Specification of Instruction-Level Parallelism

Ed Harcourt* Jon Mauney* Todd Cook!
*Department of Computer Science
tDepartment of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC 27695

July 15, 1993

Abstract

We present a technique for formally describing, at a high-level, the timing properties of Super-
scalar/RISC instruction set processors. We illustrate the technique by specifying a hypothetical
processor that shares many properties of commercial processors including delayed loads and
branches, interlocked floating-point instructions, and multiple instruction issue (Superscalar).
As our mathematical formalism we use SCCS, a synchronous process algebra used for specifying
timed concurrent systems. Timing properties are specified at an abstract level without resort-
ing to implementation detail. Such high-level specifications are useful for timing-level simulator
generation, synthesis and verification of hardware and software (e.g. compilers, schedulers), and
precise documentation. We have implemented our specification within the framework of the

Concurrency Workbench, a tool for simulating and analyzing SCCS specifications.

1 Introduction

In modern computer architecture the temporal and concurrent properties of the instructions are
often visible to the user of the processor. Consequently, such properties should be included in
any behavioral architecture specification. We present a technique for formally describing, at a
high-level, the timing properties of Superscalar/RISC instruction set processors [PH90, Joh91].
We illustrate the technique by specifying a hypothetical RISC that shares many properties of

commercial RISCs including delayed loads and branches, interlocked floating-point instructions,
and multiple instruction issue (Superscalar).

As our mathematical formalism we use SCCS, a synchronous process algebra designed for spec-
ifying timed concurrent systems [Mil89, Mil83]. SCCS allows us to ezplicitly specify the temporal
and concurrent properties of a processor (and instructions). In contrast, a functional approach
only allows us to specify final computations [Pai90]. We have implemented our specification on
the Concurrency Workbench [CPS93, Mol92] allowing us to interactively experiment with, analyze,
and simulate our processor description. This research is in conjunction with research to design a

specification language for instruction set architecture [CFHM93].

1.1 Levels of Abstraction

There are many views of an instruction set processor — a common hierarchy is:

o The architecturelevel is a functional view that represents the processor as seen by the assembly

language programmer.

o The organization level includes the general structure of the processor in terms of functional

units (e.g., integer and floating-point pipelines, caches, and busses).
e The logic level contains the low level implementation detail of the functional units.

The user of a processor is concerned with the architectural level, as they must have information
to write correct programs. However the user would also like to use the processor most efficiently.
For example, in some RISC architectures the following instruction sequence may possibly be pro-

grammed more efficiently.

(1 Load R1, (R2) ;R1 «— Mem[R2]
(2) Add R2, R2, R1 ;R2 « R2 + R1
(3) Add R3, R3, #1 sR3 <« R3 + 1

Instruction (2) will usually cause an interlock (on the MIPS this is an incorrect program) which
wastes cycles. However, instructions (2) and (3) may be switched without altering the meaning of

the program. This switch would most likely eliminate the interlock caused by (2).

There is no hard line that determines where one processor view ends and another begins. Usually
the architecture level does not contain timing information and the organization level does. But the
organization level also contains a considerable amount of other detail that is of no concern to the
user.

A motivating example comes from the MIPS manual which states that for the load-word in-
struction, LW rt, offset(base), “... the contents of general register rt are undefined for time T
of the instruction immediately following this load instruction” [KH92]. Such informal descriptions
are vague and imprecise and demonstrate the kind of timing constraint we wish to formalize at an
abstract level — that is, hides organization detail. There may be any number of reasons for the
delay in the load instruction and we only wish to specify the delay and not the underlying cause.
The user should not be expected to infer the delay by studying low-level organization.

‘The goal of this research, then, is to develop a mathematical model of instruction timing at an

abstract level that hides irrelevant detail of organization.

1.2 Extensions to SCCS

It is assumed that the reader is familiar with SCCS as presented in [Mil83, Mil89]. We use two
extensions to SCCS that will aid us in writing processor specifications.

Frequently we wish to execute two agents A and B in parallel where B begins executing one
clock cycle after A (e.g., issuing instructions on consecutive cycles). This is modeled by the agent
A x 1: B and the expression A Nezt B denotes this agent.

Another useful operator is the priority sum operator, > [CW91]. If in A > B both A and B

can execute then A is preferred.

2 Specifying a Processor

A processor is a system of interacting processes where registers and memory interact with one or

more functional units. Equation 1 represents such a system at the highest level.

Processor &£ (Instruction Unit X Memory X Registers) T 1 (1)

where I = {Instructions from section 2.4.}

Before we proceed in specifying instructions and their interaction it is necessary to develop an

appropriate model of registers and memory.

2.1 Defining the Registers

In this section we develop an abstract model of storage in which storage cells are modeled as agents.
The agent Regl(y) defines one register holding a value y, such that an action putr(z) executed at
time ¢ stores z in the register which is available for use at time ¢ 4+ 1. The action getx(y) retrieves
the value stored in the register and assigns this to y. Another action, a product of two particulate
actions, putr(z)getr(y), allows Reg! to be read and written simultaneously. The value read is the
old value in Regl not the new one being written. Since reading a register does not alter its value,
multiple getr actions are allowed on the same register. The action getr(y)getr(y) represents

reading the register twice, which we abbreviate to getr(y)Z.

Reglly) & Y getr(y)/ : Rey)+ Y, getr(y)Yputr(z): Reg(z) +1: Reg(y) (2)
j€{1,2} j€{0,1,2}

2.1.1 Register Locking

The actions getr and putr are atomic. It may be that a register is going to be updated some
time in the future (e.g., delayed loads) and any attempt to read or write the register by another
agent should result in an error. We augment equation 2 by allowing an agent to reserve a register
for future writing using the action lockreg and then, at some point in the future, by writing the
register (with putr) and releasing it with the action releasereg. When an agent locks a register
the register goes into a state Locked_Reg where the only allowable action is putr(z)releasereg.
All other combinations of getr and putr in the locked state lead to the inactive agent 0. This need
to trap all of the other illegal action sequences complicates matters so we have factored them into

equation 4.

Reg(y) def Reg1(y) 4+ lockreg : Locked_Reyy)
Locked_Reg(y) & Illegal_Access(y) + putr(z)releasereg : Reg(z)

+ 1: Locked_Reg(y)

Illegal_Access(y) Lef Z getr(y) :0 + z getr(y)’putr(z): 0

7€{1,2} j€{0,1,2}
+ Z gotz(y)’putr(z)releasereg: 0 (4)
je{1,2}

Given the definition of one register a family of registers (Reg;, Reg,, etc.) is now defined by
subscripting each of the actions by a register number. For example, the action putr; represents

writing register ¢. Thirty-two registers are constructed by

31
Registers & I1 Res(v) (5)
0

Notice that when no putr or getr action is requested the registers are idling.

2.2 Defining Memory

Given the definition of the register Reg! (non-locking version), a similar definition of an agent
Memory is straightforward. Analogously, actions getm and putm read and write memory cells and

the agent Memory is defined to be a product of individual memory cells.

2.3 Instruction Pipeline

Instruction pipelines are usually described in terms of its stages of execution, for example: fetch,
decode, execute, memory access, write back (abbreviated IF, ID, EX, MEM, WB). IPL (for in-

struction pipeline) defines a model of an instruction pipeline.
IPL «' IFx ID x EX x MEM x WB

This is a reasonable and obvious representation, but if we are interested only in ezternal behavior it
is over specified. We should resist attempting to specify an architecture’s timing behavior in terms
of individual stages as this commits us to describe the functionality of each individual stage which
would have to include, for example, forwarding hardware and latches. We should strive for a more

abstract specification.

2.4 ToyP, a Toy Processer

To construct a specification of a processor we present the instructions of a hypothetical RISC,
ToyP, that shares many features of commercial RISCs. ToyP is loosely based on the MIPS archi-
tecture [KH92]. ToyP instructions, memory word size, registers, and addresses are thirty two bits.
ToyP is a Load/Store architecture with three-operand arithmetic instructions.

Here is an informal description of the semantics and timing behavior of some ToyP instructions.

e Add R;, Rj, R adds registers j and k and puts the result in register :. The instruction

executing immediately after an Add may use register 3.

e Load R;, R;, #Const is a delayed load instruction. Register 7 is being loaded from memory
at the base address in register j with offset #Const. The instruction executing immediately

after Load cannot use register .

e BZ R;, #Locn is a delayed branch instruction. The instruction immediately after the branch
is always executed before the branch is taken (if R; = 0). If the branch is not taken then
instruction after the branch is not executed. Another BZ instruction may not appear in the

branch delay slot.

e Fadd FR;, FRj, FRg is an interlocked floating-point add that takes six cycles before the result
can be used. If another Fadd instruction tries to use the result before the current Fadd is

finished then instruction execution stalls until the result is ready.

2.5 Instruction Issue

Given our definitions of Registers and Memory we now describe an agent Inst(PC) (equation 6)
that specifies the behavior of ToyP instructions off of program counter PC. Instructions are divided
into four classes: arithmetic, load and store, branch, and floating-point and are described by agents

Alu, Load_Store,Branch, and Float.

Inst(PC) = (Non_Branch(PC) Nezt Inst(PC +4))
+ Branch(PC) > Stall(PC) (6)
Non_Branch(PC) %' Alu(PC)+ Load_Store(PC) + Float{ PC)) (7)
Stal(PC) % 1: Instn(PC) (8)

There are three possible execution paths of Instr{ PC).
e A non-branch instruction executes and the next instruction to execute is at PC + 4.

e A branch instruction may execute. Here, the decision on what instruction to execute next is

deferred.

¢ If no instruction can execute then the processor must stall. The [> operator (section 1.2) is

used here because the processor should stall only when no other alternative is available.

2.5.1 Arithmetic Instructions

All Von Neumann architectures are based on the “stored program model” and fetch instructions

from memory using a program counter which we call, PC. The action
getmpg (Add R;,R;, Rk)

represents fetching an Add instruction from memory. And in fact, from a user’s view, an instruction

Add R;, R;, Ry appearsto take one cycle to execute. In the following instruction sequence,

Add R1, R2, R3
Mov R2, R1

the Add instruction executes at time ¢ and the Mov executes at time ¢ + 1. From a behavioral view
there is no problem with writing R1 and reading R1 in consecutive instructions. The user does not
and should not need to understand bypass hardware in order to discover that the above instruction
sequence is legal.

The agent
AlyPC) def getmp(Add R;,R;,Ri)getr;(z)getri(y)putr;(z + y): DONE

represents the execution of the Add instruction specifying that registers are accessed and the result is
written atomically. The agent DONE is the idle agent and has the effect of representing termination
of the instruction. (In [Mil83, Mil89] the idle agent is called 1. We use DONE to avoid confusion
with the idle action 1.)

2.5.2 Load and Store Instructions

The following instruction sequence,

Load R1, R2, #8
Mov R3, Ri

is illegal in ToyP because of the use of R1 immediately after the Load. The Load instruction accesses

memory at time ¢ and the result of the load is available at time t + 2. This is represented by,

Load_Store(PC) Lef

getmp(Load R;, R;, A)getr;(B)getmp, 5 (V)Ilockreg; : putr;(V)releasereg; : DONE

The Store instruction is similarly defined except that the result is ready immediately (presum-

ably because of forwarding hardware).

2.5.3 The Branch Instruction

Equation 9 specifies the behavior of the delayed branch instruction, BZ.

Branch(PC) def getmp(BZ R;, Locn)getr;(V):

if V =0 then
Non_Branch(PC + 4) Nezt InstrLocn))
+ getmpg,4(BZ R;, Locn):0

else

Instr(PC + 8) (9)
The BZ instruction has the effect that
e at time ¢, a BZ instruction is fetched and register R; is accessed.

e at time t + 1, if the value of R; is not zero then execution continues with the instruction after

the branch delay slot.

e at time ¢t + 1, if the value of R; is zero then a non-branch instruction is executed in the branch

delay slot and execution continues with the instruction at Locn at time t 4 2.

e If another BZ instruction is in the delay slot then we reach the inactive agent 0, which

represents an error state.

2.6 Interlocked Floating-Point Instructions

The floating-point add instruction Fadd takes six cycles to compute its result. For instructions that
have a large latency it is generally unreasonable to expect the programmer (or scheduler) to find
enough independent instructions to execute until the Fadd is complete. Inserting Nop instructions

would significantly increase code size, therefore, floating-point instructions are typically interlocked.

2.6.1 Floating-Point Registers

We associate a lock with each floating-point register as in the integer registers. The difference
though is that an attempt to read or write an integer register while it is locked is illegal while
reading or writing a floating-point register while it is locked causes the processor to stall. ToyP has
a separate set of thirty two floating-point registers that are defined similarly to the integer registers
except that we add two new actions, lockfreg and releasefreg. Actions putfr and getfr are
the two actions that write and read a floating-point register.
Freg,(y) Lef lockfreg, : Write; + » getfr;(y)’ : Freg(y) + 1: Freg(y)
7€{1,2}

Write; & putfr;(z)releasefreg; : Freg(z) + 1: Write;

2.6.2 The Fadd instruction

Having defined interlocked fp-registers we can specify the behavior of the Fadd instruction. The
Fadd instruction must (1) access its source registers and lock its destination register using the action
lockreg; (2) compute the addition; (3) write the result in the destination register and release the

destination register using the action releasereg. Equation 10 specifies ToyP’s Fadd instruction.

€.

Floa PC) def getmpo(Fadd, FR;, FR;, FRi)lockfreg;getfr (z)gettr,(y):

1:)°putfr,(z + y)releasefreg; : DONE 10
i g

The processor stalls when an instruction wishes to access a locked fp-register. Since the action

will not be available the execution of the instruction is suppressed and the only available action

then is to execute the idle action of agent Stall.

3 A Two-Issue Superscalar ToyP

This section describes variations of ToyP that can issue and execute multiple instructions per cycle.
Such multiple issue processors are commonly referred to as superscalar processors. Two or more
instructions can be executed in parallel if they are data independent and can also be issued to
separate functional units.

Usually, one floating-point and one integer instruction can be issued in parallel as they use
separate functional units. Also, if they use disjoint register files, they are guaranteed to be data
independent. Two integer instructions can be issued in parallel only if there are two or more integer
functional units. In this case, the problem is complicated somewhat because data dependencies

between two integer instructions can arise inhibiting their parallel execution.

3.1 A Float x Integer Superscalar

In this variant of ToyP one integer and one floating point instruction can be issued in parallel.
Branch and Load/Store instructions must be issued sequentially.
If two instructions can be issued in parallel then it must be an integer instruction followed by

a floating point instruction or vice-versa.
(Floa{ PC) x Al(PC + 4)) + (Alu(PC) X Floaf PC + 4))

We can rewrite this using summation and also to include continuing execution at PC + 8.

Do_Two(PC) % (3 (Alu(PC+i)xFloat(PC+j))) Nezt Instr(PC + 8)
i,j€{0,4}

Do_Two assumes, justifiably, that an instruction cannot be both an integer and a floating-point
instruction. This implies that when ¢ = j the agent Alu(PC + i) X Float(PC + j) reduces to zero.
There are no data dependencies to worry about because each instruction accesses separate register

files.

10

3.1.1 Instruction Issue

Our top-level instruction issue equation 6 must be modified to reflect this new two-issue capability.
Renaming equation 6 from Instr to Do_One our processor can now execute two, one, or zero (i.e.,

stall) instruction(s) per cycle which we capture in equation 11.
Inst{PC) % Do_Two(PC) 1> Do_One(PC) > Stall(PC) (11)

Notice the use of > (section 1.2) instead of +. Whenever it is possible to do Do_Two it is also
possible to do Do_One and issuing two instructions should take priority over issuing one, when

possible.

3.2 An Integer x Integer Superscalar

In this section we specify a version of ToyP that can execute two integer ALU instructions in

parallel. At first glance, it would seem that
AlPC) x Alu(PC + 4) (12)

specifies the ability to execute two integer instructions in parallel. However, because both instruc-
tions use the same register file we now have the possibility of data hazards existing between the
two integer instructions. Hence, sometimes parallel execution is thwarted.

Using particle restriction (A\\S where § is a set of particles) we can force equation 12 to apply
only to legal integer instruction sequences of length two. In a legal instruction sequence the first
integer instruction can write register ¢ and the second integer instruction cannot write or read
register 1.

31

Z(Alu(PC)\\A X Al(PC + 4)\\B)
= where A = {putr;, getr,...getr;, }

B = {getr,...getr,,,puty,...putr,; } — {putr;,getr;} (13)

Equation 13 represents all of the allowable integer instruction sequences of length two that may

execute in parallel.

11

4 Simulation

A simulation of our ToyP specification amounts to running an agent that represents a ToyP program
with our agent that represents ToyP. That is, ToyP x Program. We observe the behavior of the
program by calculating the transition graph of an agent. We do not have room to reproduce a
transition graph here. We only note that our simulation takes place within the framework of the

Concurrency Workbench which allows us to experiment with our processor specification.

5 Conclusions and Comments

In this paper we have presented a technique for specifying the timing properties of instruction-level
parallel processors using SCCS, a synchronous process calculus. The timing properties specified are
delayed loads and branches, interlocked floating-point operations, and multiple instruction issue.

With the plethora of formal specification languages (especially for hardware), the question arises
why we should prefer our approach to another. The answer, as is often the case, depends on what
one is interested in, and is, in our case, ezplicit specification of both timing and concurrency. The
reason that this is important, is that, if the programmer wants to use the processor the most
efficiently, timing and concurrency must be specified. Our SCCS processor description specifies a
processor for what it really is; a communicating system of functional units.

In future research, we plan to derive instruction scheduling parameters (e.g., latencies) from pro-
cessor specifications allowing us to automatically synthesize instruction schedulers. The transition
graphs of instructions clearly indicate when instructions begin executing. Latency information is

derived by appropriately testing the specification and observing when instructions begin execution.

References

[CFHM93] Todd A. Cook, Paul D. Franzon, Ed A. Harcourt, and Thomas K. Miller. System-
level specification of instruction sets. In To appear in. ICCD 93, Proceedings of the

International Conference on Computer Design, 1993.

12

[CPS93]

[CW91]

[Joh91]
[KH92]

[Mil83]

[Mil89)]

[Mol92]

[Pai90]

[PH90]

Rance Cleaveland, Joachim Parrow, and Bernhard Steffan. The Concurrency Work-
bench: A semantics-based tool for the verification of concurrent systems. ACM Trans-

actions on Programming Languages and Systems, 15(1):36-72, January 1993.

Juanito Camilleri and Glynn Winskel. CCS with priority choice. In LICS 91: IFEE
Symposium on Logic in Computer Science, pages 246-255, 1991.

Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, 1991.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

Robin Milner. Calculi for synchrony and asynchrony. Journal of Theoretical Computer
Science, 25:267-310, 1983.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

Faron Moller. The Edinburgh Concurrency Workbench (Version 6.1). University of
Edinburgh, 1992.

Jean-Luc Paillet. Functional semantics of microprocessors at the machine instruction
level. In Computer Hardware Description Languages and Their Applications, pages
87-101, 1990.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufman, San Mateo, CA, 1990.

13

