�b�! 0� b : 0.Sum | The Sum1 rule says that if P can do an action � and become P 0 then P +Q cando an � and become P 0. The rule Sum2 handles the other case.Relabeling | If P can do an � then the process P [f] can do an f(�).Restriction | If P can do an � then P " A can do an � provided � 2 A. The predicate� 2 A is called a side condition.De�nition | The de�nition rule allows us to bind a process to an identi�er. It says thatif P can do an � then so can any process identi�er A where A def= P .The inference rules de�ne all possible transitions for any SCCS term.SCCS is an algebra that satis�es many equational laws (�gure 5.5). The equational lawsare based on the de�nition of bisimulation equivalence in SCCS which is de�ned in [67]. Wewill not pursue this here. 48

If P;Q;R 2 P and a; b 2 Act then,P � 1 � P (5.5)P + 0 � P (5.6)P + P � P (5.7)P � 0 � 0 (5.8)a : P � b : Q � ab : (P �Q) (5.9)P � (Q+ R) � P � Q+ P �R (5.10)P + Q � Q+ P (5.11)P � Q � Q� P (5.12)(P �Q)�R � P � (Q�R) (5.13)(P +Q) +R � P + (Q+R) (5.14)a(b : P + c : Q) � ab : P + ac : Q (5.15)(a : P) " A � 8><>: a : (P " A) if a 2 A0 if a 62 A (5.16)P " A " B � P " (A \B) (5.17)Figure 5.5: Equational laws of SCCS
49

5.8 ExamplesHere we present some examples using SCCS to specify various simple circuits. More ex-amples and their implementation in the Concurrency Workbench are given in Appendix B.The purpose of this section is to familiarize the reader with SCCS and how it is used. Sincewe will eventually be specifying the timing properties of a RISC-style microprocessor weuse digital hardware in our examples.5.8.1 A Zero-Delay and a Unit-Delay WireThe simplest circuit is a wire. One end is the input and the other is the output which welabel with the actions in and out.In all of the examples, variables range over booleans 0 and 1. Equation 5.18 representsa zero-delay wire. At all times t the current input at in is equal to the output at out.Wire0 def= in(i)out(i) :Wire0 (5.18)The process Wire1 below represent a wire that has a unit-delay which means it has acurrent state j. At the time t the input i on in becomes, at time t + 1, the output j onport out. (Compare the HOL equation for this same circuit, Equation 2.1.)Wire1(j) def= in(i)out(j) : Wire1(i)We can also implement a wire that has a delay of two clock cycles:Wire2(i; j) def= in(a)out(j) : Wire2(a; i)We could have also speci�ed the two-delay wire by hooking together two unit-delaywires: Wire2Impl(i; j) def= (Wire1(i)[alpha=out]�Wire1(j)[alpha=in]) " fin; outgOne important aspect of SCCS is that now we can prove that the agents speci�ed by Wire2and Wire2Impl are equivalent. In fact, the Concurrency Workbench can establish this forus automatically.5.8.2 Logic GatesA unit-delay inverter is speci�ed in Equation 5.19.Not(0) def= in(0)out(0) : Not(1) + in(1)out(0) : Not(0)Not(1) def= in(0)out(1) : Not(1) + in(1)out(1) : Not(0) (5.19)50

Using a little notational freedom for specifying the functionality of an agent we can abbre-viate Equation 5.19 with Equation 5.20.Not(j) def= in(i)out(j) : Not(:i) (5.20)Connecting two inverters together we get Equation 5.21.TwoNots(i; j) def= (Not(i)[alpha=out]�Not(j)[alpha=in]) " fin; outg (5.21)Connecting two inverters together cancel each other out, except for the delay. We shouldexpect that agent TwoNots be equivalent to agent Wire2 (and consequently Wire2Impl).Indeed, this is the case.Other logic gates are similarly de�ned (of course all we really need is a nand or a norand we can de�ne all of them in terms of this operation and prove that they meet theirspeci�cation). And(j) def= in1(a)in2(b)out(j) : And(a ^ b) (5.22)Or(j) def= in1(a)in2(b)out(j) : Or(a_ b) (5.23)Xor(j) def= in1(a)in2(b)out(j) : Xor(a� b) (5.24)Nor(j) def= in1(a)in2(b)out(j) : Nor(a nor b) (5.25)These processes are all unit-delay with j being the \default" initial state.5.8.3 Flip-FlopA
ip-
op is easily constructed by connecting together two Nor gates (�gures 5.6 and 5.7).Each Nor gate has an output that feeds back into the other Nor gate. In order to make thedesired connections we have make two copies of a Nor gate and suitably relabel some ports.Finally the restriction operator internalizes the two feedback connections.FF(m;n) def=(Nor(m)[s=in1; g � in1=out]� Nor(n)[r=in2; in2 � d=out]) " fs; r; g; dg
51

in1
in2

outFigure 5.6: A nor gate.
g

s

r dFigure 5.7: A
ip-
op constructed from two nor-gates (Figure 5.6).
52

Chapter 6Specifying a ProcessorIn this chapter we present a speci�cation of the programmer's timing view for hypotheticalRISC-style processor, based on DLX and the MIPS from Patterson and Hennessy [76, 77,56].6.1 Our example microprocessorIn this RISC, instructions, memory word size, registers, and addresses are thirty-two bits.Figure 6.1 gives the instruction syntax and computational semantics of our processor. Whatfollows is an informal description of some of our RISC instructions that we subsequentlydescribe with SCCS.� Add Ri, Rj, Rk adds registers j and k and puts the result in register i. The instructionexecuting immediately after an Add may use register i.� Load Ri, Rj, #Const is a delayed load instruction. Register i is being loaded frommemory at the base address in register j with o�set #Const. The instruction executingimmediately after Load cannot use register i.� BZ Ri, #Locn is a delayed branch instruction that branches to Locn if register i iszero. The instruction immediately after the branch is always executed before thebranch is taken. If the branch is not taken then instruction after the branch is notexecuted. Another BZ instruction may not appear in the branch delay slot.� Fadd FRi, FRj, FRk is an interlocked
oating-point add with a latency of six cycles.If another Fadd instruction tries to use the result before the current Fadd is �nished,53

Instruction Syntax Computational SemanticsAdd Ri, Rj, Rk Ri Rj+ RkAddI Ri, Rj, #Const Ri Rj+ #ConstMov Ri, Rj Ri RjMov.f FRi, FRj FRi FRjMovFPtoI Ri, FRj Ri FRjMovItoFP FRi, Rj FRi RjNop No operationCmp Ri, Rj, Rk Ri Rj ? RkCmpI Ri, Rj, #Const Ri Rj ? #ConstFadd FRi, FRj, FRk FRi FRj+ FRkFmul FRi, FRj, FRk FRi FRj� FRkFdiv FRi, FRj, FRk FRi FRj= FRkBZ Ri, Locn if Ri = 0 then PC LocnLoad Ri, Rj, Offset Ri Mem[Rj+ Offset]Load.f FRi, Rj, Offset FRi Mem[Rj+ Offset]LoadI Ri,#Const Ri #ConstStore Ri, Rj, Offset Mem[Rj+ Offset] RiStore.f FRi, Rj, Offset Mem[Rj+ Offset] FRiFigure 6.1: RISC instruction set.
54

then instruction execution stalls until the result is ready.The table in Figure 6.1 gives the entire instruction set along with the RTL statementdescribing the functional semantics of each instruction. This functional semantics can beeasily represented using the techniques from chapter 3.6.2 Timing ConstraintsThere are three types of constraints that alter the programmer's view of the timing of aprocessor.delayed instructions | The e�ect of an instruction can be delayed (e.g., as in ourRISC's load and branch instructions) making certain instructions sequences illegal.multicycle instructions | An instruction that takes more than one cycle to calculateits result may cause the processor to interlock when a subsequent instruction needs theresult before the previous instruction has �nished. These are known as data hazardsand will be discussed in more detail later.limited resources | Often, two or more instructions may compete for the same resource(e.g.,
oating-point adder) and one will have to wait. This situation is known as astructural hazard.We will discuss all three types of timing constraints as we encounter them.6.3 The SCCS Speci�cationA processor is a system in which registers and memory interact with one or more functionalunits. Equation 6.1 represents such a system at the highest level in SCCS.Processor def= (Instruction Unit�Memory � Registers) " I (6.1)Where I is the set of all instructions.Equation 6.1 says that the only visible actions are instructions. That is, the labels on thelabeled transition system generated by 6.1 are entities like Add R1, R2, R2, BZ R1, Locn,etc. 55

6.4 Instruction Formats as ActionsWe will represent the syntax (format) of each instruction as an SCCS action. The in-structions described in Figure 6.1 determine a set of actions, one for each instruction. Forexample, the instruction Add R1, R2, R3 is represented in SCCS by the action AddR1R2R3.More generally, the instruction Add Ri, Rj, Rj determines a set of actions, IAdd, given byEquation 6.2. IAdd def= Add Ri, Rj, Rj = 31[i;j;k=0AddRiRjRk (6.2)The set, Iop can be determined for each opcode, op 2 Opcodes, yielding the set I of allinstructions (Equation 6.3). I def= [op 2 Opcodes Iop (6.3)For readability, we continue to comma separate an instruction's operands, always keep-ing in mind that an instruction is represented by an action. (We could also use the bitrepresentation of the instructions but this would only make the speci�cation less readable.)6.5 De�ning the RegistersBefore we proceed in specifying instructions and their interaction, it is necessary to developan appropriate model of registers and memory. In this section we develop an abstractmodel of storage in which storage cells are modeled as agents. Equation 6.4 de�nes onecell, Cell(y), holding a value y, such that an action putc(x) executed at time t stores x inCell which is available for use at time t + 1. The action getc(y) retrieves the value storedin Cell and assigns this to y. If no agent wants to interact with Cell using putc or getcactions then Cell executes the idle action 1.Cell(y) def= getc(y) : Cell(y) + putc(x) : Cell(x) + 1 : Cell(y) (6.4)This model of a storage cell is simple but inadequate because Cell can only performone getc or putc at a time. Consider the instruction Add R1, R1, R1 which accessesR1 twice and also writes R1. On most processors this instruction can e�ectively executein a single cycle because registers are read and written in di�erent pipeline stages andthere is appropriate forwarding hardware, renaming registers, etc.. But we do not needto model pipeline stages and all of the other organization that goes with them. Whatwe need to do is augment the agent Cell so that it can handle parallel reads and writes.56

For example the action getc(a)getc(b) means read Cell twice putting the result into aand b. The action getc(a)putc(b) means read and write Cell in parallel. The actiongetc(a)getc(b)getc(c)putc(d) means read Cell three times with the cell's value placed ina, b and, and c and also write d to Cell. Only one putc is allowed for each action.Equation 6.5 de�nes an agent Reg that is a new version of Cell that can accommodateparallel reads and writes.Reg1(y) def= 2Xj=0 getr(y)j(1 : Reg(y) + putr(x) : Reg(x)) (6.5)Notice that we can change the upper bound on the summation to allow an arbitrary numberof readers of the registers (i.e., getr's)If we expand the summation in Equation 6.5 we obtain Equation 6.6.Reg1(y) def= getr(y)0 : Reg(y)+ getr(y)1 : Reg(y)+ getr(y)2 : Reg(y)+ getr(y)0putr(x) : Reg(x)+ getr(y)1putr(x) : Reg(x)+ getr(y)2putr(x) : Reg(x) (6.6)Applying the equational law that states that for any particulate action a 2 A, a0 = 1and a1 = a Equation 6.6 reduces to Equation 6.7.Reg1(y) def= getr(y) : Reg(y)+ getr(y)2 : Reg(y)+ putr(x) : Reg(x)+ getr(y)putr(x) : Reg(x)+ getr(y)2putr(x) : Reg(x)+ 1 : Reg(y) (6.7)In further sections, we will not continue to expand summations like this; it was donehere to indicate how summations are used and manipulated. In fact, the algebra allowsthe use of in�nite sums, that is, sums over a countably in�nite indexing set, which wouldprohibit us from expanding them completely anyway.57

6.5.1 Register LockingThe actions getr and putr are atomic. It may be that a register is going to be updatedsome time in the future (e.g., delayed loads) and any attempt to read or write the registerby another agent (instruction) should result in an error. We will augment Equation 6.5 byallowing an agent to reserve a register for future writing using the action lockreg and then,at some point in the future, by writing the register (with putr) and releasing it with theaction releasereg. Equation 6.8 modi�es Reg1 so that when an agent locks a register theregister goes into a state Locked Reg where the only allowable action is putr(x)releasereg.All other combinations of getr and putr in the locked state lead to the inactive agent 0.This need to trap all of the other illegal action sequences complicates matters so we havefactored this out and put them in Equation 6.10. Notice again, that the upper-bound of thesummation in equations 6.8 and 6.10 can be arbitrarily increased to include any number ofreaders. Reg(y) def= Reg1(y) + 2Xj=0 getr(y)jlockreg : Locked Reg(y) (6.8)Locked Reg(y) def=Illegal Access(y) + putr(x)releasereg : Reg(x) + 1 : Locked Reg(y) (6.9)Illegal Access(y) def=2Xj=0 getr(y)j (getr(y) : 0 + putr(x) : 0 + putr(x)releasereg : 0) (6.10)Figure 6.2 shows the state transition graph of Reg (Equation 6.8) which is the labeledtransition system generated by the operational semantics of SCCS. The �gure shows that,from the state Reg, any number of getr's (including zero) and zero or one putr's will leaveus in the state Reg. However, any number of getr's and a lockreg action will put us inthe Locked Reg state. Figure 6.2 also shows that any action other than a putr �releaseregwill put us in the deadlocked state 0.Given the de�nition of one register, a family of registers (Reg1, Reg2, etc.) is now de�nedby subscripting each of the actions by a register number. For example, the action putri(x)represents writing x to register i. Thirty-two registers are constructed byRegisters def= Reg0(y)� � � � � Reg31(y) (6.11)58

 Reg Locked
 Reg

putr releasereg

getr lockreg
j

1

getr
j

getr
j putr ,

, 1

0

getr
j

getr
j putr ,

getr
j putr releasereg

,Figure 6.2: State transition graph of agent Reg in Equation 6.8.which we abbreviate to Registers def= 31Yi=0Regi(y) (6.12)(we have not changed SCCS at all, this is just a shorthand notation).6.6 De�ning MemoryThe de�nition of an agent Memory is exactly analogous to that of Registers except thatmemory cells do not have locks associated with them. For brevity we omit the de�nition ofMemory and just note that the actions getmi and putmi read and write memory cell i.MEMi(y) def= putmi(x) : MEMi(x)+ getmi(y) : MEMi(y)+ getm(y)putm(x) :MEM(x)+ 1 : MEMi(y) (6.13)MEMORY def= 232�1Yi=0 MEMi(y) (6.14)59

6.7 Instruction PipelineInstruction pipelines are usually described in terms of their stages of execution. For example,the agent IPL (for instruction pipeline)IPL def= IF� ID� EX�MEM�WBde�nes a �ve-stage instruction pipeline, where IF, ID, EX, MEM, and WB represent in-struction fetch, decode, execute, memory access, and write back stages.This is a reasonable and obvious representation, but since we are interested only inexternal timing behavior, it is over-speci�ed. We should resist attempting to specify anarchitecture's timing behavior in terms of individual stages as this commits us to describethe detailed operation of each individual stage. Since our interest is simply timing behaviora more abstract speci�cation will su�ce.We should also point out that it is very useful to be able to specify a processor at thislower organizational level as this would count as an \implementation" of the processor. Infact, one of SCCS's major bene�ts is its ability to specify systems at various levels andcompare and analyze them. This robustness is one of the reasons we chose SCCS.6.8 Instruction IssueGiven our previous de�nitions of Registers and Memory and using a program counter, PC,we now describe an agent Instr(PC) (Equation 6.15) that speci�es the behavior of ourprocessor's instructions. Instr(PC) partitions instructions into two classes, Branch andNon Branch. Non Branch instructions are further divided into three classes, arithmetic(Alu), load and store (Load Store), and
oating-point (Float).Instr(PC) def= (Non Branch(PC) Next Instr(PC + 4))+ Branch(PC)> Stall(PC) (6.15)Non Branch(PC) def= Alu(PC) + Load Store(PC) + Float(PC) (6.16)Stall(PC) def= 1 : Instr(PC) (6.17)There are three possible alternatives of Instr(PC).� A non-branch instruction may execute in which case the next instruction to executeis at PC + 4. The �rst line of Equation 6.15 describes this situation.60

� A branch instruction may execute, in which case the next instruction cannot be deter-mined until it is known whether the branch will be taken or not. Hence, the decisionon what instruction to execute next is deferred (see Equation 6.22).� If no instruction can execute then the processor must stall (Equation 6.17). The >operator (section 5.5) is used here because the processor should stall only when noother alternative is available.6.8.1 Arithmetic InstructionsLike most processors, ours fetches instructions from memory using a program counter, PC.The action getmPC(Add Ri,Rj,Rk)represents fetching an Add instruction from memory. (Recall the slight abuse of notationwith the comma separated operands.)From a user's view, the instruction Add Ri, Rj, Rk appears to take one cycle to execute.In the following instruction sequence,Add R1, R2, R3Mov R2, R1the Add instruction executes at time t and the Mov executes at time t + 1. From a behav-ioral view there is no problem with writing R1 and reading R1 in consecutive instructions.Normally, a user would expect this instruction sequence to be legal and the user should notneed to understand the details of the instruction pipeline that might make the sequenceillegal nor the bypass hardware that makes the sequence behave as originally expected.The agentAlu(PC) def= getmPC(Add Ri,Rj,Rk)getrj(x)getrk(y)putri(x+ y) : Done (6.18)represents the execution of the Add instruction. At time t, source registers j and k are read(by the actions getrj(x)getrk(y)) and the result is written to destination register i (by theaction putri(x+ y)).In fact, Equation 6.18 describes the same computation as the register transfer statementReg[i] Reg[j] + Reg[k]61

except that the SCCS equation speci�es that registers are accessed and the result is writtenatomically (i.e., executes in a single cycle). The agent Done is the idle agent and representstermination of the instruction (agent). The other arithmetic instructions are analogous.6.8.2 Integer Load and Store InstructionsThe following instruction sequence,Load R1, R2, #8Mov R3, R1is illegal in our processor because of the use of R1 immediately after the Load. The Loadinstruction accesses memory at time t and the result of the load is available at time t + 2.The computational behavior of the load instruction is the following RTL statement.Load Ri, Rj, Offset � Reg[i] Mem[Reg[j] + Offset]This is represented by,Load(PC) def=getmPC(Load Ri, Rj, �)getrj(B)getmB+�(V)lockregi :putri(V)releaseregi : Done (6.19)Equation 6.19 speci�es that, at time t three things happen.1. The base register j is accessed and the base address is placed in the variable B (byaction getrj(B)).2. Memory is fetched with the value placed in the variable V (with action getmB+�(V)where � is the o�set value).3. The destination register i is locked (using the action lockregi).At time t + 1, two actions occur.1. The value V is written to destination register i (with the action putri(V)).2. The destination register i is released (with the action releaseregi).In the event that an instruction attempts to read or write a locked register the processorreaches the deadlocked state 0. This is because our process that represents a register trapsany such operations. 62

The Store InstructionThe store operation e�ectively takes one cycle to execute. For example, the following codesegment is legal.Store R1, R2, #8Load R3, R2, #8The computational behavior of the store instruction is given by the followingRTL statement.Store Ri, Rj, Offset � Mem[Reg[i] + Offset] Reg[j]It is unlikely, however, that R1 has �nished being written to memory. The hardwaretakes care of the di�culties allowing the next instruction to access the memory locationjust written. Equation 6.20 represents the store instruction.Store(PC) def=getmPC(Store Ri, Rj, �)getrj(B)getri(V)putmB+�(V) : Done (6.20)The important characteristic of Equation 6.20 is that it speci�es that the Store instructione�ectively takes one cycle to execute. Equation 6.21 combines the two agents Load andStore for Equation 6.15.Load Store(PC) def= Load(PC) + Store(PC) (6.21)6.8.3 The Branch InstructionIn the following instruction sequence,Locn: ...BZ R1, LocnAdd R2, R2, #-1...the Add instruction after the branch is always executed before the jump to Locn. If thebranch is not taken then the Add instruction is skipped and the instruction below Add is63

executed. A BZ instruction may not be immediately followed by another BZ instruction.Equation 6.22 speci�es the behavior of the BZ instruction.Branch(PC) def= getmPC(BZ Ri, Locn)getri(V) :if V = 0 thenNon Branch(PC + 4) Next Instr(Locn))+ getmPC+4(BZ Ri, Locn) : 0else Instr(PC+ 8) (6.22)The BZ instruction has the e�ect that� at time t, a BZ instruction is fetched and register Ri is accessed.� at time t+1, if the value of Ri is not zero then execution continues with the instructionafter the branch delay slot.� at time t+1, if the value of Ri is zero then a non-branch instruction is executed in thebranch delay slot and execution continues with the instruction at Locn at time t + 2.� If another BZ instruction is in the delay slot then we reach the inactive agent 0, whichrepresents an error state.6.9 Interlocked Floating-Point InstructionsThe
oating-point add instruction Fadd takes six cycles to compute its result. For instruc-tions that have a large latency, it is generally unreasonable to expect the scheduler to �ndenough independent instructions to execute until the Fadd is complete. As inserting Nopinstructions would signi�cantly increase code size, therefore,
oating-point instructions aretypically interlocked.6.9.1 Floating-Point RegistersOne method of keeping instructions ordered properly is to associate a \lock" with each FP-register (as we did in the case of the integer registers). The di�erence here is that accessinga locked integer register is illegal while accessing a locked FP-register causes the processorto stall. 64

1Freg Locked
 Freg

putfr

getfr j

getfr j
,

1

lockfreg.

releasefreg.Figure 6.3: State transition graph of a
oating-point register, Freg.Our processor has a separate set of thirty two
oating-point registers that are de-�ned similarly to the integer registers, except that we add two new actions, lockfregand releasefreg. Actions putfr and getfr are the two actions that write and read a
oating-point register.Fregi(y) def= Xj2f0;1;2ggetfri(y)jlockfregi : Locked Fregi+ Xj2f1;2ggetfri(y)j : Fregi(y)+ 1 : Fregi(y)Locked Fregi def= putfri(x)releasefregi : Fregi(x)+ 1 : Locked FregiThirty-two FP-registers are constructed analogously to the integer registers.FP Registers def= 31Yj=0Fregj(y) (6.23)Figure 6.3 shows the state transition graph for a
oating-point register. For the case of theinteger registers, it was illegal to access a locked register, and trying to do so was trapped bydirectly putting the processor in the deadlocked state. But, for the
oating-point registers,there is no deadlocked state. A process (instruction) is still not able to read a locked
oating-point register, but trying to do so causes the processor to stall as the only possibletransition will be the Stall process (Equation 6.17).65

6.9.2 The Fadd instructionNow that interlocked registers are de�ned we can de�ne the behavior of the
oating pointadd instruction. The Fadd instruction must,1. access its source registers and2. lock its destination register3. compute the addition4. write the result in the destination register5. release the destination registerEquation 6.24 speci�es our processor's Fadd instruction.Float(PC) def= getmPC(Fadd, FRi, FRj, FRk)lockfregigetfrj(x)getfrk(y) :(1 :)5putfri(x+ y)releasefregi : Done (6.24)The abbreviation (1 :)n represents the n-cycle delay, n timesz }| {1 : 1 : : : : : 1, which is interpretedas n-cycles of internal computation. The processor stalls when an instruction wishes toaccess a locked FP-register. This happens because the instruction will not be able to accessthe FP-register and the only other option is to execute the agent Stall (Equation 6.15).(Remember in the de�nition of Instr(PC) in Equation 6.15 that our processor continuesexecuting instructions after the Fadd instruction has started.)6.10 Structural ConstraintsProcessors often reuse functional units. For example, a
oating-point unit may have only oneadder that is used by the addition, multiplication, and division instructions. This \failure"to fully replicate the resource for each instruction that needs it gives rise to structural hazardswhich can alter the timing characteristics of the instructions that require the resource.Moreover, an instruction may require a resource several times for various lengths of timeduring its execution making the resource constraints complex to describe.As an example, the MIPS/R4000
oating-point unit has a
oating-point adder, divider,rounder, and shifter (it also has several other functional units in the FPU such as an66

exception checker, but we omit for the sake of simplicity). The single precision divideinstruction, FDIV, requires the:�
oating-point adder and shifter on clock cycle 2� rounder and the shifter on cycle 3� shifter on cycle 4� divider on cycles 5 through 36� divider and adder on cycles 37 and 39� divider and rounder on cycles 38 and 40� adder on cycle 41� rounder on cycle 42.6.10.1 Modeling Finite ResourcesWe need a way to include resources in our model. We could leave them out | doing sowould still give us a good \approximation" of the timing behavior of our processor (thatis we could still model delayed load, branches, and latencies) but if we wish to be moreaccurate then we should include resources. Also, instruction schedulers consider resourceconstraints.To model limited resources, we introduce a generic agent Resource that models a re-source that instructions can acquire and release. When an instruction acquires a resourcethat is being used by another, the processor stalls. Equation 6.25 de�nes a generic agentResource that can be acquired (with the action get resource) and released (with the actionrelease resource). This agent will be replicated however many times is needed, once foreach resource, and suitably relabeled.Resource def= get resource : Locked Resource+ get resource � release resource : Resource+ 1 : Resource (6.25)Locked Resource def= release resource : Resource+ 1 : Locked Resource (6.26)67

Resource Locked
Resource

1

get_resource release_resource

get_resource

release_resource

1

Figure 6.4: State transition graph of a Resource in Equation 6.25.Figure 6.4 shows the transition graph for the agent Resource.Notice that the functionality of a resource is not being modeled; only an instruction'scapability to use the resource exclusively. Hence, at this level, modeling a
oating-pointadder is exactly like modeling a
oating-point multiplier. Alternatively, we could specifythe (pipelined)
oating-point unit in detail if we desired, but this would mire us in irrelevantorganizational detail.In our processor, the
oating-point unit has three resources that must be shared: anadder, multiplier, and a divider. Equation 6.27 speci�es this by replicating Resource threetimes and relabeling its actions appropriately.FPU def= Resource[�]� Resource[]� Resource[�] (6.27)where � = get resource 7! get multiplier;release resource 7! release multiplier = get resource 7! get adder;release resource 7! release adder� = get resource 7! get divider;release resource 7! release dividerWe assume that an agent acquires a resource on the �rst cycle that it needs it and releasesthe resource on the last cycle that it needs it. For example, if an instruction needs the adderfor one cycle only, then it will perform the action product get adder�release adder. If an68

instruction needs the adder for two consecutive cycles then the instruction should specifythis with the agent get adder:release adder. The instruction should not acquire andrelease the adder on each cycle as in the following.get adder � release adder : get adder � release adderBy requiring that resource requirements be speci�ed this way we are imposing a normalform on the speci�cation. However, this normal form is reasonable and we justify it bynoting that:� processor manuals indicate resource requirements in this fashion (for example see thisMIPS processor manual [56]);� the instruction scheduling problem, as presented in the literature de�nes resourcerequirements in this manner.6.10.2 Multi-cycle Floating-point InstructionsNow that there are several
oating-point instructions competing for shared resources theFadd instruction de�ned in Equation 6.24 needs to be altered. We rede�ne the agentFloat(PC) to the following.Float(PC) def= FADD(PC) + FMUL(PC) + FDIV(PC)The Fadd instruction requires the adder for two cycles after the operands are accessed.FADD(PC) def= getmPC(Fadd, FRi, FRj, FRk)lockfregigetfrj(x)getfrk(y) :get adder : (1 :)3release adder :putfri(x+ y)releasefregi : Done (6.28)The Fmul and Fdiv can now similarly de�ned. The Fmul instruction requires the adderfor one cycle, then the multiplier for two cycles, then the adder again for one cycle.FMUL(PC) def= getmPC(Fmul, FRi, FRj, FRk)lockfregigetfrj(x)getfrk(y) :get adder � release adder :get multiplier : release multiplier :get adder � release adder :putfri(x � y)releasefregi : Done (6.29)69

After its operands are accessed, the Fdiv instruction requires the adder for one cycle,the divider for eight cycles, and then the adder again for two cycles.FDIV(PC) def= getmPC(Fdiv, FRi, FRj, FRk)lockfregigetfrj(x)getfrk(y) :get adder � release adder :get divider : (1 :)6release divider :get adder : release adder :putfri(x=y)releasefregi : Done (6.30)Essentially, we are modeling a resource as a binary semaphore. This technique canbe used to handle any kind of resource that needs to be accessed exclusively (e.g., regis-ter/memory ports, busses, etc.).A processor may have more than one copy of a particular resource. For example, theremay be two independent
oating-point adders that can be used by any of the
oating-pointinstructions. In this case we duplicate the resource using the same label for each. Forexample, two adders would be speci�ed asResource[�]� Resource[�]where � = get resource 7! get adder (6.31)and when an agent wishes to acquire one of them then there are three possibilities:1. Both adders are free and one of them is non-deterministically chosen.2. If one adder is being used and the other is free, then the free adder is acquired.3. If both adders are busy then the instruction cannot continue and the pipeline stalls(as in the case for the interlocked
oating-point registers).Non-determinism is an important aspect of speci�cation. The potential non-determinismintroduced above, while not implementable at the hardware level, helps keep a descriptionfrom being over speci�ed. For example, if a processor has two identical adders, at thespeci�cation level, we may not want to dictate which of the two adders the instruction uses.6.11 A Normal FormThis chapter has demonstrated a method of specifying the timing properties of instructions.Our approach requires that instructions be speci�ed in a certain manner so we present the70

following normal form for the speci�cation. As we will see the restrictions are reasonable.6.11.1 Register LockingAn instruction that locks a register must eventually unlock that same register. That is,a process that describes an instruction that lockes a register i must execute the followingsequence: � � � �! � lockregi�! � � � releaseregi�!�0 �! � � �6.11.2 Resource RequirementsAn instruction that needs a resource will eventually release that same resource. That is, aprocess that describes an instruction that acquires a resource r must execute the followingsequence: � � � �! � getr�! � � � releaser�!�0 �! � � �Moreover, if an instruction needs resource r for one cycle then it has the sequence:� � � �! � getr�releaser�!�0 � � �6.11.3 Unde�ned Instruction SequencesTwo situations arose in our processor de�nition where instruction sequences were unde�ned;1) a branch instruction followed by another branch or 2) an instruction referencing a registerthat was currently being loaded by a load instruction. In both of these situations we trappedthe o�ending sequence by having a transition to SCCS's unde�ned state, 0. If an instructionsequence i1 � � � in is illegal then executing that sequence should cause a transition to 0. Thatis the following transition must occur:� � � i1�! � � � in�! � � � �! 0The general way of specifying an illegal sequence is to have the instructions communicatethrough an intermediate process. This was the technique we used when specifying illegalLoad - Store combinations where the intermediate process was a lockable register.6.12 SummaryIn this chapter we have presented a technique for specifying the \programmer's timingview" of RISC-style architectures. We handled architecturally de�ned delayed loads and71

branches, interlocked
oating-point instructions, and resource constraints. The techniquefor specifying resources is very general and can be used to specify a variety of constraints.For example, if we had a dual-ported register �le and if, for some reason, two ports werenot enough and could lead to a structural hazard, we could model a port as a resource.As another example, the Motorola 88000 has a structural hazard on a write-back data busin which it is possible that up to three instructions can try to use the write-back bus onthe same cycle (as explained in [2]). The hazard is resolved by giving priority to integerinstructions over
oating-point instructions. In this situation we could model the write-backbus as a resource and use our priority-sum operator, > to correctly model how the hazardis resolved.

72

Chapter 7Multiple Instruction-IssueProcessors7.1 An Integer � Float SuperscalarThis section describes a superscalar (multiple instruction-issue) version of our processorthat can issue one
oating-point and one integer instruction per cycle. If two instructionscan be issued in parallel, then we have either an integer instruction followed by a
oatingpoint instruction or a
oating-point instruction followed by an integer instruction. Thissituation is speci�ed by Equation 7.1.(Float(PC)� Alu(PC + 4))+ (Alu(PC)� Float(PC + 4)) (7.1)We can rewrite this sum as Equation 7.2.Xi;j2f0;4g(Alu(PC + i)� Float(PC + j)) (7.2)Assuming an instruction is not both an integer and
oating-point, Equation 7.2 representsa folding of Equation 7.1.Equation 7.2 is a sum of four terms,(Alu(PC + 0)� Float(PC + 0))+ (Alu(PC + 0)� Float(PC + 4))73

+ (Alu(PC + 4)� Float(PC + 0))+ (Alu(PC + 4)� Float(PC + 4)) (7.3)However, when i = j then Alu(PC+i) and Float(PC+j) refer to the same memory locationand it is impossible for a memory location to contain both an Alu instruction and a Floatinstruction. We can conclude then thatAlu(PC + i)� Float(PC + j) � 0 where i = jand only two terms remain (Equation 7.1). We use the summation notation because itenables us to succinctly specify n-way instruction parallelism.Equation 7.4 extends Equation 7.2 to continue execution at PC + 8.Do Two(PC) def=0@ Xi;j2f0;4g(Alu(PC + i)� Float(PC + j))1A Next Instr(PC + 8) (7.4)There are no data dependencies to worry about because each instruction accesses separateregister �les. That is, because processes Alu and Float use disjoint register �les, and theonly way data dependencies arise is when two or more instructions use the same register,then it follows that an integer instruction and a
oating-point instruction can not have adata dependency between them.7.1.1 Instruction IssueOur top-level instruction issue equation (Equation 6.15) must now be modi�ed to take thisnew two-issue capability into account. For reference, we restate Instr (Equation 6.15), andrename it Do One.Do One(PC) def= (Non Branch(PC) Next Instr(PC + 4))+ Branch(PC) (7.5)The processor can execute two, one, or zero (i.e., stall) instruction(s) per cycle, which wecapture by, Instr(PC) def= Do Two(PC) > Do One(PC) > Stall(PC) (7.6)Notice here the use of the priority choice operator, > (section 5.5) instead of +; wheneverit is possible to do Do Two, it is also possible to do Do One, and issuing two instructionsshould take priority over issuing one when possible. Similarly, if we can not execute anyinstruction then the processor must stall. 74

7.2 An Integer � Integer SuperscalarIn this section we specify a version of our processor that can execute two integer ALUinstructions in parallel. At �rst glance it would seem thatAlu(PC)� Alu(PC + 4) (7.7)speci�es the ability to execute two integer instructions in parallel. However, because bothinstructions use the same register �le we now have the possibility of data hazards existingbetween the two integer instructions. Hence, sometimes parallel execution is thwarted.Before we continue, we need to introduce the various types of data hazards that can arise.7.2.1 Data Dependencies (or Data Hazards)The instructions in Figure 7.1 represent all of the possible dependencies that can existbetween any two instructions1.The instructions in 7.1a can be executed in parallel because they are data independentwhile those in 7.1b cannot be executed in parallel because of the read-after-write (or RAW)hazard on R1. In 7.1c parallel execution is possible if the processor can do register renamingto eliminate the write-after-read (or WAR) hazard. However, we can specify that theinstructions must be executed in parallel without having to specify the renaming hardwareas we don't wish to overspecify. The instructions in 7.1d present a rare (but possible) write-after-write (or WAW) hazard. Here, the �nal value of R1 must be R3 + R3. Two solutionsare possible. First, since the hazard is rare, execute the instructions sequentially. Second,execute them in parallel and insure that R1 gets the result of the second instruction. Forsimplicity, we will choose the �rst option.7.2.2 Specifying Data HazardsUsing restriction, we can force Equation 7.7 to apply only to legal integer instruction se-quence of length two. If the �rst integer instruction writes register i then the second integerinstruction cannot write or read register i. For example, given two integer instructions, if the�rst instruction writes register 0 then Equation 7.8 represents the legal integer instruction1There is a confusion in terminology with regards to data hazards. Computer engineers refer to themas RAW, WAR, and WAW hazards, while compiler writers refer to them as forward, anti-, and outputdependencies respectively. Forward dependencies are sometimes referred to as true dependencies.75

Add R1, R1, R1Add R2, R3, R4(a) No dependencies Add R1, R1, R1Add R2, R1, R3(b) Read-After-Write hazardAdd R2, R1, R1Add R1, R3, R3(c) Write-After-Read hazard Add R1, R2, R3Add R1, R3, R3(d) Write-After-Write hazardFigure 7.1: Possible data dependencies in instruction sequences.sequences. Alu(PC)nnA0 � Alu(PC + 4)nnB0 (7.8)where A0 = fputr0; getr0; : : : ; getr31gB0 = fputr1; : : : ; putr31; getr1; : : : ; getr31gHere, the agent PnnS represents particle restriction on the agent P where S is a set ofparticles that P may execute [67]. In Equation 7.8 the restriction on the �rst instructionby the set A speci�es that only register zero is a possible destination register while therestriction on the second instruction by the set B speci�es that register zero cannot be asource register nor a destination register.Summing over all possible destination registers of the �rst instruction yields the desiredresult.Do Two(PC) def= 31Xi=0(Alu(PC)nnAi � Alu(PC + 4)nnBi) Next (PC + 8)where Ai = fputri; getr0 : : :getr31gBi = fgetr0 : : :getr31; putr0 : : :putr31g � fputri; getrig (7.9)Equation 7.9 represents all of the allowable integer instruction sequences of length two thatmay execute in parallel. 76

7.3 An Integer � Integer � Float SuperscalarIn this section we describe a version of our processor that can execute three instructions inparallel, two of which can be integer instructions and the other of which may be a
oating-point instruction. Now that we have already speci�ed two dual-issue versions (sections 7.2and 7.1) the three issue version follows nicely.In this case, however, the easiest way to write the equation is as a sum of three terms,one for each possible position of the
oating-point instruction (ignoring data hazards, forthe time being). (Alu(PC)�Alu(PC + 4)� Float(PC + 8))+ (Alu(PC)� Float(PC + 4)�Alu(PC + 8))+ (Float(PC)�Alu(PC + 4)�Alu(PC + 8)) (7.10)Adding data hazard constraints to Equation 7.10 as in Equation 7.9 gives us Equa-tion 7.11.Do Three(PC) def=31Xi=00BBB@ Alu(PC)nnAi � Alu(PC + 4)nnBi � Float(PC + 8)+ Alu(PC)nnAi � Float(PC + 4) � Alu(PC + 8)nnBi+ Float(PC) � Alu(PC + 4)nnAi � Alu(PC + 8)nnBi 1CCCANext Instr(PC + 12)where Ai = fputri; getr0 : : :getr31gBi = fgetr0 : : :getr31; putr0 : : :putr31g � fputri; getrig (7.11)The top-level issue equation now allows executing three, two, one, or zero instructionseach cycle.Instr(PC) def= Do Three(PC) > Do Two(PC) > Do One(PC) > Stall(PC) (7.12)As an example, the instruction sequence in Figure 7.2a can be executed in parallelaccording to Equation 7.11 while the sequence in Figure 7.2b cannot because of the hazard.The situation is much the same for specifying four-issue, �ve-issue, etc.77

Add R1, R1, R1Add R2, R3, R4Fadd FR1, FR2, FR3(a) No dependencies Add R1, R1, R1Fadd FR1, FR2, FR3Add R2, R1, R3(b) RAW hazardFigure 7.2: Possible three-issue instruction sequences.
78

Chapter 8SimulationIn this section we show how our SCCS speci�cation of our example processor is simulated.The simulation occurs within the framework of the Concurrency Workbench [25] whichallows us to experiment with, simulate, and analyze SCCS speci�cations.8.1 The Reactive ViewA reactive system is one that interacts with its environment. This is opposed to the func-tional view in which a system is viewed extensionally as a mapping of initial inputs to�nal outputs. A common way to think of a reactive system is to view it as a black boxwith buttons, where the buttons represent the actions that the user (or environment) canperform.The reactive view of our SCCS processor description is one where instructions representthe buttons. Initially, at time t0, any button can be pressed (i.e., any instruction can beexecuted). At time t1 some buttons can be pressed and some cannot. The instructionsthat can't be executed (the button representing the instruction can't be pressed) must be\waiting" for something from the instruction that was initiated at time t0.For example, if the Fadd FR0, FR1, FR2 button is pressed at time t0, then at time t1,any button that uses FR0 cannot be pressed.79

t: Instr(PC)� Registers�Memory� FP Registers[Add R2, R2, R3]hhh[getr2(x)][getr3(y)][putr2(x+ y)]iiit + 1: Instr(PC + 4)� Registers�Memory� FP Registers[Mov R2, R1]hhh[getr1(x)][putr2(x)]iiit + 2: Instr(PC + 8)� Registers�Memory� FP RegistersFigure 8.1: Derivation of program executing on the processor.8.2 SimulationA simulation of our processor speci�cation amounts to loading a program into memory(with putm actions) and then running the agent that represents the processor. That is, wecan observe the behavior of the program by calculating the transition graph of an agent.Recall from Section 5.6 that the transition graph of an agent P consists of transitionsof the form A ��! B.� A represents the state of the system, at time t.� � is the action performed (transition).� B is the new state at time t + 1.Because our processor represents such a large system, it is not feasible to write down theentire graph so we will abbreviate by only showing pertinent states.In our transition graphs, each node is surrounded by a box and represents the currentstate of the processor at a particular moment in time. Each edge is labeled with the set ofactions that execute on that transition (e.g., instructions, getr, putr, lockreg, etc.). For80

readability, individual particles are enclosed with \[]" (e.g., [getr1(x)][putr2(x)]). Also,the particles that appear between the hhh � � � iii do not really appear on the transition becauseeach particle has synchronized with either a register or a resource. We label the transitionswith these particles anyway just to show all of the internal details. To simplify the graphmany actions and processes have been omitted. At the nodes, unchanged register andmemory cells have been replaced by an ellipsis.8.3 A Simple ExampleFigure 8.1 shows the transition graph of the following program.Add R2, R2, R3Mov R2, R1We assume that the program is loaded into memory (with putm actions) starting at PC.In the graph in Figure 8.1:� Time t is the initial state of the processor.� Time t + 1 is the state of the processor after executing the Add instruction.� Time t + 2 is the �nal state of the processor after the Mov instruction is executed.8.4 Example: An Illegal Instruction SequenceExecuting an illegal instruction sequence on our speci�cation should lead to the inactiveagent 0. Figure 8.2 traces the following illegal instruction sequence.Load R1, R2, #8Mov R3, R1On the second transition the particle getr1(x) causes the agent Locked Reg1 to change tothe agent 0 (see Equation 6.10).8.5 Example: A Floating-Point Vector SumFor a more complete example, we trace our processor's behavior on a program thatcalculates the vector sum of a
oating-point array (Figure 8.3). For this example, we81

t: Instr(PC)� Registers�Memory � FP Registers[Load R1, R2, #8]hhh[getr2(Base)][getmBase+8(V)][lockreg1]iiit+ 1: Instr(PC + 4)� (putr1(V)releasereg1 : Done)� Locked Reg1(y)� � � �[Mov R3, R1]hhh[getr1(x)][putr3(x)][putr1(V)][releasereg1]iiit+ 2: 0Figure 8.2: Derivation of illegal program executing.LoadI R0, #0LoadI R1, #0LoadI R2, #VecMovItoFP FR0, R0Loop: Load.f FR1, R2, #0AddI R2, R2, #4AddI R1, R1, #1Fadd FR0, FR0, FR1CmpI R0, R1, #10BZ R0, LoopNop Figure 8.3: Program that calculates a vector sum.82

t: Instr(PC)� � � �[LoadI R0, #0]hhh[lockreg0]iiit + 1: Instr(PC + 4)� putr0(0)releasereg0 : Done� Locked Reg0(y)� � � �[LoadI R1, #0]hhh[lockreg1][putr0(0)][releasereg0]iiit + 2: Instr(PC + 8)� putr1(0)releasereg1 : Done� Locked Reg1 � � � �[LoadI R2, #Vec]hhh[lockreg2][putr1(0)][releasereg1]iiit + 3: Instr(PC + 12)� Locked Reg2(y)� putr2(#Vec)releasereg2 : Done� � � �[MovItoFP FR0, R0]hhh[getr0(x)][putfr0(x)][putr2(#Vec)][releasereg2]iiit + 4: Instr(PC + 16)� � � �[Load.f FR1, R2 #0]hhh[lockfreg1][getr2(B)][getmB(V)]iiit + 5: Instr(PC + 24)� putfr1(V)releasefreg1 � Locked FP Reg1 � � � �[AddI R2, R2, #4]hhh[putfr1(V)][releasefreg1][getr2(x)][putr2(x+ 4)]iiit + 6: Alu(PC + 28)� Float(PC + 32) � � �[AddI R1, R1, #1]hhh[getr1(x)][putr1(x+ 1)]iii[Fadd FR0, FR0, FR1]hhh[gefr0(x)] [gefr1(y)][lockfreg0]iiit + 7: Instr(PC + 36)� (1 : 1 : 1 : 1 : 1 : putfr0releasefreg0 : Done)� Locked FP Reg0 � � � �...Figure 8.4: Transition graph of vector sum from Figure 8.3.83

use the superscalar version of our processor de�ned in Section 7.1. Note that there areinstructions in Figure 8.3 which we have not speci�ed. LoadI, AddI, and CmpI are load,add, and compare instructions where the third operand is an immediate constant. LoadI'stiming properties are the same as Load, and AddI and CmpI take one cycle to execute (asin Add). MovItoFP moves data from an integer register to a FP-register and takes one cycleto execute. Load.f is a delayed
oating-point load instruction.Figure 8.4 shows a partial transition graph of the vector sum program up to the �rstexecution of the Fadd instruction. We can see from the transition graph that,� at least one new instruction is issued every cycle. That is, on every transition thereis an action that represents an instruction.� at time t + 1, t + 2, t + 3, and t + 5 we can observe the e�ect of the delayed loadinstructions by observing a left-over agent that writes and releases the destinationregister. At these nodes we can also see that the destination register of each load isin its locked state Locked Reg.� From time t+6 and t+7 we can observe that two instructions are executing in parallel,one integer and one
oating-point.In conclusion, since the operational semantics of SCCS maps SCCS terms to abstractmachines (i.e., labeled transition systems) we have a direct way of examining the behaviorof an SCCS speci�cation.
84

Chapter 9Instruction SchedulingThis chapter gives a brief overview and formalization of instruction scheduling. As anexample, we present an algorithm for the most common form of instruction scheduling, ListScheduling. We need a formal de�nition of the instruction scheduling problem so that wecan deduce what information an instruction scheduler requires. Knowing what to look forthen leads us into extracting this information from our speci�cation.Instruction scheduling is primarily carried out on RISC/Superscalar style architecturesthat have the following characteristics:� Load/Store architecture. Only two instructions, load and store, are allowed to accessmemory. All other instructions operate on registers.� Instructions are �xed format. That is, every instruction is encoded in the same numberof bits. A typical RISC has 32-bit instruction formats.� A new instruction can, potentially, be issued every cycle.9.1 Instruction SchedulingGiven a sequence of instructions, S, instruction scheduling is the problem of reordering Sinto S0 such that S0 has two properties:1. the semantics of the original program S is unaltered, and2. the time to execute S 0 is minimal with respect to all permutations of S that preservethe semantics of S. 85

The instruction scheduling problem is NP-complete in general [59, 38].Before we proceed we need a de�nition.De�nition 2 The length of an instruction i is the minimum number of cycles needed toexecute i.In our case, length(i), is the number of cycles needed to execute i in the absence of allhazards. Intuitively, one way to compute length(i) is to execute i in isolation.9.1.1 ConstraintsWe introduce a machine model that has two types of scheduling constraints|precedenceand resource.Precedence ConstraintsA precedence constraint (or data dependency) is a requirement that a particular instructioni execute before another instruction j due to a data dependency between i and j. Asmentioned in Section 7.2.1, data dependencies are of three types | true or forward, anti-,and output | which correspond to RAW, WAR, and WAW hazards.The objects to be scheduled are individual instructions of a program. If I is the set ofinstructions in a program, then the precedence constraints induce a partial order, Prec, onP such that, Prec � I � I . If there is a precedence constraint between two instructions, iand j, such that i must execute before j then (i; j) 2 Prec.The partial order, Prec, is usually represented graphically by a directed acyclic graph(DAG) G. G is composed of a set of vertices V and a set of edges E, G = (V;E). Eachvertex of the graph is an instruction, and if (i; j) 2 Prec then there is a directed edge, (i; j),from vertex i to vertex j. As an example, Figure 9.1 shows the dependency graph for theloop body (a basic block) of the vector sum program in Figure 8.3.If instruction i must execute before j we do not usually require that i run to completionbefore j can begin. Hence, we augment the DAG by labeling each edge, e, with a minimallatency (delay), d(e). This latency represents the least amount of time, in cycles, that mustpass after i begins executing before j can begin.De�nition 3 The latency between two instruction i and j is the least number of cyclesthat must pass between initiating i and then initiating j.86

Load.f FR1, R2, #0

Fadd FR0, FR0, FR1 AddI R2, R2, #4

V3

V4 V5

AddI R1, R1, #1

V1

CmpI R0, R1, #10

V2Figure 9.1: Dependency graph of vector sum program from Figure 8.3.Resource ConstraintsAn architecture consists of a multiset1, R, of resources. On each clock cycle that it isexecuting, each instruction uses a subset of resources from R, intuitively, the resourcesbeing used by the instruction at that time. If an instruction i executes for length(i) cyclesthen the resource usage function for instruction i, �i, maps clock cycles to subsets of R.That is, �i : t ! Pow(R) s.t. t 2 ! where ! represents the set of natural numbers. Whent > length(i) then �i(t) = ;. For example, �Add(2) represents the multiset of resources usedon clock cycle 2 by the Add instruction.The scheduling constraint on resources then is that, at any particular time t, the re-sources needed by the instructions executing at time t do not exceed the available resources.As an example, recall the description of the MIPS/R4000
oating-point unit from Sec-tion 6.10. The resource set R isfdivider; shifter; adder; rounder; mult S1; mult S2; unpacker; exception gand the partial resource usage function for the FDIV instruction is given in Figure 9.2.9.1.2 Instruction Scheduling AlgorithmsWe now de�ne what an instruction schedule is and formalize the instruction schedulingproblem.1Amultiset is a set that allows duplicate elements. For example, there might be two or more
oating-pointadders. Multisets are also known as \bags". 87

�FDIV(2) = fadder; shifterg�FDIV(3) = frounder; shifterg�FDIV(4) = fshifterg�FDIV(5) = fdividerg...Figure 9.2: Part of resource usage function for MIPS/R4000 FDIV instruction.De�nition 4 An instruction schedule, �, for a program DAG is an injective function thatassigns each node v 2 V an integer that represents its position in the list of instructions(� : V ! !). That is, � is a topological ordering to G.For example, consider the DAG from Figure 9.1. One possible instruction schedulewould be: �(V3) = 1; �(V1) = 2; �(V2) = 3; �(V5) = 4; �(V4) = 5which we could abbreviate as V3;V1;V2;V5;V4. Another possible schedule is V1;V2;V3;V4;V5.De�nition 5 The instruction scheduling problem is to �nd the shortest schedule, �, suchthat both precedence (Equation 9.1) and resource (Equation 9.2) constraints are met2.8e = (u; v) 2 E; (�(v)� �(u)) � d(e) (9.1)8t 2 !; [v2V �v(t� �(v))� R (9.2)Intuitively, if Equation 9.1 is true then distance between any two dependent instructionsis greater than or equal to the required minimum latency. If Equation 9.2 is true then theschedule � has not overcommitted the available resources. A schedule is not overcommittedif, at any time t, the union of all the resource requirements of all the instructions stillexecuting at time t (those that started at t � 1; t � 2; : : :) is a subset of R, the availableresources of the machine.2In Equation 9.2, [and � refer to multiset union and subset.88

The above characterization of instruction scheduling is the basis for all instructionscheduling methods, including list scheduling, trace scheduling, and software pipelining [73,14, 15, 57, 58, 82, 7, 55, 35].At this point we have de�ned the instruction scheduling problem and we know whatinformation we need to do instruction scheduling. To make the de�nition more concrete wediscuss the most common instruction scheduling algorithm, List Scheduling.List SchedulingTo see what information is needed to parameterize instruction scheduling, we now describeList Scheduling, which we have taken from Lam's thesis [58].The main idea of list scheduling is straightforward. There is a list of \ready to execute"instructions called the ready list which is, initially, the root nodes of V , that is, the nodesthat have no incoming edges. Instructions are selected from the ready list, using some typeof priority scheme, until the ready list is empty. After each instruction is scheduled, newnodes are added to the ready list. Altering the priority heuristic produces many di�erenttypes of scheduling algorithms. Figure 9.3 gives the list scheduling algorithm.We need not go into the details of function List Schedule but only note that it is afunction of three things:� the program DAG G� the table of latencies, d, used in Satisfy Precedence Constraints� the resource usage function � used in Satisfy Resource RequirementsScheduling algorithms work on a section of straight-line code, called a basic block. Tracescheduling and software pipelining are two techniques that schedule instructions beyondbasic blocks. Without going into the details, we mention that both trace scheduling andsoftware pipelining use list scheduling as a basis.Figure 9.4 depicts a canonical view of the phases of compilation and shows where thisresearch �ts in (highlighted in the dotted box). In the �gure, each bold-faced node notenclosed in a box is \data" for some portion of the compilation system. In our case, thetiming speci�cation is input to a program that generates parameters for a generic instructionscheduler. 89

function List Schedule(G as (V;E); d; �)let Ready = root nodes of V andScheduled = ;in while Ready 6= ; dov := highest priority node in Ready;Lb := Satisfy Precedence Constraints(v;Scheduled; �; d);�(v) := Satisfy Resource Constraints(v; Scheduled; �; �;Lb);Scheduled := Scheduled [fvg;Ready := Ready�fvg [fu j u 62 Scheduled ^ 8(w; u) 2 E;w 2 Scheduled g;end whilereturn(�);end letend List Schedulefunction Satisfy Precedence Constraints(v;Scheduled; �; d)return(maxu2Scheduled(�(u) + d(u; v)))function Satisfy Resource Constraints(v; Scheduled; �; �;Lb)for t = Lb to 1 doif 80 � j � length(v):((Su2Scheduled�u(i+ j � �(u)))[�v(j)) � R thenreturn(t)Figure 9.3: Generic list scheduling algorithm.90

Machine
Description

Source
Program

Front
End

Code
Generator

Intermediate
Representation

Scheduler

Timing
Spec

Tables

Table
Generator

Target Code

Target CodeFigure 9.4: The structure of a typical compiler.91

Chapter 10Deriving Instruction SchedulingParametersThis chapter describes how instruction scheduling information is derived from a timingspeci�cation, written in SCCS. The general idea is that the parameters d and � from theprevious chapter are derivable, automatically, from the speci�cation yielding an instructionscheduler for the processor.10.1 PreliminariesRecall, from chapter 9, that the length of an instruction i is the minimum number of cyclesrequired to execute i. Intuitively, one way to compute length(i) is to execute i in isolation.In SCCS this amounts running the SCCS agent that describes i and counting cycles. Un-fortunately, in general, SCCS agents do not have to terminate. For example, our SCCSprocessor description may not terminate. However, termination is a reasonable assumptionto make about our SCCS agents that describe individual machine instructions. Moreover,so we can \observe" this termination, each instruction will indicate its termination with aspecial action, done.We will require that each instruction, of our SCCS description, indicate its terminationusing the action done. To do this we rede�ne the agent Done to the following:Done def= done : 1The action done is a termination signal | no other agent should do a done and synchronize92

with done.In addition, we borrow the notion of a well-terminating agent from Milner [68].De�nition 6 An agent P is well-terminating if,1. for every P ��! P 0 � 6= done.2. if P 0 done�! P 0 then P 0 � Done.The �rst part of the de�nition, (1), says the action done is reserved to indicate terminationand that no other agent can execute the action done and synchronize with done. Thesecond part of the de�nition says, that, if any agent does perform a done, it is the lastaction it performs before changing to the idle agent 1. The de�nition does not require thatP terminate, only that, if it does terminate, then it indicates its termination with the actiondone.Now we can precisely compute length(i) inductively on the structure of SCCS terms forany agent that is well-terminating.length(0) = 0length(Done) = 0length(� : P) = 1 + length(P) � 6= donelength(P + Q) = max(length(P); length(Q))length(P � Q) = max(length(P); length(Q))length(P " S) = length(P)length(P [f]) = length(P)length(A def= P) = length(P)For example, length(a:b:c:0+ d : 0) = 3.10.2 Derivation of Scheduling ParametersGiven the de�nition of the instruction scheduling problem from chapter 9, there are twotasks: 93

� Given a program dependence graph G = (V;E) label each edge e 2 E with d(e), theminimal latency.� For each instruction, i, construct the resource usage function, �i.We �rst present an algorithm for deriving the delay function d from our processorspeci�cation. Essentially, the delay for an instruction pair (i; j) is calculated by initiating iand then observing how long until j can begin. Most architectures resolve WAR and WAWhazards and schedulers only have to deal with RAW hazards. We will be more general andcalculate the delay for every instruction pair (i; j) in the presence of a hazard h, whereh 2 fRAW; WAR; WAWg. Now that we have a table of latencies we can correctly label a programDAG.10.2.1 The AlgorithmThe algorithm to calculate instruction latencies from the SCCS processor description isgiven in Figure 10.1. Construct Latency Function works by executing an instruction i andcounting how long until a subsequent instruction j can begin after i starts. It does this forall possible pairs of opcodes for each data hazard. Recall that the instruction latency is theamount of time between initiating i and initiating j (de�nition 3). Notice, however, that itis still possible that after j begins it may stall for some other reason (which will most likelybe a resource hazard).Equivalence With Respect to HazardsIn order to decrease the number of instruction pairs that we need to calculate latencies forwe do not generate all possible pairs of instructions but all possible pairs modulo the threetypes of hazards. That is, we consider two instruction pairs to have the same latency if theyare the equivalent up to hazards. For example, we expect that the two instruction pairsbelow have the same latency even though they use di�erent integer registers.Add R1, R1, R1Mul R2, R1, R1 Add R2, R1, R1Mul R3, R2, R2Both instruction pairs have a RAW hazard; the pair on the left on R1 and the pair on theright on R2. The assumption is that the register �le has a reasonable amount of orthogonalityas we would expect that the time it takes to access register i is equal to the time it takesto access register j. If the architecture does not possess this orthogonality then we could94

inspect all register pairs for all combinations of registers. But the search space is reducedconsiderably if we treat all registers equivalently.To see this, if an architecture has ten 3-operand instructions and 32 registers, the numberof possible instruction pairs is (10 � 323)2 = 1; 073; 217; 600. Examining instruction pairs upto hazards equivalence only requires that we check 3 � 102 = 300 pairs.De�nition 7 Let I be the set of instructions, let function Opcode(i 2 I) return the opcodeof instruction i, and function Hazard(i; j) return the hazard occurring between instruction ifollowed by instruction j. Two instruction pairs (i1; i2) and (j1; j2) are said to be equivalentup to hazard, written (i1; i2) haz= (j1; j2)if� Opcode(i1) = Opcode(j1) and Opcode(i2) = Opcode(j2)� Hazard(i1; i2) = Hazard(j1; j2)Theorem 10.1 haz= is an equivalence relation.Proof: We need to show that haz= is re
exive, symmetric, and transitive.(re
exive) Clearly (i1; i2) haz= (i1; i2) as the Opcode(i1) = Opcode(i1) and Hazard(i1) =Hazard(i1).(symmetric) Show that if (i1; i2) haz= (j1; j2) then (j1; j2) haz= (i1; i2). If (i1; i2) haz=(j1; j2) then Opcode(i1) = Opcode(j1) and Hazard(i1) = Hazard(j1), which is all weneed to show.(transitive) Show that if (i1; i2) haz= (j1; j2) and (j1; j2) haz= (k1; k2) then (i1; i2) haz=(k1; k2). By the antecedent of the \if" Opcode(i1) = Opcode(j1) and Opcode(j1) =Opcode(k1). Then it follows that Opcode(i1) = Opcode(k1). Also by the antecedentof the \if" Hazard(i1) = Hazard(j1) and Hazard(j1) = Hazard(k1). Then it follows thatHazard(i1) = Hazard(k1). This is all we need to show.2 95

Algorithm Construct Latency FunctionAlgorithm Construct Latency Function requires, as input, the labeled transition systemhP ; �0;Act;�!i (see Section 5.6) of the processor speci�cation. Consider an instructionpair (i; j) having hazard h between them. Essentially, we initiate instruction i and executeNop instructions until we reach a state �00 such that the transition �00 j�! �000 is possible.That is, if we execute i at time t then we subsequently try to execute j at time t + 1, andif we cannot then we try executing j at time t + 2 and so on. Eventually j will be able toexecute at some future time t + n and we can conclude that the latency, d(i; h; j), is n.If we let (��!)� mean zero or more consecutive occurrences of the action � then we canvisualize the latency between two instructions, i and j, in terms of the transition system:�rst cycle of iz }| {�0 i�! �0 (1�!)| {z }latency� �rst cycle of jz }| {�00 j�! �000 �! � � � (10.1)We now prove two theorems about algorithm Construct Latency Function. For all ofthe remaining theorems we assume that the processor is speci�ed in the normal form laidout at the end of chapter 6 | that when an instruction acquires a register or resource iteventually releases the same register or resource.Lemma 10.1 Algorithm Construct Latency Function terminates.Proof: Clearly, the outer for-loop terminates as the set, Opcodes � Hazards � Opcodes is�nite.Consider an arbitrary instruction pair (i0; j 0). The only way for the while-loop to notterminate is if instruction j0 is blocked forever. That is, no �0 exists for which �0 j06�!. Sincethe only thing that can block j0 is a locked register or resource and, by our assumption,every register/resource must eventually be unlocked then eventually �0 j0�! �00 and thewhile-loop will terminate.2 In the worst case, j 0 can begin after i0 terminates. Since i0 has terminated i0 musthave unlocked all of its registers/resources and the transition �0 j0�! �00 is possible and thewhile-loop terminates. In this case,d(i; h; j) = length(i)However, we would like to show a stronger result; that d(i; h; j) is the minimal latency.96

function Construct Latency Function(hP ; �0;Act;�!i)let Opcodes = fAdd, Fadd, BZ, : : :g andHazards = fRAW, WAR, WAWgin for each (i; h; j) 2 Opcodes � Hazards� Opcodes do1) Construct an instruction pair, (i0; j 0) s.t. i0 uses opcode i,j 0 uses opcode j, and hazard h exists from i0 to j 0.2) let �0 be state s.t. �0 i0�! �03) delay := 1;while there is no transition �0 j0�! �00 do1) delay := delay + 12) let �next be state s.t. �0 1�! �next3) �0 := �nextend whiled(i; h; j) = delayend forend letreturn(d)end Construct Latency FunctionFigure 10.1: Algorithm that derives instruction latencies.97

Theorem 10.2 Algorithm Construct Latency Function constructs d, the minimal latencyfunction.Proof: We need to show that an arbitrary triple (i; h; j) 2 Opcodes � Hazards � Opcodeshas a minimal latency, d(i; h; j). Let the instruction pair (i0; j 0) be the pair constructed inthe �rst statement of the for-loop. Instruction i0 can start executing (i.e., statement 2 ofthe for-loop is valid) since no other instructions are currently executing that may block i0.There are two cases to consider: 1) instruction i0 is not blocking j0 and 2) instruction i0 isblocking j0.case 1: i0 is not blocking j 0. In this case, the while-loop is never entered as the onlytransitions possible are �0 i0�! �0 j0�! �00and d(i; h; j) = 1.case 2: i0 is blocking j 0. We only need to show that j 0 starts as early as possible. That is,that the latency is not too large. If � i0�! at time t then we try to execute j 0 at timet+ 1. If �0 j06�! then we issue the idle action and reach a state �0 and try to execute j 0again. Eventually, �0 j0�! �00 at time n because, by the assumption that i0 is in normalform, it will eventually release all of its registers/resources that j0 depends on.The second case of the proof essentially says that, if i0 started execution at time t, theni0 will eventually unlock register r at some time t+ n (by the assumption that instructioni0 is in normal form). The latency is then n + 1. If the current cycle of i0 is n (i.e., timet+n) then the variable delay = n. Now, �0 j06�! and we enter the body of the while loop and:1. delay is set to n+ 1;2. the algorithm issues the idle action 1 (i.e., the transition �0 1�! �00 is taken). Butnow, on this transition i0 unlocks r (because this is cycle n) and, therefore, in state�00 (time t+ n+ 1), r is unlocked and i0 is no longer blocking j0.The algorithm tries to execute the loop body again but the transition �0 j0�! �00 is possibleand the loop terminates with delay = n+ 1.2 Notice that the latency between two instructions, i0 and j 0, that su�er a data hazardmay be equal to the length of i0. In the second case, it is possible that i0 may lock a resource98

causing j 0 to stall after j0 has begun executing. Here, j 0 has already started, but that is allthat is needed to calculate the latency since the latency represents the least amount of time,in cycles, that must pass after i0 begins executing before j 0 can begin. The resource vectorsof the instructions will yield information allowing the scheduler to optimize for resourcecon
icts.Theorem 10.3 The time complexity of Construct Latency Function is O(mn2) where mis length of the longest instruction and n is the number of opcodes for the architecture.Proof: The for-loop in algorithm iterates 3n2 times, which isO(n2) (where 3n2 = jOpcodes�Hazards � Opcodesj). Since instructions terminate, the while-loop iterates, at most, m =maxi2Opcodes length(i) times, which is O(m). Hence, algorithm Construct Latency Functionis O(mn2).210.3 Determining Illegal Instruction SequencesWe need to be able to determine which instruction sequences are illegal (e.g., incorrectlyusing the load or branch delay slots). If an illegal instruction sequence is executed then oursimulated processor deadlocks (recall Figure 8.2). In our example microprocessor, referringto a register being loaded while it is locked (Equation 6.10) or executing a branch instructionin the branch delay slot (Equation 6.22) constitute illegal sequences. We would expect theseto be the only situations where illegal combinations of instructions arise, but there couldbe others, so we must check.10.3.1 A Modal Logic for SCCSAt the expense of some preliminary discussion we will make our algorithms more clear andconcise by employing a modal logic de�ned in terms of labeled transition systems. Thelogic lets us describe properties in terms of a logical formula, we may then check whetherthe transition system (process) satis�es this logic formula [93]. We introduce the logicinformally through an example. The following grammar generates the formulae of the logicwhere K 2 Act.A ::= true j false j A1 ^ A2 j A1 _ A2 j :A j [K]A j hKiA j �x:AThe logic is essentially the propositional calculus (boolean algebra) with two additionalmodal operators, [K] and hKi. ([K] and hKi represent \necessity" and \possibility" from99

classical modal logic, usually denoted 2 and 3.) The calculus also includes the operator�x:A which allows us to write recursive logic equations.If K is a set of actions then a process P satis�es [K]A, written P j= [K]A i� P can doevery action in K and subsequently satisfy A. hKi is a dual of [K] and P j= hKiA i� aftersome action in K, P j= A. Every process P has the property true. That is,8P 2 P :P j= trueand no agent has the property false:8P 2 P :P 6j= false:As an example, consider a process V that represents a vending machine that can acceptone quarter or a half dollar coin and yields a small (1 quarter) or large (half dollar) candy(this example is borrowed from [93]). The actions 1q and hd represent inserting a quarteror a half dollar. V def= hd : big : collect : V + 1q : little : collect : VHere, V j= h1qitrue, that is V can perform the action 1q (V can accept a quarter). Acandy cannot be retrieved before a quarter is inserted. That is, V j= [big,little]false.Some more properties include:� V j= [hd]([little]false ^ hbigitrue): after a half dollar is inserted we cannot get alittle candy but we can get a big one.� V j= [1q,hd][1q,hd]false: after one coin is inserted no more coins can be inserted.� V j= [1q,hd][big,little]hcollectitrue: after a coin is inserted and a candy isreturned we can collect it.We can express immediate deadlock in the logic with the formulaDeadlock def= [�]false:Here, \|" is a wild card that represents the entire action set. If P satis�esDeadlock thenP can't do any action. The process 0 possesses no actions and represents the deadlockedagent, consequently, 0 j= Deadlock. 100

We can also encode the temporal logic operator eventually into the logic1. Here, P j=eventually(A) when P eventually evolves to a process P 0 that satis�es A. That is,P �! � � � �! P 0 ^ P 0 j= AP j= eventually(Deadlock) if the process P eventually deadlocks (as opposed to immedi-ately deadlocks).10.3.2 Using the logic in a processorWe �rst consider illegal instruction pairs. Essentially, we detect these by executing allinstruction pairs and examining which cause the processor to deadlock. If CPU is ourSCCS process that represents our microprocessor thenCPU j= [Load R1, (R2)][Add R3,R1,R1]eventually(Deadlock)means that CPU deadlocks when this particular Load instruction followed by the Add in-struction is executed. Hence, this instruction sequence is illegal. Our intuition suggests that,for our example microprocessor that we have been studying, any instruction pair where the�rst instruction is a Load and the second instruction uses the register being loaded is illegal.Another illegal instruction pair is a BZ instruction followed by a BZ instruction. So weexpect that CPU j= [BZ Ri, Locn1][BZ Rj, Locn2]eventually(Deadlock):AlgorithmDetect Illegal Instruction Pairs (Figure 10.2) examines illegal instruction pairs.When the algorithm detects an illegal pair (i; h; j) it records the error value ? in the tableentry for that pair. That is, d(i; h; j) =?.It is possible to extend this method to all illegal instruction sequences of length n. Forexample, we could check to see if, for an instruction sequence i1; i2; � � � in is legal with:CPU j= [i1] � � � [in]eventually(Deadlock)but this could lead to combinatorial problems. Fortunately, n is usually quite small.1Encoding the operator eventually requires using the least �xpoint operator, �, which represents a certainsolution to recursive equations written in the logic (e.g., an equation such as Z def= h�iZ). Speci�callyfrom [98] we have, eventually(B) def= �X:(B _ (h�itrue ^ [�]X))101

function Detect Illegal Instruction Pairs(hP ; �0;Act;�!i; d)let Opcodes = fAdd, Fadd, BZ, : : :g andHazards = fRAW, WAR, WAW, NoHazardgin for each (i; h; j) 2 Opcodes � Hazards� Opcodes do1) Construct an instruction pair, (i0; j 0) s.t. i0 uses opcode i,j 0 uses opcode j, and hazard h exists from i0 to j 0.2) if �!j= [i0][j 0]eventually(Deadlock) thend(i; h; j) =?end forend letreturn(d)end Detect Illegal Instruction PairsFigure 10.2: Algorithm to detect illegal instruction pairs.
102

Theorem 10.4 Algorithm Detect Illegal Instruction Pairs correctly identi�es illegal in-struction pairs.Proof: By the assumption that the speci�cation is in the normal form laid out at the endof chapter 6 and the correctness of the satisfaction relation j=. The correctness of j= iswell-known [94] and is computable for �nite-state systems.2The only interesting part of algorithm Detect Illegal Instruction Pairs is the second state-ment of the for-loop, checking the satisfaction relation, j=. Here we have used the modallogic to do all of the transition checking and rely on the correct implementation of the logic.10.4 Determining Possible Multiple-Issue InstructionsWe can also identify which instructions can be issued in parallel using the modal logic. Aninstruction is an action in SCCS, and two instructions, i and j, executing in parallel, isthe product of these actions, i � j. So if i and j can execute in parallel then the transition�0 i�j�! �00 is possible (Figure 8.4 shows this case).In terms of the logic then, we expect that CPU j= hi � jitrue if i and j can execute inparallel. For example, if our processor can execute an integer instruction in parallel with a
oating-point instruction thenCPU j= hFadd FR1, FR2, FR3 � Mov R1,R2itrue:In this situation we consider the latency between the two instructions to be zero. That is,d(i; h; j) = 0.AlgorithmDetect Multiple Issue Pairs (Figure 10.3) only examines instruction pairs. Asin the case for illegal instruction sequences, we can extend this method to all instructionsequences of length n but, again, this leads to combinatorial problems. Fortunately, nis usually quite small and there is some evidence that there is a small lower bound (lessthan 10) on the amount of available instruction-level-parallelism [86, 97]. For all currentsuperscalar architectures, n is less than �ve. The IBM RS/6000, which has the largestdegree of parallelism, is capable of issuing four instructions/cycle.Theorem 10.5 AlgorithmDetect Multiple Issue Pairs correctly identi�es instruction pairsthat can be issued simultaneously.Proof: By the correctness of j= [94].2 103

function Detect Multiple Issue Pairs(hP ; �0;Act;�!i; d)let Opcodes = fAdd, Fadd, BZ, : : :g andHazards = fRAW, WAR, WAW, NoHazardgin for each (i; h; j) 2 Opcodes � Hazards� Opcodes do1) Construct an instruction pair, (i0; j 0) s.t. i0 uses opcode i,j 0 uses opcode j, and hazard h exists from i0 to j 0.2) if �!j= hi0 � j 0itrue thend(i0; h; j 0) = 0end forend letreturn(d)end Detect Multiple Issue PairsFigure 10.3: Algorithm to detect multiple instruction issue pairs.
104

As in the case for checking illegal instruction sequences, the only interesting part of al-gorithm Detect Multiple Issue Pairs is the second statement of the for-loop, checking thesatisfaction relation, j=. Again we have used the modal logic to do all of the transitionchecking and rely on the correct implementation of the logic.10.5 Computing the Resource Usage FunctionsIn this section we will compute the resource usage function, �i, for each instruction i of theSCCS processor speci�cation. First, some de�nitions.10.5.1 Particulate Actions and Agent SortsRecall that every action, �, is uniquely expressible as a product of powers of particulateactions, that is, � = �n11 �n22 � � ��nkk , where each �i is either a or a. We denote the particlesof an action � as Part(�), where Part(�) = f�1; : : : ; �kg. We need to categorize the processby the actions that they may eventually execute. This categorization is called a sort and islike a \type" in a programming language.De�nition 8 The action sort of an agent P , denoted Sort(P), is the set of actions that Pexecutes s.t. P executes action � implies � 2 Sort(P).The converse of the implication does not have to hold so Sort(P) can be too big. Thatis, if Sort(P) = S and S � T then Sort(P) = T .De�nition 9 The particle sort of P , denoted PartSort(P), is the set of particles of Sort(P)s.t. PartSort(P) = fPart(�) j � 2 Sort(P)g.The particle sort of an SCCS agent is de�ned inductively on the structure of SCCSterms. PartSort(0) = ;PartSort(Done) = ;PartSort(� : P) = Part(�) [PartSort(P)PartSort(P +Q) = PartSort(P) [PartSort(Q)PartSort(P �Q) = PartSort(P) [PartSort(Q)PartSort(P " S) = PartSort(P)� Part(S)105

PartSort(P [f]) = Part(f(Sort(P)))PartSort(A def= P) = PartSort(P)For example, Sort(A def= a : Done� b : Done� 1 : A) = fab; 1gand PartSort(A) = fa; b; 1g:10.5.2 Resources and ActionsThe only reason we need to introduce sorts at all is so that we can determine what resources,if any, an instruction requires. If R is the set of resources of a processor (section 9.1.1) letPartR be the set of particles used to acquire and release these resources (Equation 10.2).PartR = fgeti j i 2 Rg [fputi j i 2 Rg (10.2)The set of particles that an instruction i uses to access all of its resources is de�ned byPartSort(P)\PartR where P is the SCCS agent that describes i. For example, PartSort(P)\PartR where P is the divide instruction of Equation 10.3 is the setfget adder; put adder; get divider; release dividerg.10.5.3 Deriving the Resource Usage FunctionsRecall that the resource usage function �i for an instruction i precisely speci�es what re-sources i uses on each cycle of its execution. To derive the resource usage function for i wesimply execute i, in isolation, and observe what resources i acquires and releases and alsowhen those resources are acquired and released.An instruction is using a resource from the time it gets that resource (using get) tothe time it releases that resource (using release). We can visualize this in terms of thetransition system for the instruction:�0 �! � � � �! � ��! � � � ��!| {z }using resource r�0 �! � � � �! Donewhere getr 2 Part(�); releaser 2 Part(�)106

for each i 2 P s.t. Sort(i) \ PartR 6= ; dolet �! and �0 be the transition relation and start state of i.�0 := �0; InUse := ;;for cycle := 1 to length(i) dolet �next; � be state and action s.t. �0 ��! �next;�0 := �next;if getr 2 Part(�) and putr 2 Part(�) then�i(cycle) := InUse [frg;else if getr 2 Part(�) then�i(cycle) := InUse [frg;InUse := InUse [frg;else if putr 2 Part(�) then�i(cycle) := InUse;InUse := InUse �frgelse�i(cycle) := InUseend ifend forend for Figure 10.4: Algorithm to calculate resource usage functions.
107

Figure 10.4 gives the algorithm for computing the resource usage functions.The algorithm works by examining, for each instruction, the transition graph of theagent that describes that instruction. The algorithm scans the instruction recording thecurrent set of resources that are in begin used with the variable InUse. When a getr isencountered, r is added to InUse. When a putr is encountered r is removed from InUse.The if-statement in the inner-most for-loop has four cases:1. If both a getr and putr are needed on the same cycle then the resource r is neededfor only one cycle and the current resources being used are InUse [frg.2. A getr (with no putr) signi�es that the instruction begins using r for more than onecycle, so the current resources used are again InUse[frg. InUse is updated to includer.3. A putr signi�es that the instruction is �nished using r after the current cycle. Theresource r is removed from InUse.4. If no getr or putr is encountered on the current cycle then the set of resources currentlybeing used is InUse.Theorem 10.6 The algorithm in Figure 10.4 correctly computes the resource usage func-tions of the architecture.Proof: Consider an arbitrary instruction i 2 P in normal form, a resource r 2 R, and thetransitions of i. �1 �1�! � � ��k �k�! � � ��n �n�! DoneConsider an �m 2 f�1; : : : ; �ng. We need to show that r 2 �i(m) if and only if1. getr 2 Part(�m) or2. putr 2 Part(�m) or3. 9�a; �b 2 f�1; : : : ; �ng such that a < m < b and getr 2 Part(�a) ^ putr 2 Part(�b) ^:9putr 2 f�a+1; : : : ; �b�1gThe �rst two are obvious from the �rst three conditions of the \if-statement" in the algo-rithm. The third statement follows as the transition � �a�! �0 updates InUse to include rand r is not removed from InUse until the transition � �b�! �0. Consequently, from the �nalelse clause r 2 �i(m).2 108

Theorem 10.7 The time complexity of the algorithm in Figure 10.4 is O(mn) where m isthe number of instructions, n is the length of the longest instruction.Proof: Clearly the outer for-loop executes at most m times, the number of instructionson the machine. The inner for-loop executes at most n times where n is the length of thelongest instruction. Hence, the statement in the inner for-loop executes mn times, which isO(mnr).The size of R, jRj, will typically be small (for example on the MIPS R2000 it is 13 and onthe Motorola 88000 it is 16).An ExampleConsider the
oating-point divide instruction described in section 6.10.2 which we repeathere.FDIV(PC) def= getmPC(Fdiv, FRi, FRj, FRk)lockfregigetfrj(x)getfrk(y) :get adder � release adder :get divider : (1 :)6release divider :get adder : release adder :putfri(x=y)releasefregi : Done (10.3)The algorithm computes the following resource usage function for the
oating-pointdivide instruction, Fdiv, described earlier.�Fdiv(t) = 8>>>>>>><>>>>>>>: fadderg if t = 2fdividerg if 3 � t � 9fadderg if 10 � t � 11; otherwise10.6 SummaryUsing the labeled transition systems generated by the operational semantics of SCCS wecan have shown how to:� �nd instruction latencies.� determine illegal instruction sequences.109

� determine instructions that can be issued in parallel.� derive the resource usage functions for each instruction.

110

Chapter 11Conclusions and Future ResearchThis thesis has addressed the formal speci�cation of two programmer views of a processor.The architecture level describes the processor so that the programmer can write correctprograms. The timing level describes the processor so that the programmer can writee�cient programs.At the highest level of abstraction, the architecture level, a processor can be viewed as aset of instructions where each instruction is represented as a function from processor stateto processor state. One of the contributions of this thesis was to present a way in whichthis functional view can be represented cleanly using the functional language SML. (Otherfunctional languages would have su�ced, such as Haskell or Miranda, but we chose SMLas it has the most advanced data abstraction facilities of any functional language.) Weessentially created an abstract data type (ADT) of common architectural operations andimplemented the instructions with this ADT.11.1 Programmer's Timing ViewProgrammers often need more information than the architecture provides. The architectureis minimal in that it only includes information needed to write correct programs. However,programmers also want to write e�cient programs. Hence, we have the programmer'stiming view of instructions. Timing information includes instruction latencies, resourcerequirements, and multiple instruction issue capabilities.It is natural to ask whether the functional technique used to specify architecture couldbe extended and applied for the timing view. It turns out that specifying the temporal and111

parallel behavior of systems with functional methods is di�cult. Our criteria for choosinganother method were that the formalism be able to specify time and parallelism explicitlyand we chose the synchronous process algebra SCCS.The second contribution of this thesis, then, is to specify, as abstractly as possible, thetiming behavior of a typical RISC architecture. We also showed how to specify superscalarversions of our RISC in which more than one instruction can be issued simultaneously.Since SCCS has a formally de�ned operational semantics, our speci�cation is \exe-cutable". The abstract machine of the operational semantics, a labeled transition system,(a type of state machine) speci�cally describes the behavior of systems speci�ed in SCCS.We have implemented our speci�cation on the Concurrency Workbench, a tool for specifyingand analyzing systems written in SCCS (or CCS).11.1.1 Instruction SchedulingOnce a timing view of a processor has been speci�ed we showed what information is re-quired to do instruction scheduling, essentially parameterizing the instruction schedulingproblem. Using the the labeled transition system of the speci�cation we then showed howto derive the instruction scheduling parameters from the speci�cation consequently yieldingan instruction scheduler for the processor.11.2 Future ResearchThe features that we have included in our example processor were those that are relatedto instruction scheduling. It is natural to ask whether SCCS is capable of specifying otherfeatures such as interrupts and more sophisticated memory hierarchies, such as instructionand data caches.11.2.1 InterruptsOne aspect of instruction processors that we did not address are interrupts, traps, and ex-ceptions. Any complete processor speci�cation, however, should include them. Fortunately,SCCS and process algebras in general are capable of specifying interrupts. For example,Milner [68] discusses an interrupt operator where a process F may interrupt a process E,written E^F . Once the interrupt operator is included it is also possible to specify a Restartoperator allowing processes to be restarted after they have been interrupted. The syn-112

chronous process language Esterel also includes operators useful for specifying interruptssuch as its \watchdog" and \trap" statements. For example the statementdo S watching Irepeatedly executes the statement S until the signal I occurs. Eventually, we shouldaddress specifying processor interrupts | though this may not be useful information forcompilers, users of the processor may need to know how interrupts are handled.11.2.2 Cache ModelAt present the memory hierarchy we use is only a two-level model of registers and mainmemory. Though it would complicate our speci�cation of memory, we could add a cacheto our speci�cation in a transparent way, without altering the speci�cation of individualinstructions, since, in a RISC model only two instructions access memory, Load and Store.Compiling for e�cient use of caches is a current area of active research [22]. Typically,program pro�lers generate information that describes the program memory access patternsand the compiler rearranges procedures to make e�cient use of the instruction cache. Com-pilers can also rearrange instructions that access data so that the data cache is used moree�ciently.Once a cache model has been included in the speci�cation it may be possible to use thisspeci�cation to help generate this optimization phase of the compiler.Other Classes of ProcessorsIn this dissertation we have concentrated on RISC-style architectures. Certainly it wouldbe possible to specify other classes of architecture such as CISCs or VLIWs (Very LongInstruction Word). In a VLIW, the architecture and the organization are inseparable [35].Specifying a VLIW would essentially require us to specify the individual resources andthe data-paths of the processor. Since it is up to the programmer to organize the instructionsso that resource uses do not con
ict it should, in principle, be easier to specify than a RISCwhere we needed to provide interlocks. A speci�cation of a VLIW would require alteringthe algorithms to re
ect the volatile nature of the resources.11.2.3 Veri�cation and SynthesisOne important property of SCCS that we have not used is the ability to prove systemsequivalent. In SCCS it is possible to specify a high-level system and to verify that an113

implementation of the system meets its speci�cation. To do this would require that wespecify a processor at a lower \implementation" level.Veri�cationFor example, the obvious choice is to specify the organization of the processor: the pipelinestages, forwarding paths, etc. Doing this may be tedious but not di�cult. The problemis state explosion. That is, the number of states in any processor is tremendous and sincethe notion of equivalence in SCCS relates states in the implementation with states in thespeci�cation, any complete veri�cation would require that all of the states be checked.There are a couple of techniques that we could use to handle the state explosion problem.The �rst technique exploits the fact the parts of the processor are regular, that is, they havea repetitive or inductive structure. For example, a 32-bit ALU may be constructed fromthirty-two 1-bit ALU's (for example, see Patterson & Hennessy [77]). So a speci�cation ofa 16-bit ALU is almost identical to the speci�cation of a 32-bit ALU. As Milner points [68],systems with inductive structure have proofs that are amenable to induction proofs.One of the principle reasons a processor speci�cation has so many states is that thenumber of states in a speci�cation increases exponentially as the size of the memory elementsincreases. For example, a 32-bit register has 232 di�erent states and each 1-bit increasein word-size doubles the number of possible states. There has been some research usingabstraction techniques (for example, see [24]) where an abstraction function is used to \mergestates". For example, if we want to verify the control portion of a processor then we canignore the values in registers and memory. Using this abstraction all 232 possible states ofa register are collapsed into one state. In this case the abstraction function is \congruencemodulo one" which creates an equivalence class for each register on the processor. Now,each register, Ri, is the representative for all of the possible 232 states of register Ri. If aprocessor has n 32-bit registers, the number of possible states is reduced from (232)n to justn | a dramatic decrease. The majority of the states would come from the control portionof the hardware known as the control unit. The control unit likely includes other \stateregisters" which we could not abstract in the previous manner as they are integral parts ofthe control unit.SynthesisWe should also note that it may be possible to synthesize hardware from a speci�cation,since a labeled transition system, at least in the �nite case, is really just a state machine114

and hardware synthesis is often performed from state machines. In fact, there are CADpackages that will synthesize hardware from descriptions of state machines [96].11.3 Formal MethodsWe should also stress that formal speci�cations are valuable in their own right and are astarting point for a variety of applications. One bene�t is that they require the designer tothoughtfully plan the design in a structured manner. As Noam Chomsky points out in [23]:... a formalized theory may automatically provide solutions for many problems otherthan those for which it was explicitly designed. Obscure and intuition-bound notionscan neither lead to absurd conclusions nor provide new and correct ones, and hencethey fail to be useful in two important respects.Starting from a mature and well-de�ned formal approach made available a large amountof mathematical machinery. Prede�ned are notions of system equivalence (used for veri-�cation), labeled transition system (used in the semantics, for simulation and just abouteverything else), modal/temporal logic, sorts, etc. Often, whenever we needed to do some-thing with our speci�cation existing results were there to help.

115

Appendix AExample circuits in theConcurrency WorkbenchIn this appendix we show the Workbench implementations some of the example circuitsfrom chapter 4.A few notes about the SCCS syntax and the CWB-SCCS syntax. The ConcurrencyWorkbench implements the \basic" SCCS calculus. Consequently, this means that thereis no generalized summation (e.g., P) in the Workbench. In order to keep the descriptiontangible, I have given only a \timing" speci�cation and have excised all values, register andmemory values.There is also some notational di�erences.� Action product is speci�ed with # instead of juxtaposition. For example, the agentab : 0 is a#b:0.� Action complement is done using a single quote character ('out instead of out).� Parallel composition is, for example, AjB instead of A�B.� Process de�nition A def= P is handled by the bi command which binds an identi�erto a process description. 116

A.1 Simple Logic Gates** Or gate is described by******** Or(k) <= a(i)#b(j)#'out(k):Or(i or j)**bi Or0 a0#b0#'out0:Or0 + a0#b1#'out0:Or1 \+ a1#b0#'out0:Or1 + a1#b1#'out0:Or1bi Or1 a0#b0#'out1:Or0 + a0#b1#'out1:Or1 \+ a1#b0#'out1:Or1 + a1#b1#'out1:Or1bi Or Or0 + Or1*** An exclusive-or gate is similar.*************************************bi Xor0 a0#b0#'out0:Xor0 + a0#b1#'out0:Xor1 \+ a1#b0#'out0:Xor1 + a1#b1#'out0:Xor0bi Xor1 a0#b0#'out1:Xor0 + a0#b1#'out1:Xor1 \+ a1#b0#'out1:Xor1 + a1#b1#'out1:Xor0bi Xor Xor0 + Xor1** And gate is described by******** And(k) <= a(i)#b(j)#'out(k):Nor(i and j)**117

bi And0 a0#b0#'out0:And0 + a0#b1#'out0:And0 \+ a1#b0#'out0:And0 + a1#b1#'out0:And1bi And1 a0#b0#'out1:And0 + a0#b1#'out1:And0 \+ a1#b0#'out1:And0 + a1#b1#'out1:And1bi And And0 + And1A.1.1 Not Gates*** A Not gate.******** Not(j) <= a(i)$'out(j):Not(not i)***bi Not0 a0#'out0:Not1 + a1#'out0:Not0bi Not1 a0#'out1:Not1 + a1#'out1:Not0bi Not Not0 + Not1bi NotNot (Not['alpha0/'out0,'alpha1/'out1] | \Not[alpha0/a0,alpha1/a1])\{a0,a1,'out0,'out1}A.2 Half-AdderA.2.1 Speci�cation** Binary Half-adder specification is described by******** HA_Spec(c,s) <=******** a(i)#b(j)#'carry(c)#'sum(s):HA_Spec(i and j, i or j)118

** NOTE: There is no HA_Spec10 as it is an unreachable state.bi HA_Spec00 a0#b0#'carry0#'sum0:HA_Spec00 \+ a0#b1#'carry0#'sum0:HA_Spec01 \+ a1#b0#'carry0#'sum0:HA_Spec01 \+ a1#b1#'carry0#'sum0:HA_Spec11bi HA_Spec01 a0#b0#'carry0#'sum1:HA_Spec00 \+ a0#b1#'carry0#'sum1:HA_Spec01 \+ a1#b0#'carry0#'sum1:HA_Spec01 \+ a1#b1#'carry0#'sum1:HA_Spec11bi HA_Spec11 a0#b0#'carry1#'sum1:HA_Spec00 \+ a0#b1#'carry1#'sum1:HA_Spec01 \+ a1#b0#'carry1#'sum1:HA_Spec01 \+ a1#b1#'carry1#'sum1:HA_Spec11bi HA_Spec HA_Spec00 + HA_Spec01 + HA_Spec11A.2.2 Implementation** Binary Half-adder implementation is implemented with an**** OR-gate properly connected to an AND-gate.******** HA_Impl(c,s) <= (And(c)[f] | Xor(s)[g])[h]******** where f = carry/out, g = sum/out, h = in/in#in**** ^^^^^******** workbench says cannot have relabel of form a/j#k,**** but Milner's paper says you can.119

**** Workbench implements []:Act --> Part, where**** []:Act --> Act would be nice.** A big set of all possible actionsbasi All a0^2#b0^2#'carry0#'sum0 a0^2#b0^2#'carry1#'sum1 \a0^2#b0^2#'carry0#'sum1 a0^2#b0^2#'carry1#'sum0 \a1^2#b0^2#'carry0#'sum0 a1^2#b0^2#'carry1#'sum1 \a1^2#b0^2#'carry0#'sum1 a1^2#b0^2#'carry1#'sum0 \a1^2#b1^2#'carry0#'sum0 a1^2#b1^2#'carry1#'sum1 \a1^2#b1^2#'carry0#'sum1 a1^2#b1^2#'carry1#'sum0 \a0^2#b1^2#'carry0#'sum0 a0^2#b1^2#'carry1#'sum1 \a0^2#b1^2#'carry0#'sum1 a0^2#b1^2#'carry1#'sum0bi HA_Impl (HA_Impl00 + HA_Impl01 + HA_Impl11)/Allbi HA_Impl00 (And0['carry0/'out0, 'carry1/'out1] \| Xor0['sum0/'out0, 'sum1/'out1])bi HA_Impl01 (And0['carry0/'out0, 'carry1/'out1] \| Xor1['sum0/'out0, 'sum1/'out1])bi HA_Impl11 (And1['carry0/'out0, 'carry1/'out1] \| Xor1['sum0/'out0, 'sum1/'out1])bi HA_Impl' (And['carry0/'out0, 'carry1/'out1] \| Xor['sum0/'out0, 'sum1/'out1])/AllA.3 Wires** Unit delay wire 120

******** Wire(j) <= in(i)#'out(j):Wire(i)******** Two delay wire Specification******** Wire''(i,j) <= in(a)#'out(j):Wire''(a,i)**bi Wire0 in0#'out0:Wire0 + in1#'out0:Wire1bi Wire1 in0#'out1:Wire0 + in1#'out1:Wire1bi Wire Wire0 + Wire1bi Wire''00 in0#'out0:Wire''00 + in1#'out0:Wire''10bi Wire''01 in0#'out1:Wire''00 + in1#'out1:Wire''10bi Wire''10 in0#'out0:Wire''01 + in1#'out0:Wire''11bi Wire''11 in0#'out1:Wire''01 + in1#'out1:Wire''11bi Wire'' Wire''00 + Wire''01 + Wire''10 + Wire''11** Implement a two unit delay wire with two pieces of**** unit delay wire.******** Wire''Impl <= (Wire[f] | Wire[g])\{in(i),out(i)}******** where f = 'alpha(i)/'out(i) and g = alpha(i)/in(i)**bi Wire''Impl \(Wire['alpha0/'out0,'alpha1/'out1] \| Wire[alpha0/in0,alpha1/in1])\{in0,in1,'out0,'out1}*** Notice that: Wire'' ~ Wire''Impl ~ NotNot***121

A.4 Full-AdderA.4.1 Speci�cation** Full Adder specification******** FA_Spec(c,s) <== a(i)b(j)Cin(k)'carry(c)'sum(s):**** FA_Spec(if i+j+k >= 2 then 1 else 0,**** if i+j+k = 1 or 3 then 1 else 0)**bi FA_Spec FA_Spec00 + FA_Spec01 + FA_Spec10 + FA_Spec11bi FA_Spec00 a0#b0#cin0#'carry0#'sum0:FA_Spec00 \+ a0#b0#cin1#'carry0#'sum0:FA_Spec01 \+ a0#b1#cin0#'carry0#'sum0:FA_Spec01 \+ a0#b1#cin1#'carry0#'sum0:FA_Spec10 \+ a1#b0#cin0#'carry0#'sum0:FA_Spec01 \+ a1#b0#cin1#'carry0#'sum0:FA_Spec10 \+ a1#b1#cin0#'carry0#'sum0:FA_Spec10 \+ a1#b1#cin1#'carry0#'sum0:FA_Spec11bi FA_Spec01 a0#b0#cin0#'carry0#'sum1:FA_Spec00 \+ a0#b0#cin1#'carry0#'sum1:FA_Spec01 \+ a0#b1#cin0#'carry0#'sum1:FA_Spec01 \+ a0#b1#cin1#'carry0#'sum1:FA_Spec10 \+ a1#b0#cin0#'carry0#'sum1:FA_Spec01 \+ a1#b0#cin1#'carry0#'sum1:FA_Spec10 \+ a1#b1#cin0#'carry0#'sum1:FA_Spec10 \+ a1#b1#cin1#'carry0#'sum1:FA_Spec11bi FA_Spec10 a0#b0#cin0#'carry1#'sum0:FA_Spec00 \+ a0#b0#cin1#'carry1#'sum0:FA_Spec01 \+ a0#b1#cin0#'carry1#'sum0:FA_Spec01 \+ a0#b1#cin1#'carry1#'sum0:FA_Spec10 \122

+ a1#b0#cin0#'carry1#'sum0:FA_Spec01 \+ a1#b0#cin1#'carry1#'sum0:FA_Spec10 \+ a1#b1#cin0#'carry1#'sum0:FA_Spec10 \+ a1#b1#cin1#'carry1#'sum0:FA_Spec11bi FA_Spec11 a0#b0#cin0#'carry1#'sum1:FA_Spec00 \+ a0#b0#cin1#'carry1#'sum1:FA_Spec01 \+ a0#b1#cin0#'carry1#'sum1:FA_Spec01 \+ a0#b1#cin1#'carry1#'sum1:FA_Spec10 \+ a1#b0#cin0#'carry1#'sum1:FA_Spec01 \+ a1#b0#cin1#'carry1#'sum1:FA_Spec10 \+ a1#b1#cin0#'carry1#'sum1:FA_Spec10 \+ a1#b1#cin1#'carry1#'sum1:FA_Spec11A.4.2 Implementation** Full adder implementation******** FA_Impl(c,s) <== (HA[f] | HA[g] | Or[h])/{a,b,c,carry,sum}******** f = cin/b, tempsum/a, 'carry'/'carry**** g = 'tempsum/'sum, 'carry''/'carry**** h = carry'/a, carry''/b, 'carry/'out***bi HA HA_Specbpsi S a0 a1 b0 b1 carry0 carry1 sum0 sum1 cin0 cin1bi HA1 HA[cin0/b0,cin1/b1,tempsum0/a0,tempsum1/a1, \'carry'0/'carry0,'carry'1/'carry1]bi HA2 HA['tempsum0/'sum0,'tempsum1/'sum1,'carry''0/'carry0, \'carry''1/'carry1] 123

bi Or' Or[carry'0/a0,carry'1/a1,carry''0/b0,carry''1/b1, \'carry0/'out0,'carry1/'out1]bi FA_Impl (HA1 | HA2 | Or')\SA.5 Flip-Flop** This example of implementing a flip flop with two nor**** gates and is borrowed from**** R. Milner, "Calculi For Synchrony and Asynchrony",**** Theoretical Computer Science, 1983.**A.5.1 Implementation** Nor gate is described by******** Nor(k) <= a(i)#b(i)#'out(k):Nor(i nor j)******** where in Sml******** infix nor; fun i nor j = not (i orelse j);**bi Nor0 a0#b0#'g0:Nor1 + a0#b1#'g0:Nor0 + \a1#b0#'g0:Nor0 + a1#b1#'g0:Nor0bi Nor1 a0#b0#'g1:Nor1 + a0#b1#'g1:Nor0 + \a1#b0#'g1:Nor0 + a1#b1#'g1:Nor0***124

**** Make a flip flop out of two "properly connected"**** nor gates.******** FF(m,n) <= (Nor(m)[f] | Nor(n)[g])******** where f = si/ai, gi#ai/outi where i in {0,1}**** g = ri/bi, bi#di/outi***bpsi S s0 s1 r0 r1 g0 g1 d0 d1bi FF00 (Nor0[s0/a0,s1/a1,'g0#'a0/'g0,'g1#'a1/'g1] \| Nor0[r0/b0,r1/b1,'b0#'d0/'g0,'b1#'d1/'g1])\Sbi FF01 (Nor0[s0/a0,s1/a1,'g0#'a0/'g0,'g1#'a1/'g1] \| Nor1[r0/b0,r1/b1,'b0#'d0/'g0,'b1#'d1/'g1])\Sbi FF10 (Nor1[s0/a0,s1/a1,'g0#'a0/'g0,'g1#'a1/'g1] \| Nor0[r0/b0,r1/b1,'b0#'d0/'g0,'b1#'d1/'g1])\Sbi FF11 (Nor1[s0/a0,s1/a1,'g0#'a0/'g0,'g1#'a1/'g1] \| Nor1[r0/b0,r1/b1,'b0#'d0/'g0,'b1#'d1/'g1])\Sbi FF FF00 + FF01 + FF10 + FF11A.5.2 Speci�cation** A flip flop specification******** FF(m,n) <= s(i)#r(j)#'g(m)#'d(n):FF(i nor n, m nor j)** Which unfolds to the following.125

bi SpecFF00 s0#r0#'g0#'d0:SpecFF11 + s0#r1#'g0#'d0:SpecFF10 \+ s1#r0#'g0#'d0:SpecFF01 + s1#r1#'g0#'d0:SpecFF00bi SpecFF01 s0#r0#'g0#'d1:SpecFF01 + s0#r1#'g0#'d1:SpecFF00 \+ s1#r0#'g0#'d1:SpecFF01 + s1#r1#'g0#'d1:SpecFF00bi SpecFF10 s0#r0#'g1#'d0:SpecFF10 + s0#r1#'g1#'d0:SpecFF10 \+ s1#r0#'g1#'d0:SpecFF00 + s1#r1#'g1#'d0:SpecFF00bi SpecFF11 s0#r0#'g1#'d1:SpecFF00 + s0#r1#'g1#'d1:SpecFF00 \+ s1#r0#'g1#'d1:SpecFF00 + s1#r1#'g1#'d1:SpecFF00bi SpecFF SpecFF00 + SpecFF01 + SpecFF10 + SpecFF11

126

Appendix BOur example RISC in theConcurrency WorkbenchIn this appendix we list how the SCCS speci�cation of our RISC is implemented using theConcurrency Workbench [25, 71].B.1 The CWB Listing** Some auxillary definitions**bi DONE 1:DONE** Definition of a memory cell. There can be 0, 1, or 2**** readers of the register. There is no problem with having more,**** they're just not defined. Only one writer is allowed and it may**** be simultaneous with a read.******** This is basically an unfolding of a summation.**bi Reg0' putr0:Reg0 \+ 'getr0:Reg0 \127

+ 'getr0^2:Reg0 \+ 'getr0^3:Reg0 \+ 'getr0^4:Reg0 \+ putr0#'getr0:Reg0 \+ 'getr0^2#putr0:Reg0 \+ 'getr0^3#putr0:Reg0 \+ 'getr0^4#putr0:Reg0 \+ 1:Reg0bi Reg0 Reg0' + lockreg0:Locked_Reg0bi Locked_Reg0 Illegal_Access0 \+ putr0#releasereg0:Reg0 \+ 1:Locked_Reg0**** Have to enumerate all of the possible illegal accesses.bi Illegal_Access0 'getr0:0 \+ 'getr0^2:0 \+ 'getr0^3:0 \+ 'getr0^4:0 \+ 'getr0#putr0:0 \+ 'getr0^2#putr0:0 \+ 'getr0^3#putr0:0 \+ 'getr0^4#putr0:0 \+ putr0:0 \+ 'getr0#putr0#releasereg0:0 \+ 'getr0^2#putr0#releasereg0:0 \+ 'getr0^3#putr0#releasereg0:0 \+ 'getr0^4#putr0#releasereg0:0*** Do the same thing for another register, Reg1, as in Reg0.**** Should have used relabeling but when running the Workbench the output128

**** is easier to look at if there is not alot of relabeling.***bi Reg1' putr1:Reg1 \+ 'getr1:Reg1 \+ 'getr1^2:Reg1 \+ 'getr1^3:Reg1 \+ 'getr1^4:Reg1 \+ 'getr1#putr1:Reg1 \+ 'getr1^2#putr1:Reg1 \+ 'getr1^3#putr1:Reg1 \+ 'getr1^4#putr1:Reg1 \+ 1:Reg1bi Reg1 Reg1' + lockreg1:Locked_Reg1bi Locked_Reg1 Illegal_Access1 + putr1#releasereg1:Reg1 + 1:Locked_Reg1bi Illegal_Access1 'getr1:0 \+ 'getr1^2:0 \+ 'getr1^3:0 \+ 'getr1^4:0 \+ 'getr1#putr1:0 \+ 'getr1^2#putr1:0 \+ 'getr1^3#putr1:0 \+ 'getr1^4#putr1:0 \+ putr1:0 \+ 'getr1#putr1#releasereg1:0 \+ 'getr1^2#putr1#releasereg1:0 \+ 'getr1^3#putr1#releasereg1:0 \+ 'getr1^4#putr1#releasereg1:0** Define memory cells. Easier than registers because no interlocks.**129

bi Mem0 putm0:Mem0 \+ 'getm0:Mem0 \+ 'getm0^2:Mem0 \+ putm0#'getm0:Mem0 \+ 'getm0^2#putm0:Mem0 \+ 1:Mem0bi Mem1 putm1:Mem1 \+ 'getm1:Mem1 \+ 'getm1^2:Mem1 \+ putm1#'getm1:Mem1 \+ 'getm1^2#putm1:Mem1 \+ 1:Mem1** Defining two memory cells and registers each.**bi Registers (Reg0 | Reg1)bi Memory (Mem0 | Mem1)** ------------->>> Instruction definitions <<<------------------ ** There are 8 possible add instructions and the "nop" instruction.**** Three operands with Reg0 or Reg1 possible for each operand.******** The syntax "addxyz" represent the add instruction with destination**** register "x", and source registers "y", and "z".**bi ALU add000#getr0#getr0#'putr0:DONE \+ add001#getr0#getr1#'putr0:DONE \130

+ add010#getr0#getr1#'putr0:DONE \+ add011#getr0#getr1#'putr0:DONE \+ add100#getr0#getr0#'putr1:DONE \+ add101#getr0#getr1#'putr1:DONE \+ add110#getr1#getr0#'putr1:DONE \+ add111#getr1#getr1#'putr1:DONE \+ nop:DONE** There are 8 load instructions and 8 store instructions**** but to save states we are actually only going to enumerate the**** ones where the base registers and the register being loaded or**** stored are distinct. That is you really don't usually want**** to do a Load R0, (R0).**bi Load_Store Load + Store*** insn[i,j,k] where i = dest reg, j = base reg, k = memory locn***bi Load load010#getr1#getm0#'lockreg0:'putr0#'releasereg0:DONE \+ load011#getr1#getm1#'lockreg0:'putr0#'releasereg0:DONE \+ load100#getr0#getm0#'lockreg1:'putr1#'releasereg1:DONE \+ load101#getr0#getm1#'lockreg1:'putr1#'releasereg1:DONEbi Store store010#getr0#getr1#'putm0:DONE \+ store011#getr0#getr1#'putm1:DONE \+ store100#getr1#getr0#'putm0:DONE \+ store101#getr1#getr0#'putm1:DONE** The branch instruction has two outcomes: succede or fail.**** Also, if the branch succedes, we can't have another branch**** instruction. 131

bi Branch Succede + Failbi Succede bz#getr0:(((ALU + Load_Store) | 1:IPL) + bz:0) \+ bz#getr1:(((ALU + Load_Store) | 1:IPL) + bz:0)bi Fail bz#getr0:IPL + bz#getr1:IPL Define a particle set of all possible instructions.***bpsi Insns add000 add001 add010 add011 add100 add101 add110 add111 \load010 load011 load100 load101 \store010 store011 store100 store101 \bz nopbpsi Alu_Insns add000 add001 add010 add011 add100 add101 add110 add111 nopbpsi FPU_Insns fadd000 fadd001 fadd010 fadd011 \fadd100 fadd101 fadd110 fadd111** Definition of dual ALU instruction issue. Need appropriate**** particle sets. See dissertation chapter on Superscalar.**bpsi Putr0 putr0 getr0 getr1 add000 add001 add010 add011 add100 \add101 add110 add111 nopbpsi NotGetr0 putr1 getr1 add000 add001 add010 add011 add100 \add101 add110 add111 nopbpsi Putr1 putr1 getr0 getr1 add000 add001 add010 add011 add100 \add101 add110 add111 nopbpsi NotGetr1 putr0 getr0 add000 add001 add010 add011 add100 add101 \add110 add111 nop 132

bi TwoAlus ((ALU\Putr0 | ALU\NotGetr0) + (ALU\Putr1 | ALU\NotGetr1))** Floating-point registers**bi Freg1 lockfreg1:Locked_Freg1 \+ 'getfr1#lockfreg1:Locked_Freg1 \+ 'getfr1^2#lockfreg1:Locked_Freg1 \+ 'getfr1:Freg1 \+ 'getfr1^2:Freg1 \+ 1:Freg1bi Locked_Freg1 putfr1#releasefreg1:Freg1 \+ 1:Locked_Freg1bi Freg2 lockfreg2:Locked_Freg2 \+ 'getfr2#lockfreg2:Locked_Freg2 \+ 'getfr2^2#lockfreg2:Locked_Freg2 \+ 'getfr2:Freg2 \+ 'getfr2^2:Freg2 \+ 1:Freg2bi Locked_Freg2 putfr2#releasefreg2:Freg2 \+ 1:Locked_Freg2bi FP_Registers (Freg1 | Freg2)** Floating-point unit resource declarations******** There is an adder, multiplier, and a divider. All of which are**** accessed exclusively through semaphores.**bi Resource get_resource:Locked_Resource \133

+ get_resource#release_resource:Resource \+ 1:Resourcebi Locked_Resource release_resource:Resource \+ 1:Locked_Resourcebi FPU (Resource[get_multiplier/get_resource, \release_multiplier/release_resource] \| Resource[get_adder/get_resource, \release_adder/release_resource] \| Resource[get_divider/get_resource, \release_divider/release_resource])** Floating-point instructions Fdiv and Fmul not yet implemented*** Yuck!! Enumerate all of the eight possible Fadd instrcutions.***bi Float fadd000#'lockfreg0#getfr0#getfr0: \'get_adder:1:1:'release_adder: \'putfr0#'releasefreg0:DONE \\+ fadd001#'lockfreg0#getfr0#getfr1: \'get_adder:1:1:'release_adder: \'putfr0#'releasefreg0:DONE \\+ fadd010#'lockfreg0#getfr1#getfr0: \'get_adder:1:1:'release_adder: \'putfr0#'releasefreg0:DONE \\134

+ fadd011#'lockfreg0#getfr1#getfr1: \'get_adder:1:1:'release_adder: \'putfr0#'releasefreg0:DONE \\+ fadd100#'lockfreg1#getfr0#getfr0: \'get_adder:1:1:'release_adder: \'putfr1#'releasefreg1:DONE \\+ fadd101#'lockfreg1#getfr0#getfr1: \'get_adder:1:1:'release_adder: \'putfr1#'releasefreg1:DONE \\+ fadd110#'lockfreg1#getfr1#getfr0: \'get_adder:1:1:'release_adder: \'putfr1#'releasefreg1:DONE \\+ fadd111#'lockfreg1#getfr1#getfr1: \'get_adder:1:1:'release_adder: \'putfr1#'releasefreg1:DONE** The top-level "standard normal form" agent**bi Instr ((TwoAlus + ALU + Load_Store + Float) | 1:Instr) + Branchbi CPU (Registers | FP_Registers | FPU | Memory | Instr)\Insns
135

Bibliography[1] Alfred V. Aho, Mahadevan Ganapathi, and Steven W.K. Tjiang. Code generationusing tree matching and dynamic programming. ACM Transactions on ProgrammingLanguages and Systems, 11(4):491{516, October 1989.[2] Mitch Alsup. Motorola's 88000 family architecture. IEEE Micro, pages 48{66, June1990.[3] James H. Aylor, Ronald Waxman, and Charles Scarratt. VHDL|feature descriptionand analysis. IEEE Design and Test of Computers, pages 17{27, April 1986.[4] J.C.M. Baeten, editor. Applications of Process Algebra. Cambridge University Press,1990.[5] Mario R. Barbacci. Instruction set processor speci�cations (ISPS): The notation andits applications. IEEE Transactions on Computers, pages 24{40, January 1981.[6] Mario R. Barbacci et al. Ada as a hardware description language: An initial report.In Computer Hardware Description Languages and their Applications, pages 272{302,1985.[7] David Bernstein. Global instruction scheduling for superscalar machines. In ACM SIG-PLAN '91 Conference on Programming Language Design and Implementation, pages241{255. ACM, June 1991.[8] G�erard Berry and Georges Gonthier. The esterel synchronous programming lan-guage: Design, semantics, and implementation. The Science of Computer Program-ming, 19:87{152, 1992.[9] G. Birtwistle and P. A. Subrahmanyam, editors. Current Trends in Hardware Veri�-cation and Automated Theorem Proving. Springer-Verlag, 1989.136

[10] D. Borrione, editor. Proceedings of the IFIP WG 10.2 Working Conference on, FromHDL Descriptions to Provably Correct Circuit Designs. Springer-Verlag, 1986.[11] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, andJohn Van Tassel. Experience with embedding hardware description languages withHOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, Theorem Provers inCircuit Design. IFIP, North-Holland, 1992.[12] Jonathan Bowen. Formal speci�cation of the ProCos/safemos instruction set. Micro-processors and Microsystems, 14(10):631{643, December 1990.[13] Jonathen Bowen. Formal speci�cation and documentation of microprocessor instruc-tion sets. Microprocessors and Microprogramming, pages 223{230, 1987.[14] David Bradlee, Susan Eggers, and Robert Henry. Integrating register allocation andinstruction scheduling for risc's. In Fourth International Conference on ArchitecturalSupport Programming Languages and Operating Systems, pages 122{131. ACM andIEEE Computer Society, April 1991.[15] David Bradlee, Robert Henry, and Susan Eggers. The Marion system for retargetableinstruction scheduling. In ACM SIGPLAN '91 Conference on Programming LanguageDesign and Implementation, pages 229{240. ACM, June 1991.[16] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Applications and Rela-tionships to Other Models of Concurrency. Springer-Verlag, 1987.[17] E. Brinksma. Information Processing Systems { Open Systems Interconnection { LO-TOS { A Formal Description Technique based upon the Temporal Ordering of Obser-vational Behavior, 1988. Draft International Standard ISO8807.[18] Bishop C. Brock, Warren A. Hunt, and William D. Young. Introduction to a formallyde�ned hardware description lang uage. In Theorem Provers in Circuit Design, pages3{35, 1992.[19] G.M. Brown. Towards truly delay-insensitive circuit realisations of process algebras. InG. Jones and M. Sheeran, editors, Designing Correct Circuits. Springer-Verlag, 1991.[20] Juanito Camilleri and Glynn Winskel. CCS with priority choice. In LICS 91: IEEESymposium on Logic in Computer Science, pages 246{255, 1991.137

[21] C. Charlton, D. Jackson, and P. Leng. A functional model of clocked microarchitec-tures. In MICRO-22, Proceedings of the 22nd Annual International Symposium onMicroarchitecture, 1989.[22] Chi-Hung Chi and Hank Dietz. Uni�ed management of registers and cache usingliveness and cac he bypass. In ACM Conference on Programming Language Designand Implementation, pages 344{355, 1989.[23] Noam Chomsky. Syntactic Structures. Mouton, 1957.[24] Edmund M Clarke, Orna Grumberg, and David E. Long. Model checking and ab-straction. In POPL'92, Proceedings of the 19th annual symposium on principles ofprogramming languages, 1992.[25] Rance Cleaveland, Joachim Parrow, and Bernhard Ste�en. The Concurrency Work-bench: A semantics-based tool for the veri�cation of concurrent systems. ACM Trans-actions on Programming Languages and Systems, 15(1):36{72, January 1993.[26] Avra Cohn. Correctness properties of the viper block model. In G. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Veri�cation and AutomatedTheorem Proving. Springer-Verlag, 1989.[27] Todd Cook, Paul Franzon, Ed Harcourt, and Thomas Miller. Behavioral modeling ofprocessors from instruction set speci�cations. In Proceedings of the 2nd InternationalVerilog HDL Conference, 1993.[28] Todd Cook, Ed Harcourt, Thomas Miller, and Paul Franzon. LISAS: A Languagefor Instruction Set Architecture Speci�cation. In First Annual Conference on Har-ware/Software Co-design., 1992.[29] Todd A. Cook. Instruction Set Architecture Speci�cation. PhD thesis, North Car-olina State University, Raleigh, NC, 1993. Department of Electrical and ComputerEngineering.[30] Todd A. Cook, Paul D. Franzon, Ed A. Harcourt, and Thomas K. Miller. System-level speci�cation of instruction sets. In ICCD 93, Proceedings of the InternationalConference on Computer Design, 1993.138

[31] Todd A. Cook and Ed Harcourt. A functional speci�cation language for instructionset architectures. In To appear in, ICCL: Proceedings of the International Conferenceon Computer Languages, 1994.[32] Jack W. Davidson. Code selection through object code optimization. ACM Transac-tions on Programming Languages and Systems, 6(4):506{526, October 1984.[33] Jack W. Davidson. A retargetable instruction reorganizer. In Proceedings of the SIG-PLAN '86 Symposium on Compiler Construction, pages 234{241, 1986.[34] Bruce S. Davie. Formal Speci�cation and Veri�ation in VLSI Design. EdinburghUniversity Press, 1990.[35] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, Cam-bridge, MA, 1986.[36] Christopher Fraser and Alan Wendt. Automatic generation of fast optimizing codegenerators. In ACM SIGPLAN '88 Conference on Programming Language Design andImplementation, 1988.[37] Christopher W. Fraser. A language for writing code generators. In ACM SIGPLAN'89 Conference on Programming Language Design and Implementation, pages 238{245,1989.[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theoryof NP-Completeness. W. H. Freeman and Company, 1979.[39] Alfons Geser. A speci�cation of the Intel 8085 microprocessor: A case study. InAlgebraic Methods: Theory, Tools, and Applications, pages 347{401. Springer-Verlag,1991.[40] Sumit Ghosh. Using Ada as an HDL. IEEE Design and Test of Computers, pages30{42, February 1988.[41] Robert Giegerich. Code selection by inversion of order-sorted derivors. TheoreticalComputer Science, pages 177{211, 1990.[42] Joseph A. Goguen. One, none, a hundred thousand speci�cation languages. TechnicalReport CSLI-87-96, CSLI:Center for the Study of Language and Information, 1987.139

[43] Robert Goldblatt. Logics of Time and Computation. CSLI: Center for the Study ofLanguage and Information, 1992.[44] Ganesh Gopalakrishnan. Speci�cation and veri�cation of pipelined hardware in HOP.In Computer Hardware Description Lnaguages and their Applications, pages 117{131.Springer-Verlag, 1990.[45] M.J.C. Gordon. The denotational semantics of sequential machines. Information Pro-cessing Letters, pages 1{3, 1980.[46] M.J.C. Gordon. Register transfer systems and their behavior. In Computer Hardwaredescription Languages and Their Applications, pages 23{36, 1981.[47] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proving environ-ment for higher order logic. Cambridge University Press, 1993.[48] Keith Hanna, Neil Daeche, and Gareth Howells. Implementation of the veritas designlogic. In Theorem Provers in Circuit Design, pages 77{94, 1992.[49] Ed Harcourt, Jon Mauney, and Todd Cook. Speci�cation of instruction-level paral-lelism. In Proceedings of NAPAW'93, the North American Process Algebra Workshop,1993.[50] Ed Harcourt, Jon Mauney, and Todd Cook. Formal speci�cation and simulation ofinstruction-level parallelism. In Proceedings of the 1994 European Design AutomationConference. IEEE Computer Society Press, 1994.[51] Ed Harcourt, Jon Mauney, and Todd Cook. Functional speci�cation and simulationof instruction set architectures. In Proceedings of the International Conference onSimulation and Hardware Description Languages. SCS Press, 1994.[52] John M.J. Herbert. Incremental design and formal veri�cation of microcoded micro-processors. In Theorem Provers in Circuit Design, pages 157{174, 1992.[53] Tony Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[54] Paul B. Jackson. Nuprl and its use in circuit design. In V. Stavridou, T. F. Melham,and R. T. Boute, editors, Theorem Provers in Circuit Design. IFIP, North-Holland,1992. 140

[55] Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, 1991.[56] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.[57] Monica Lam. Software pipelining: An e�ective scheduling technique for VLIW ma-chines. In ACM SIGPLAN '88 Conference on Programming Language Design andImplementation, pages 318{328. ACM, June 1988.[58] Monica Lam. A Systolic Array Optimizing Compiler. Kluwer Academic Press, 1989.[59] Eugene Lawler, Jan Lenstra, Charles Martel, Barbara Simons, and Larry Stockmeyer.Pipeline scheduling: A survey. Technical Report Computer science research report,IBM Research Division, 1990.[60] Peter Lee. Realistic Compiler Generation. MIT Press, 1989.[61] M. Leeser and G. Brown, editors. Hardware Speci�cation, Veri�cation and Synthesis:Mathematical Aspects. Springer-Verlag, 1990.[62] Roger Lipsett. VHDL|Hardware Description and Design. Kluwer Academic Press,Boston, 1989. TK7887.5 L57 1989.[63] Neal Margulis. i860 Microprocessor Architecture. Intel, Osborne, McGraw-Hill, 1990.[64] ThomasMelham.Higher Order Logic and Hardware Veri�cation. CambridgeUniversityPress, 1993.[65] Jean P. Mermet, editor. Fundamentals and Standards in Hardware Description Lan-guages, volume 294 of NATO ASI Series. Kluwer Academic Press, 1993.[66] George Milne. CIRCAL and the representation of communication, concurrency, andtime. ACM Transactions on Programming Languages and Systems, 7(2):270{298, April1985.[67] Robin Milner. Calculi for synchrony and asynchrony. Journal of Theoretical ComputerScience, 25:267{310, 1983.[68] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.[69] Robin Milner. Elements of interaction. Communications of the ACM, pages 79{97,January 1993. 141

[70] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, iand ii. Information and Computation, 100(1):1{77, September 1992.[71] Faron Moller. The Edinburgh Concurrency Workbench (Version 6.1). University ofEdinburgh, 1992.[72] John D. Morison. ELLA, a language for the design of digital systems. In Jean P. Mer-met, editor, Fundamentals and Standards in Hardware Description Languages, volume294 of NATO ASI Series, pages 385{394. Kluwer Academic Press, 1993.[73] Thomas M�uller. Employing �nite automata for resource scheduling. In MICRO-26,Proceedings of the 26th Annual International Symposium on Microarchitecture, pages12{20, 1993.[74] Seraf�in Olcoz and Jos�e Manuel Colom. The discrete event simulation semantics ofVHDL. In Proceedings of the International Conference on Simulation and HardwareDescription Languages. SCS Press, 1994.[75] Jean-Luc Paillet. Functional semantics of microprocessors at the machine instructionlevel. In Computer Hardware Description Languages and Their Applications, pages87{101, 1990.[76] David A. Patterson and John L. Hennessy. Computer Architecture: A QuantitativeApproach. Morgan Kaufman, San Mateo, CA, 1990.[77] David A. Patterson and John L. Hennessy. Computer Organization and Design: TheHardware/Software Interface. Morgan Kaufman, San Mateo, CA, 1994.[78] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.[79] Gordon D. Plotkin. A structural approach to operational semantics. Technical ReportDAMI FN-19, University of Aarhus, Denmark, 1981.[80] Amir Pnueli. Linear time temporal logic. Research and Education in ConcurrentSystems. In the REX School/Wokshop on Linear Time, Branching Time and PartialOrder in Logics and Models for Concurrency, Noordwijkerhout, the Netherlands.[81] Todd Proebsting and Chris Fraser. Detecting pipeline structural hazards quickly. InPOPL'94, Proceedings of the 21st annual symposium on principles of programminglanguages, 1994. 142

[82] Todd A. Proebsting and Charles N. Fischer. Linear-time, optimal code schedulingfor delayed-load architectures. In ACM SIGPLAN '91 Conference on ProgrammingLanguage Design and Implementation, pages 256{267. ACM, June 1991.[83] Rami R. Razouk. The use of Petri Nets for modeling pipelined processors. In Proceed-ings of the 25th ACM/IEEE Design Automation Conference, 1988.[84] David A. Schmidt. Denotational Semantics, A Methodology for Language Development.Allyn and Bacon, 1986.[85] Mary Sheeran. Categories for the working hardware designer. In Hardware Speci�ca-tion, Veri�cation and Synthesis: Mathematical Aspects, 1990.[86] Michael D. Smith, Mike Johnson, and Mark A. Horowitz. Limits on instruction-levelparallelism. In Second International Conference on Architectural Support ProgrammingLanguages and Operating Systems, pages 290{302. ACM and IEEE Computer Society,1989.[87] J. M. Spivey. Understanding Z: A Speci�cation Language and Its Formal Semantics.Cambridge University Press, Cambridge, UK, 1988. QA76.73 Z2 S65 1988.[88] Mandayam Srivas and Mark Bickford. Formal veri�cation of a pipelined microproces-sor. IEEE Software, pages 52{64, September 1990.[89] Richard Stallman. Using and Porting GNU C. Free Software Foundation, 1992.[90] V. Stavridou. Formal Methods in Circuit Design. Cambridge University Press, 1993.[91] V. Stavridou, T. F. Melham, and R. T. Boute, editors. Theorem Provers in CircuitDesign. North-Holland, 1992.[92] Eliezer Sternheim, Rajvir Singh, and Yatin Trivedi. Digital Design with Verilog HDL.Automata Publishing Co., Cupertino, CA, 1990.[93] Colin Stirling. An introduction to modal and temporal logics for CCS. In LectureNotes in Computer Science, 491, pages 2{20. Springer-Verlag, 1991.[94] Colin Stirling. Modal and temporal logics. In Samson Abramsky, Don Gabbay, andT.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 478{563.Oxford: Clarendon Press, 1993. 143

[95] Chris Tofts. Describing social insect behavior using process algebra. Transactions ofthe Society for Computer Simulation, 9(4), December 1992.[96] C.-J. Tseng et al. A versatile �nite state machine synthesizer. In International Con-ference on Computer Aided Design, pages 206{209, 1985.[97] David W. Wall. Limits of instruction-level parallelism. In Fourth International Confer-ence on Architectural Support Programming Languages and Operating Systems, pages176{188. ACM and IEEE Computer Society, April 1991.[98] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

144

